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Preface

I am pleased to see the text reach its ninth edition. The continued support and enthusi-
asm of the many users has been most gratifying. Linear algebra is more exciting now
than at almost any time in the past. Its applications continue to spread to more and more
fields. Largely due to the computer revolution of the last 75 years, linear algebra has
risen to a role of prominence in the mathematical curriculum rivaling that of calculus.
Modern software has also made it possible to dramatically improve the way the course
is taught.

The first edition of this book was published in 1980. Many significant changes
were made for the second edition (1986), most notably the exercise sets were greatly
expanded and the linear transformations chapter of the book was completely revised.
Each of the following editions has seen significant modifications including the addition
of comprehensive sets of MATLAB computer exercises, a dramatic increase in the
number of applications, and many revisions in the various sections of the book. I have
been fortunate to have had outstanding reviewers and their suggestions have led to
many important improvements in the book. For the ninth edition we have given special
attention to Chapter 7 as it is the only chapter that has not seen major revisions in any
of the previous editions. The following is an outline of the most significant revisions
that were made for the ninth edition.

What’s New in the Ninth Edition?

1. New Subsection Added to Chapter 3
Section 2 of Chapter 3 deals with the topic of subspaces. One important example
of a subspace occurs when we find all solutions to a homogeneous system of linear
equations. This type of subspace is referred to as a null space. A new subsection has
been added to show how the null space is also useful in finding the solution set to a
nonhomogeneous linear system. The subsection contains a new theorem and a new
figure that provides a geometric illustration of the theorem. Three related problems
have been added to the exercises at the end of Section 2.

2. New Applications Added to Chapters 1, 5, 6, and 7
In Chapter 1, we introduce an important application to the field of Management
Science. Management decisions often involve making choices between a number of
alternatives. We assume that the choices are to be made with a fixed goal in mind
and should be based on a set of evaluation criteria. These decisions often involve
a number of human judgments that may not always be completely consistent. The
analytic hierarchy process is a technique for rating the various alternatives based
on a chart consisting of weighted criteria and ratings that measure how well each
alternative satisfies each of the criteria.

ix
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In Chapter 1, we see how to set up such a chart or decision tree for the process.
After weights and ratings have been assigned to each entry in the chart, an overall
ranking of the alternatives is calculated using simple matrix-vector operations. In
Chapters 5 and 6, we revisit the application and discuss how to use advanced matrix
techniques to determine appropriate weights and ratings for the decision process.
Finally in Chapter 7, we present a numerical algorithm for computing the weight
vectors used in the decision process.

3. Section 1 of Chapter 7 Revised and Two Subsections Added
Section 7.1 has been revised and modernized. A new subsection on IEEE floating-
point representation of numbers and a second subsection on accuracy and stability
of numerical algorithms have been added. New examples and additional exercises
on these topics are also included.

4. Section 5 of Chapter 7 Revised
The discussion of Householder transformations has been revised and expanded. A
new subsection has been added, which discusses the practicalities of using QR fac-
torizations for solving linear systems. New exercises have also been added to this
section.

5. Section 7 of Chapter 7 Revised
Section 7.7 deals with numerical methods for solving least squares problems. The
section has been revised and a new subsection on using the modified Gram–Schmidt
process to solve least squares problems has been added. The subsection contains one
new algorithm.

Overview of Text

This book is suitable for either a sophomore-level course or for a junior/senior level
course. The student should have some familiarity with the basics of differential and
integral calculus. This prerequisite can be met by either one semester or two quarters
of elementary calculus.

If the text is used for a sophomore-level course, the instructor should probably
spend more time on the early chapters and omit many of the sections in the later
chapters. For more advanced courses, a quick review of the topics in the first two
chapters and then a more complete coverage of the later chapters would be appropri-
ate. The explanations in the text are given in sufficient detail so that beginning students
should have little trouble reading and understanding the material. To further aid the
student, a large number of examples have been worked out completely. Additionally,
computer exercises at the end of each chapter give students the opportunity to perform
numerical experiments and try to generalize the results. Applications are presented
throughout the book. These applications can be used to motivate new material or to
illustrate the relevance of material that has already been covered.

The text contains all the topics recommended by the National Science Foundation
(NSF) sponsored Linear Algebra Curriculum Study Group (LACSG) and much more.
Although there is more material than can be covered in a one-quarter or one-semester
course, it is my feeling that it is easier for an instructor to leave out or skip material
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than it is to supplement a book with outside material. Even if many topics are omitted,
the book should still provide students with a feeling for the overall scope of the subject
matter. Furthermore, students may use the book later as a reference and consequently
may end up learning omitted topics on their own.

In the next section of this preface, a number of outlines are provided for one-
semester courses at either the sophomore level or the junior/senior level and with either
a matrix-oriented emphasis or a slightly more theoretical emphasis.

Ideally, the entire book could be covered in a two-quarter or two-semester se-
quence. Although two semesters of linear algebra has been recommended by the
LACSG, it is still not practical at many universities and colleges. At present there
is no universal agreement on a core syllabus for a second course. Indeed, if all of the
topics that instructors would like to see in a second course were included in a single
volume, it would be a weighty book. An effort has been made in this text to cover all
of the basic linear algebra topics that are necessary for modern applications. Further-
more, two additional chapters for a second course are available for downloading from
the special Pearson Web site developed for this book:

http://pearsonhighered.com/leon

Suggested Course Outlines

I. Two-Semester Sequence: In a two-semester sequence, it is possible to cover all
40 sections of the book. When the author teaches the course, he also includes
an extra lecture demonstrating how to use the MATLAB software.

II. One-Semester Sophomore-Level Course
A. A Basic Sophomore-Level Course

Chapter 1 Sections 1–6 7 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 1–6 9 lectures
Chapter 4 Sections 1–3 4 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1–3 4 lectures

Total 35 lectures

B. The LACSG Matrix Oriented Course: The core course recommended by
the Linear Algebra Curriculum Study Group involves only the Euclidean
vector spaces. Consequently, for this course you should omit Section 1 of
Chapter 3 (on general vector spaces) and all references and exercises in-
volving function spaces in Chapters 3 to 6. All of the topics in the LACSG
core syllabus are included in the text. It is not necessary to introduce any
supplementary materials. The LACSG recommended 28 lectures to cover
the core material. This is possible if the class is taught in lecture format
with an additional recitation section meeting once a week. If the course

http://pearsonhighered.com/leon
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is taught without recitations, it is my feeling that the following schedule of
35 lectures is perhaps more reasonable.

Chapter 1 Sections 1–6 7 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 2–6 7 lectures
Chapter 4 Sections 1–3 2 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1,3–5 8 lectures

Total 35 lectures

III. One-Semester Junior/Senior Level Courses: The coverage in an upper division
course is dependent on the background of the students. Below are two possible
courses with 35 lectures each.
A. Course 1

Chapter 1 Sections 1–6 6 lectures
Chapter 2 Sections 1–2 2 lectures
Chapter 3 Sections 1–6 7 lectures
Chapter 5 Sections 1–6 9 lectures
Chapter 6 Sections 1–7 10 lectures

Section 8 if time allows
Chapter 7 Section 4 1 lecture

B. Course 2

Review of Topics in Chapters 1–3 5 lectures
Chapter 4 Sections 1–3 2 lectures
Chapter 5 Sections 1–6 10 lectures
Chapter 6 Sections 1–7 11 lectures

Section 8 if time allows
Chapter 7 Sections 4–7 7 lectures

If time allows, Sections 1–3

Computer Exercises

This edition contains a section of computing exercises at the end of each chapter. These
exercises are based on the software package MATLAB. The MATLAB Appendix in the
book explains the basics of using the software. MATLAB has the advantage that it is a
powerful tool for matrix computations and yet it is easy to learn. After reading the Ap-
pendix, students should be able to do the computing exercises without having to refer
to any other software books or manuals. To help students get started, we recommend
one 50-minute classroom demonstration of the software. The assignments can be done
either as ordinary homework assignments or as part of a formally scheduled computer
laboratory course.

Another source of MATLAB exercises for linear algebra is the ATLAST book,
which is available as a companion manual to supplement this book. (See the list of
supplementary materials in the next section of this preface.)
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While the course can be taught without any reference to the computer, we believe
that computer exercises can greatly enhance student learning and provide a new dimen-
sion to linear algebra education. One of the recommendations of the Linear Algebra
Curriculum Study Group is that technology should be used in a first course in linear
algebra. That recommendation has been widely accepted, and it is now common to see
mathematical software packages used in linear algebra courses.

Supplementary Materials

Web Supplements and Additional Chapters
Two supplemental chapters for this book may be downloaded using links from the
author’s home page:

http://www.umassd.edu/cas/math/people/facultyandstaff/steveleon

or from the Pearson Web site for this book:

http://pearsonhighered.com/leon

The additional chapters are:

• Chapter 8. Iterative Methods
• Chapter 9. Canonical Forms

The Pearson Web site for this book contains materials for students and instructors
including links to online exercises for each of the original seven chapters of the book.
The author’s home page contains a link to the errata list for this textbook. Please send
any additional errata items that you discover to the author so that the list can be updated
and corrections can be made in later printings of the book.

Companion Books
A Student Study Guide has been developed to accompany this textbook. A number
of MATLAB and Maple computer manuals are also available as companion books.
Instructors wishing to use one of the companion manuals along with the textbook
can order both the book and the manual for their classes and have each pair bundled
together in a shrink-wrapped package. These packages are available for classes at spe-
cial rates that are comparable to the price of ordering the textbook alone. Thus, when
students buy the textbook, they get the manual at little or no extra cost. To obtain in-
formation about the companion packages available, instructors should either consult
their Pearson sales representative or search the instructor section of the Pearson higher
education Web site (www.pearsonhighered.com). The following is a list of some of the
companion books being offered as bundles with this textbook:

• Student Study Guide for Linear Algebra with Applications. The manual is
available to students as a study tool to accompany this textbook. The manual
summarizes important theorems, definitions, and concepts presented in the
textbook. It provides solutions to some of the exercises and hints and sugges-
tions on many other exercises.

http://www.umassd.edu/cas/math/people/facultyandstaff/steveleon
http://pearsonhighered.com/leon
www.pearsonhighered.com
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• ATLAST Computer Exercises for Linear Algebra, Second Edition. ATLAST
(Augmenting the Teaching of Linear Algebra through the use of Software
Tools) was an NSF-sponsored project to encourage and facilitate the use of soft-
ware in the teaching of linear algebra. During a five-year period, 1992–1997,
the ATLAST Project conducted 18 faculty workshops using the MATLAB soft-
ware package. Participants in those workshops designed computer exercises,
projects, and lesson plans for software-based teaching of linear algebra. A se-
lection of these materials was first published as a manual in 1997. That manual
was greatly expanded for the second edition published in 2003. Each of the
eight chapters in the second edition contains a section of short exercises and a
section of longer projects.

The collection of software tools (M-files) developed to accompany the
ATLAST book may be downloaded from the ATLAST Web site:

www1.umassd.edu/specialprograms/atlast

Additionally, Mathematica users can download the collection of ATLAST
Mathematica Notebooks that has been developed by Richard Neidinger.

• Linear Algebra Labs with MATLAB: 3rd ed. by David Hill and David Zitarelli
• Visualizing Linear Algebra using Maple, by Sandra Keith
• A Maple Supplement for Linear Algebra, by John Maloney
• Understanding Linear Algebra Using MATLAB, by Erwin and Margaret

Kleinfeld
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Matrices and Systems of Equations
Probably the most important problem in mathematics is that of solving a system of
linear equations. Well over 75 percent of all mathematical problems encountered in
scientific or industrial applications involve solving a linear system at some stage. By
using the methods of modern mathematics, it is often possible to take a sophisticated
problem and reduce it to a single system of linear equations. Linear systems arise
in applications to such areas as business, economics, sociology, ecology, demography,
genetics, electronics, engineering, and physics. Therefore, it seems appropriate to begin
this book with a section on linear systems.

1.1 Systems of Linear Equations

A linear equation in n unknowns is an equation of the form

a1x1 + a2x2 + · · · + anxn = b

where a1, a2, . . . , an and b are real numbers and x1, x2, . . . , xn are variables. A linear
system of m equations in n unknowns is then a system of the form

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(1)

where the aij’s and the bi’s are all real numbers. We will refer to systems of the form (1)
as m × n linear systems. The following are examples of linear systems:

(a) x1 + 2x2 = 5
2x1 + 3x2 = 8

(b) x1 − x2 + x3 = 2
2x1 + x2 − x3 = 4

(c) x1 + x2 = 2
x1 − x2 = 1
x1 = 4

1
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System (a) is a 2 × 2 system, (b) is a 2 × 3 system, and (c) is a 3 × 2 system.
By a solution of an m × n system, we mean an ordered n-tuple of numbers

(x1, x2, . . . , xn) that satisfies all the equations of the system. For example, the ordered
pair (1, 2) is a solution of system (a), since

1 · (1) + 2 · (2) = 5
2 · (1) + 3 · (2) = 8

The ordered triple (2, 0, 0) is a solution of system (b), since

1 · (2) − 1 · (0) + 1 · (0) = 2
2 · (2) + 1 · (0) − 1 · (0) = 4

Actually, system (b) has many solutions. If α is any real number, it is easily seen that
the ordered triple (2, α, α) is a solution. However, system (c) has no solution. It follows
from the third equation that the first coordinate of any solution would have to be 4.
Using x1 = 4 in the first two equations, we see that the second coordinate must satisfy

4 + x2 = 2
4 − x2 = 1

Since there is no real number that satisfies both of these equations, the system has no
solution. If a linear system has no solution, we say that the system is inconsistent. If
the system has at least one solution, we say that it is consistent. Thus system (c) is
inconsistent, while systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the solution set of the system.
If a system is inconsistent, its solution set is empty. A consistent system will have a
nonempty solution set. To solve a consistent system, we must find its solution set.

2 × 2 Systems
Let us examine geometrically a system of the form

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Each equation can be represented graphically as a line in the plane. The ordered pair
(x1, x2) will be a solution of the system if and only if it lies on both lines. For example,
consider the three systems

(i) x1 + x2 = 2
x1 − x2 = 2

(ii) x1 + x2 = 2
x1 + x2 = 1

(iii) x1 + x2 = 2
−x1 − x2 = −2

The two lines in system (i) intersect at the point (2, 0). Thus, {(2, 0)} is the solution
set of (i). In system (ii) the two lines are parallel. Therefore, system (ii) is inconsistent
and hence its solution set is empty. The two equations in system (iii) both represent the
same line. Any point on this line will be a solution of the system (see Figure 1.1.1).

In general, there are three possibilities: the lines intersect at a point, they are par-
allel, or both equations represent the same line. The solution set then contains either
one, zero, or infinitely many points.
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(i) (ii) (iii)

(2, 0)

x2 x2

x1 x1

x2

x1

Figure 1.1.1.

The situation is the same for m × n systems. An m × n system may or may not be
consistent. If it is consistent, it must have either exactly one solution or infinitely many
solutions. These are the only possibilities. We will see why this is so in Section 1.2
when we study the row echelon form. Of more immediate concern is the problem of
finding all solutions of a given system. To tackle this problem, we introduce the notion
of equivalent systems.

Equivalent Systems
Consider the two systems

(a) 3x1 + 2x2 − x3 = −2
x2 = 3

2x3 = 4

(b) 3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

3x1 + 2x2 + x3 = 2

System (a) is easy to solve because it is clear from the last two equations that x2 = 3
and x3 = 2. Using these values in the first equation, we get

3x1 + 2 · 3 − 2 = −2
x1 = −2

Thus, the solution of the system is (−2, 3, 2). System (b) seems to be more difficult to
solve. Actually, system (b) has the same solution as system (a). To see this, add the
first two equations of the system:

3x1 + 2x2 − x3 = −2
−3x1 − x2 + x3 = 5

x2 = 3

If (x1, x2, x3) is any solution of (b), it must satisfy all the equations of the system. Thus,
it must satisfy any new equation formed by adding two of its equations. Therefore, x2

must equal 3. Similarly, (x1, x2, x3) must satisfy the new equation formed by subtracting
the first equation from the third:

3x1 + 2x2 + x3 = 2
3x1 + 2x2 − x3 = −2

2x3 = 4
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Therefore, any solution of system (b) must also be a solution of system (a). By a similar
argument, it can be shown that any solution of (a) is also a solution of (b). This can be
done by subtracting the first equation from the second:

x2 = 3
3x1 + 2x2 − x3 = −2

−3x1 − x2 + x3 = 5

Then add the first and third equations:

3x1 + 2x2 − x3 = −2
2x3 = 4

3x1 + 2x2 + x3 = 2

Thus, (x1, x2, x3) is a solution of system (b) if and only if it is a solution of system (a).
Therefore, both systems have the same solution set, {(−2, 3, 2)}.

Definition Two systems of equations involving the same variables are said to be equivalent if
they have the same solution set.

Clearly, if we interchange the order in which two equations of a system are written,
this will have no effect on the solution set. The reordered system will be equivalent to
the original system. For example, the systems

x1 + 2x2 = 4
3x1 − x2 = 2
4x1 + x2 = 6

and
4x1 + x2 = 6
3x1 − x2 = 2
x1 + 2x2 = 4

both involve the same three equations and, consequently, they must have the same
solution set.

If one equation of a system is multiplied through by a nonzero real number, this
will have no effect on the solution set, and the new system will be equivalent to the
original system. For example, the systems

x1 + x2 + x3 = 3
−2x1 − x2 + 4x3 = 1

and
2x1 + 2x2 + 2x3 = 6

−2x1 − x2 + 4x3 = 1

are equivalent.
If a multiple of one equation is added to another equation, the new system will be

equivalent to the original system. This follows since the n-tuple (x1, . . . , xn) will satisfy
the two equations

ai1x1 + · · · + ainxn = bi

aj1x1 + · · · + ajnxn = bj

if and only if it satisfies the equations

ai1x1 + · · · + ainxn = bi

(aj1 + αai1)x1 + · · · + (ajn + αain)xn = bj + αbi



1.1 Systems of Linear Equations 5

To summarize, there are three operations that can be used on a system to obtain an
equivalent system:

I. The order in which any two equations are written may be interchanged.
II. Both sides of an equation may be multiplied by the same nonzero real number.

III. A multiple of one equation may be added to (or subtracted from) another.

Given a system of equations, we may use these operations to obtain an equivalent
system that is easier to solve.

n × n Systems
Let us restrict ourselves to n × n systems for the remainder of this section. We will
show that if an n × n system has exactly one solution, then operations I and III can be
used to obtain an equivalent “strictly triangular system.”

Definition A system is said to be in strict triangular form if, in the kth equation, the coef-
ficients of the first k − 1 variables are all zero and the coefficient of xk is nonzero
(k = 1, . . . , n).

EXAMPLE 1 The system

3x1 + 2x2 + x3 = 1
x2 − x3 = 2

2x3 = 4

is in strict triangular form, since in the second equation the coefficients are 0, 1, −1, re-
spectively, and in the third equation the coefficients are 0, 0, 2, respectively. Because of
the strict triangular form, the system is easy to solve. It follows from the third equation
that x3 = 2. Using this value in the second equation, we obtain

x2 − 2 = 2 or x2 = 4

Using x2 = 4, x3 = 2 in the first equation, we end up with

3x1 + 2 · 4 + 2 = 1
x1 = −3

Thus, the solution of the system is (−3, 4, 2).

Any n × n strictly triangular system can be solved in the same manner as the last
example. First, the nth equation is solved for the value of xn. This value is used in the
(n − 1)st equation to solve for xn−1. The values xn and xn−1 are used in the (n − 2)nd
equation to solve for xn−2, and so on. We will refer to this method of solving a strictly
triangular system as back substitution.
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EXAMPLE 2 Solve the system

2x1 − x2 + 3x3 − 2x4 = 1
x2 − 2x3 + 3x4 = 2

4x3 + 3x4 = 3
4x4 = 4

Solution
Using back substitution, we obtain

4x4 = 4
4x3 + 3 · 1 = 3

x2 − 2 · 0 + 3 · 1 = 2
2x1 − (−1) + 3 · 0 − 2 · 1 = 1

x4 = 1
x3 = 0
x2 = −1
x1 = 1

Thus the solution is (1, −1, 0, 1).

In general, given a system of n linear equations in n unknowns, we will use opera-
tions I and III to try to obtain an equivalent system that is strictly triangular. (We will
see in the next section of the book that it is not possible to reduce the system to strictly
triangular form in the cases where the system does not have a unique solution.)

EXAMPLE 3 Solve the system

x1 + 2x2 + x3 = 3
3x1 − x2 − 3x3 = −1
2x1 + 3x2 + x3 = 4

Solution
Subtracting 3 times the first row from the second row yields

−7x2 − 6x3 = −10

Subtracting 2 times the first row from the third row yields

−x2 − x3 = −2

If the second and third equations of our system, respectively, are replaced by these new
equations, we obtain the equivalent system

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10
−x2 − x3 = −2

If the third equation of this system is replaced by the sum of the third equation and − 1
7

times the second equation, we end up with the following strictly triangular system:

x1 + 2x2 + x3 = 3
−7x2 − 6x3 = −10

− 1
7 x3 = − 4

7
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Using back substitution, we get

x3 = 4, x2 = −2, x1 = 3

Let us look back at the system of equations in the last example. We can associate
with that system a 3 × 3 array of numbers whose entries are the coefficients of the xi’s:⎧⎪⎪⎪⎪⎪⎩

1 2 1
3 −1 −3
2 3 1

⎫⎪⎪⎪⎪⎪⎭
We will refer to this array as the coefficient matrix of the system. The term matrix
means simply a rectangular array of numbers. A matrix having m rows and n columns
is said to be m × n. A matrix is said to be square if it has the same number of rows and
columns, that is, if m = n.

If we attach to the coefficient matrix an additional column whose entries are the
numbers on the right-hand side of the system, we obtain the new matrix⎧⎪⎪⎪⎪⎪⎩

1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫⎪⎪⎪⎪⎪⎭
We will refer to this new matrix as the augmented matrix. In general, when an m × r
matrix B is attached to an m × n matrix A in this way, the augmented matrix is denoted
by (A|B). Thus, if

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b11 b12 · · · b1r

b21 b22 · · · b2r
...

bm1 bm2 · · · bmr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then

(A|B) =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b11 · · · b1r
...

...
am1 · · · amn bm1 · · · bmr

⎫⎪⎪⎪⎪⎪⎪⎪⎭
With each system of equations we may associate an augmented matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎩

a11 · · · a1n b1
...

...
am1 · · · amn bm

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The system can be solved by performing operations on the augmented matrix. The xi’s
are placeholders that can be omitted until the end of the computation. Corresponding
to the three operations used to obtain equivalent systems, the following row operations
may be applied to the augmented matrix:

Elementary Row Operations

I. Interchange two rows.
II. Multiply a row by a nonzero real number.

III. Replace a row by its sum with a multiple of another row.
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Returning to the example, we find that the first row is used to eliminate the ele-
ments in the first column of the remaining rows. We refer to the first row as the pivotal
row. For emphasis, the entries in the pivotal row are all in bold type and the entire row
is color shaded. The first nonzero entry in the pivotal row is called the pivot.

entries to be eliminated
a21 = 3 and a31 = 2

}
→

⎧⎪⎪⎪⎪⎪⎩
(pivot a11 = 1) 1 2 1 3 ← pivotal row

3 −1 −3 −1
2 3 1 4

⎫⎪⎪⎪⎪⎪⎭
By using row operation III, 3 times the first row is subtracted from the second row and
2 times the first row is subtracted from the third. When this is done, we end up with
the matrix ⎧⎪⎪⎪⎪⎪⎩

1 2 1 3
0 −7 −6 −10 ← pivotal row
0 −1 −1 −2

⎫⎪⎪⎪⎪⎪⎭
At this step we choose the second row as our new pivotal row and apply row opera-
tion III to eliminate the last element in the second column. This time the pivot is −7
and the quotient −1

−7 = 1
7 is the multiple of the pivotal row that is subtracted from the

third row. We end up with the matrix⎧⎪⎪⎪⎪⎪⎩
1 2 1 3
0 −7 −6 −10
0 0 − 1

7 − 4
7

⎫⎪⎪⎪⎪⎪⎭
This is the augmented matrix for the strictly triangular system, which is equivalent to
the original system. The solution of the system is easily obtained by back substitution.

EXAMPLE 4 Solve the system

− x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 6

2x1 + 4x2 + x3 − 2x4 = −1
3x1 + x2 − 2x3 + 2x4 = 3

Solution
The augmented matrix for this system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1 1 0
1 1 1 1 6
2 4 1 −2 −1
3 1 −2 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since it is not possible to eliminate any entries by using 0 as a pivot element, we will
use row operation I to interchange the first two rows of the augmented matrix. The new
first row will be the pivotal row and the pivot element will be 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pivot a11 = 1) 1 1 1 1 6 ← pivotal row
0 −1 −1 1 0
2 4 1 −2 −1
3 1 −2 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Row operation III is then used twice to eliminate the two nonzero entries in the
first column: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 2 −1 −4 −13
0 −2 −5 −1 −15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Next, the second row is used as the pivotal row to eliminate the entries in the second
column below the pivot element −1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 −3 −3 −15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Finally, the third row is used as the pivotal row to eliminate the last element in the third
column: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
0 0 −3 −2 −13
0 0 0 −1 −2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
This augmented matrix represents a strictly triangular system. Solving by back
substitution, we obtain the solution (2, −1, 3, 2).

In general, if an n×n linear system can be reduced to strictly triangular form, then
it will have a unique solution that can be obtained by performing back substitution on
the triangular system. We can think of the reduction process as an algorithm involving
n − 1 steps. At the first step, a pivot element is chosen from among the nonzero entries
in the first column of the matrix. The row containing the pivot element is called the
pivotal row. We interchange rows (if necessary) so that the pivotal row is the new first
row. Multiples of the pivotal row are then subtracted from each of the remaining n − 1
rows so as to obtain 0’s in the first entries of rows 2 through n. At the second step, a
pivot element is chosen from the nonzero entries in column 2, rows 2 through n, of
the matrix. The row containing the pivot is then interchanged with the second row of
the matrix and is used as the new pivotal row. Multiples of the pivotal row are then
subtracted from the remaining n − 2 rows so as to eliminate all entries below the pivot
in the second column. The same procedure is repeated for columns 3 through n − 1.
Note that at the second step row 1 and column 1 remain unchanged, at the third step
the first two rows and first two columns remain unchanged, and so on. At each step,
the overall dimensions of the system are effectively reduced by 1 (see Figure 1.1.2).

If the elimination process can be carried out as described, we will arrive at an
equivalent strictly triangular system after n − 1 steps. However, the procedure will
break down if, at any step, all possible choices for a pivot element are equal to 0.
When this happens, the alternative is to reduce the system to certain special echelon,
or staircase-shaped, forms. These echelon forms will be studied in the next section.
They will also be used for m × n systems, where m �= n.
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Figure 1.1.2.

SECTION 1.1 EXERCISES
1. Use back substitution to solve each of the following

systems of equations:

(a) x1 − 3x2 = 2

2x2 = 6

(b) x1 + x2 + x3 = 8

2x2 + x3 = 5

3x3 = 9
(c) x1 + 2x2 + 2x3 + x4 = 5

3x2 + x3 − 2x4 = 1
−x3 + 2x4 = −1

4x4 = 4

(d) x1 + x2 + x3 + x4 + x5 = 5

2x2 + x3 − 2x4 + x5 = 1

4x3 + x4 − 2x5 = 1

x4 − 3x5 = 0

2x5 = 2

2. Write out the coefficient matrix for each of the
systems in Exercise 1.

3. In each of the following systems, interpret each
equation as a line in the plane. For each system,
graph the lines and determine geometrically the
number of solutions.
(a) x1 + x2 = 4

x1 − x2 = 2

(b) x1 + 2x2 = 4

−2x1 − 4x2 = 4
(c) 2x1 − x2 = 3

−4x1 + 2x2 = −6

(d) x1 + x2 = 1

x1 − x2 = 1

−x1 + 3x2 = 3

4. Write an augmented matrix for each of the systems
in Exercise 3.

5. Write out the system of equations that corresponds
to each of the following augmented matrices:

(a)
⎧⎪⎩ 3 2 8

1 5 7

⎫⎪⎭ (b)
⎧⎪⎩ 5 −2 1 3

2 3 −4 0

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2 1 4 −1
4 −2 3 4
5 2 6 −1

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 −3 1 2 4
3 1 −5 6 5
1 1 2 4 8
5 1 3 −2 7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
6. Solve each of the following systems.

(a) x1 − 2x2 = 5

3x1 + x2 = 1

(b) 2x1 + x2 = 8

4x1 − 3x2 = 6

(c) 4x1 + 3x2 = 4
2
3 x1 + 4x2 = 3

(d) x1 + 2x2 − x3 = 1

2x1 − x2 + x3 = 3

−x1 + 2x2 + 3x3 = 7

(e) 2x1 + x2 + 3x3 = 1

4x1 + 3x2 + 5x3 = 1

6x1 + 5x2 + 5x3 = −3

(f) 3x1 + 2x2 + x3 = 0

−2x1 + x2 − x3 = 2

2x1 − x2 + 2x3 = −1

(g) 1
3 x1 + 2

3 x2 + 2x3 = −1

x1 + 2x2 + 3
2 x3 = 3

2

1
2 x1 + 2x2 + 12

5 x3 = 1
10

(h) x2 + x3 + x4 = 0

3x1 + 3x3 − 4x4 = 7

x1 + x2 + x3 + 2x4 = 6

2x1 + 3x2 + x3 + 3x4 = 6
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7. The two systems

2x1 + x2 = 3

4x1 + 3x2 = 5
and

2x1 + x2 = −1

4x1 + 3x2 = 1

have the same coefficient matrix but different right-
hand sides. Solve both systems simultaneously by
eliminating the first entry in the second row of the
augmented matrix⎧⎪⎩ 2 1 3 −1

4 3 5 1

⎫⎪⎭
and then performing back substitutions for each of
the columns corresponding to the right-hand sides.

8. Solve the two systems

x1 + 2x2 − 2x3 = 1

2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = 9

x1 + 2x2 − 2x3 = 9

2x1 + 5x2 + x3 = 9

x1 + 3x2 + 4x3 = −2

by doing elimination on a 3 × 5 augmented matrix
and then performing two back substitutions.

9. Given a system of the form

−m1x1 + x2 = b1

−m2x1 + x2 = b2

where m1, m2, b1, and b2 are constants:
(a) Show that the system will have a unique solu-

tion if m1 �= m2.
(b) Show that if m1 = m2, then the system will be

consistent only if b1 = b2.
(c) Give a geometric interpretation of parts (a) and

(b).
10. Consider a system of the form

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

where a11, a12, a21, and a22 are constants. Explain
why a system of this form must be consistent.

11. Give a geometrical interpretation of a linear equa-
tion in three unknowns. Give a geometrical descrip-
tion of the possible solution sets for a 3 × 3 linear
system.

1.2 Row Echelon Form

In Section 1.1 we learned a method for reducing an n × n linear system to strict trian-
gular form. However, this method will fail if, at any stage of the reduction process, all
the possible choices for a pivot element in a given column are 0.

EXAMPLE 1 Consider the system represented by the augmented matrix

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1 1 1 ← pivotal row

−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 −1
1 1 2 2 4 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If row operation III is used to eliminate the nonzero entries in the last four rows of the
first column, the resulting matrix will be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1 1 1
0 0 1 1 2 0 ← pivotal row
0 0 2 2 5 3
0 0 1 1 3 −1
0 0 1 1 3 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
At this stage, the reduction to strict triangular form breaks down. All four possible
choices for the pivot element in the second column are 0. How do we proceed from
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here? Since our goal is to simplify the system as much as possible, it seems natural to
move over to the third column and eliminate the last three entries:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 1 −1
0 0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In the fourth column, all the choices for a pivot element are 0; so again we move on to
the next column. If we use the third row as the pivotal row, the last two entries in the
fifth column are eliminated and we end up with the matrix

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 −4
0 0 0 0 0 −3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The coefficient matrix that we end up with is not in strict triangular form; it is in
staircase, or echelon, form. The horizontal and vertical line segments in the array for
the coefficient matrix indicate the structure of the staircase form. Note that the vertical
drop is 1 for each step, but the horizontal span for a step can be more than 1.

The equations represented by the last two rows are

0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −4
0x1 + 0x2 + 0x3 + 0x4 + 0x5 = −3

Since there are no 5-tuples that could satisfy these equations, the system is inconsistent.

Suppose now that we change the right-hand side of the system in the last example
so as to obtain a consistent system. For example, if we start with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
−1 −1 0 0 1 −1
−2 −2 0 0 3 1

0 0 1 1 3 3
1 1 2 2 4 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then the reduction process will yield the echelon-form augmented matrix

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1
0 0 1 1 2 0
0 0 0 0 1 3
0 0 0 0 0 0
0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The last two equations of the reduced system will be satisfied for any 5-tuple. Thus the
solution set will be the set of all 5-tuples satisfying the first three equations.

x1 + x2 + x3 + x4 + x5 = 1
x3 + x4 + 2x5 = 0

x5 = 3

(1)

The variables corresponding to the first nonzero elements in each row of the reduced
matrix will be referred to as lead variables. Thus x1, x3, and x5 are the lead variables.
The remaining variables corresponding to the columns skipped in the reduction process
will be referred to as free variables. Hence, x2 and x4 are the free variables. If we
transfer the free variables over to the right-hand side in (1), we obtain the system

x1 + x3 + x5 = 1 − x2 − x4

x3 + 2x5 = −x4

x5 = 3

(2)

System (2) is strictly triangular in the unknowns x1, x3, and x5. Thus, for each
pair of values assigned to x2 and x4, there will be a unique solution. For example, if
x2 = x4 = 0, then x5 = 3, x3 = −6, and x1 = 4, and hence (4, 0, −6, 0, 3) is a solution
of the system.

Definition A matrix is said to be in row echelon form if

(i) The first nonzero entry in each nonzero row is 1.
(ii) If row k does not consist entirely of zeros, the number of leading zero

entries in row k + 1 is greater than the number of leading zero entries in
row k.

(iii) If there are rows whose entries are all zero, they are below the rows having
nonzero entries.

EXAMPLE 2 The following matrices are in row echelon form:⎧⎪⎪⎪⎪⎪⎩
1 4 2
0 1 3
0 0 1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 2 3
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 3 1 0
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
EXAMPLE 3 The following matrices are not in row echelon form:⎧⎪⎪⎪⎪⎪⎩

2 4 6
0 3 5
0 0 4

⎫⎪⎪⎪⎪⎪⎭ ,
⎧⎪⎩ 0 0 0

0 1 0

⎫⎪⎭ ,
⎧⎪⎩ 0 1

1 0

⎫⎪⎭
The first matrix does not satisfy condition (i). The second matrix fails to satisfy
condition (iii), and the third matrix fails to satisfy condition (ii).

Definition The process of using row operations I, II, and III to transform a linear system
into one whose augmented matrix is in row echelon form is called Gaussian
elimination.
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Note that row operation II is necessary in order to scale the rows so that the leading
coefficients are all 1. If the row echelon form of the augmented matrix contains a row
of the form ⎧⎩ 0 0 · · · 0 1

⎫⎭
the system is inconsistent. Otherwise, the system will be consistent. If the system is
consistent and the nonzero rows of the row echelon form of the matrix form a strictly
triangular system, the system will have a unique solution.

Overdetermined Systems
A linear system is said to be overdetermined if there are more equations than
unknowns. Overdetermined systems are usually (but not always) inconsistent.

EXAMPLE 4 Solve each of the following overdetermined systems:

(a) x1 + x2 = 1
x1 − x2 = 3

−x1 + 2x2 = −2

(b) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
2x1 − x2 + 3x3 = 5

(c) x1 + 2x2 + x3 = 1
2x1 − x2 + x3 = 2
4x1 + 3x2 + 3x3 = 4
3x1 + x2 + 2x3 = 3

Solution
By now the reader should be familiar enough with the elimination process that we can
omit the intermediate steps in reducing each of these systems. Thus, we may write

System (a):

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 −1 3

−1 2 −2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
It follows from the last row of the reduced matrix that the system is inconsistent. The
three equations in system (a) represent lines in the plane. The first two lines intersect at
the point (2, −1). However, the third line does not pass through this point. Thus, there
are no points that lie on all three lines (see Figure 1.2.1).

System (b):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1

2 −1 1 2

4 3 3 4

2 −1 3 5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1

0 1 1
5 0

0 0 1 3
2

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Using back substitution, we see that system (b) has exactly one solution

(0.1, −0.3, 1.5). The solution is unique because the nonzero rows of the reduced matrix
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x2

x12

–1

Figure 1.2.1.

form a strictly triangular system.

System (c):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1
2 −1 1 2
4 3 3 4
3 1 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1
0 1 1

5 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solving for x2 and x1 in terms of x3, we obtain

x2 = −0.2x3

x1 = 1 − 2x2 − x3 = 1 − 0.6x3

It follows that the solution set is the set of all ordered triples of the form (1 −
0.6α, −0.2α, α), where α is a real number. This system is consistent and has infinitely
many solutions because of the free variable x3.

Underdetermined Systems
A system of m linear equations in n unknowns is said to be underdetermined if there are
fewer equations than unknowns (m < n). Although it is possible for underdetermined
systems to be inconsistent, they are usually consistent with infinitely many solutions. It
is not possible for an underdetermined system to have a unique solution. The reason for
this is that any row echelon form of the coefficient matrix will involve r ≤ m nonzero
rows. Thus there will be r lead variables and n − r free variables, where n − r ≥
n − m > 0. If the system is consistent, we can assign the free variables arbitrary values
and solve for the lead variables. Therefore, a consistent underdetermined system will
have infinitely many solutions.

EXAMPLE 5 Solve the following underdetermined systems:

(a) x1 + 2x2 + x3 = 1
2x1 + 4x2 + 2x3 = 3

(b) x1 + x2 + x3 + x4 + x5 = 2
x1 + x2 + x3 + 2x4 + 2x5 = 3
x1 + x2 + x3 + 2x4 + 3x5 = 2
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Solution

System (a):
⎧⎪⎩ 1 2 1 1

2 4 2 3

⎫⎪⎭ →
⎧⎪⎩ 1 2 1 1

0 0 0 1

⎫⎪⎭
Clearly, system (a) is inconsistent. We can think of the two equations in system (a) as
representing planes in 3-space. Usually, two planes intersect in a line; however, in this
case the planes are parallel.

System (b):

⎧⎪⎪⎪⎪⎪⎩
1 1 1 1 1 2
1 1 1 2 2 3
1 1 1 2 3 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎭
System (b) is consistent, and since there are two free variables, the system will have
infinitely many solutions. In cases such as these it is convenient to continue the elim-
ination process and simplify the form of the reduced matrix even further. We continue
eliminating until all the terms above each leading 1 are eliminated. Thus, for sys-
tem (b), we will continue and eliminate the first two entries in the fifth column and
then the first element in the fourth column.⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 2
0 0 0 1 1 1
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 0 3
0 0 0 1 0 2
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
→

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 0 0 1
0 0 0 1 0 2
0 0 0 0 1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
If we put the free variables over on the right-hand side, it follows that

x1 = 1 − x2 − x3

x4 = 2

x5 = −1

Thus, for any real numbers α and β, the 5-tuple

(1 − α − β, α, β, 2, −1)

is a solution of the system.

In the case where the row echelon form of a consistent system has free variables,
the standard procedure is to continue the elimination process until all the entries above
each leading 1 have been eliminated, as in system (b) of the previous example. The
resulting reduced matrix is said to be in reduced row echelon form.

Reduced Row Echelon Form

Definition A matrix is said to be in reduced row echelon form if

(i) The matrix is in row echelon form.
(ii) The first nonzero entry in each row is the only nonzero entry in its column.



1.2 Row Echelon Form 17

The following matrices are in reduced row echelon form:

⎧⎪⎩ 1 0
0 1

⎫⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 0 0 3
0 1 0 2
0 0 1 1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0 1 2 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 2 0 1
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
The process of using elementary row operations to transform a matrix into reduced

row echelon form is called Gauss–Jordan reduction.

EXAMPLE 6 Use Gauss–Jordan reduction to solve the system

−x1 + x2 − x3 + 3x4 = 0
3x1 + x2 − x3 − x4 = 0
2x1 − x2 − 2x3 − x4 = 0

Solution

⎧⎪⎪⎪⎪⎪⎩
−1 1 −1 3 0

3 1 −1 −1 0
2 −1 −2 −1 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
0 4 −4 8 0
0 1 −4 5 0

⎫⎪⎪⎪⎪⎪⎭

→
⎧⎪⎪⎪⎪⎪⎩

−1 1 −1 3 0
0 4 −4 8 0
0 0 −3 3 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 −1 1 −3 0
0 1 −1 2 0
0 0 1 −1 0

⎫⎪⎪⎪⎪⎪⎭
row
echelon
form

→
⎧⎪⎪⎪⎪⎪⎩

1 −1 0 −2 0
0 1 0 1 0
0 0 1 −1 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 0 −1 0
0 1 0 1 0
0 0 1 −1 0

⎫⎪⎪⎪⎪⎪⎭
reduced
row echelon
form

If we set x4 equal to any real number α, then x1 = α, x2 = −α, and x3 = α. Thus, all
ordered 4-tuples of the form (α, −α, α, α) are solutions of the system.

APPLICATION 1 Traffic Flow
In the downtown section of a certain city, two sets of one-way streets intersect as shown
in Figure 1.2.2. The average hourly volume of traffic entering and leaving this section
during rush hour is given in the diagram. Determine the amount of traffic between each
of the four intersections.

Solution
At each intersection the number of automobiles entering must be the same as the num-
ber leaving. For example, at intersection A, the number of automobiles entering is
x1 + 450 and the number leaving is x2 + 610. Thus

x1 + 450 = x2 + 610 (intersection A)
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450
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640

600520

480 390
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D
x1

x2

x3

x4

Figure 1.2.2.

Similarly,

x2 + 520 = x3 + 480 (intersection B)

x3 + 390 = x4 + 600 (intersection C)

x4 + 640 = x1 + 310 (intersection D)

The augmented matrix for the system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 0 0 160
0 1 −1 0 −40
0 0 1 −1 210

−1 0 0 1 −330

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The reduced row echelon form for this matrix is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 −1 330
0 1 0 −1 170
0 0 1 −1 210
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The system is consistent, and since there is a free variable, there are many possible
solutions. The traffic flow diagram does not give enough information to determine
x1, x2, x3, and x4 uniquely. If the amount of traffic were known between any pair of
intersections, the traffic on the remaining arteries could easily be calculated. For ex-
ample, if the amount of traffic between intersections C and D averages 200 automobiles
per hour, then x4 = 200. Using this value, we can then solve for x1, x2, and x3:

x1 = x4 + 330 = 530
x2 = x4 + 170 = 370
x3 = x4 + 210 = 410
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APPLICATION 2 Electrical Networks

In an electrical network, it is possible to determine the amount of current in each branch
in terms of the resistances and the voltages. An example of a typical circuit is given in
Figure 1.2.3.

i3

A B

9 volts

8 volts

4 ohms

2 ohms

2 ohms3 ohms

i1

i2

Figure 1.2.3.

The symbols in the figure have the following meanings:
A path along which current may flow

An electrical source

A resistor

The electrical source is usually a battery with a voltage (measured in volts) that drives
a charge and produces a current. The current will flow out from the terminal of the
battery that is represented by the longer vertical line. The resistances are measured in
ohms. The letters represent nodes and the i’s represent the currents between the nodes.
The currents are measured in amperes. The arrows show the direction of the currents.
If, however, one of the currents, say, i2, turns out to be negative, this would mean that
the current along that branch is in the direction opposite that of the arrow.

To determine the currents, the following rules are used:

Kirchhoff’s Laws
1. At every node the sum of the incoming currents equals the sum of the outgoing

currents.
2. Around every closed loop, the algebraic sum of the voltage gains must equal

the algebraic sum of the voltage drops.

The voltage drops E for each resistor are given by Ohm’s law:

E = iR

where i represents the current in amperes and R the resistance in ohms.
Let us find the currents in the network pictured in Figure 1.2.3. From the first law,

we have

i1 − i2 + i3 = 0
−i1 + i2 − i3 = 0

(node A)
(node B)
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By the second law,

4i1 + 2i2 = 8
2i2 + 5i3 = 9

(top loop)
(bottom loop)

The network can be represented by the augmented matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 1 0

−1 1 −1 0
4 2 0 8
0 2 5 9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
This matrix is easily reduced to the row echelon form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 1 0

0 1 − 2
3

4
3

0 0 1 1

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solving by back substitution, we see that i1 = 1, i2 = 2, and i3 = 1.

Homogeneous Systems
A system of linear equations is said to be homogeneous if the constants on the right-
hand side are all zero. Homogeneous systems are always consistent. It is a trivial matter
to find a solution; just set all the variables equal to zero. Thus, if an m×n homogeneous
system has a unique solution, it must be the trivial solution (0, 0, . . . , 0). The homogen-
eous system in Example 6 consisted of m = 3 equations in n = 4 unknowns. In the case
that n > m, there will always be free variables and, consequently, additional nontrivial
solutions. This result has essentially been proved in our discussion of underdetermined
systems, but, because of its importance, we state it as a theorem.

Theorem 1.2.1 An m × n homogeneous system of linear equations has a nontrivial solution if n > m.

Proof A homogeneous system is always consistent. The row echelon form of the matrix can
have at most m nonzero rows. Thus there are at most m lead variables. Since there are
n variables altogether and n > m, there must be some free variables. The free variables
can be assigned arbitrary values. For each assignment of values to the free variables,
there is a solution of the system.

APPLICATION 3 Chemical Equations

In the process of photosynthesis, plants use radiant energy from sunlight to convert
carbon dioxide (CO2) and water (H2O) into glucose (C6H12O6) and oxygen (O2). The
chemical equation of the reaction is of the form

x1CO2 + x2H2O → x3O2 + x4C6H12O6

To balance the equation, we must choose x1, x2, x3, and x4 so that the numbers of car-
bon, hydrogen, and oxygen atoms are the same on each side of the equation. Since
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carbon dioxide contains one carbon atom and glucose contains six, to balance the
carbon atoms we require that

x1 = 6x4

Similarly, to balance the oxygen, we need

2x1 + x2 = 2x3 + 6x4

and finally, to balance the hydrogen, we need

2x2 = 12x4

If we move all the unknowns to the left-hand sides of the three equations, we end up
with the homogeneous linear system

x1 − 6x4 = 0
2x1 + x2 − 2x3 − 6x4 = 0

2x2 − 12x4 = 0

By Theorem 1.2.1, the system has nontrivial solutions. To balance the equation, we
must find solutions (x1, x2, x3, x4) whose entries are nonnegative integers. If we solve
the system in the usual way, we see that x4 is a free variable and

x1 = x2 = x3 = 6x4

In particular, if we take x4 = 1, then x1 = x2 = x3 = 6 and the equation takes the form

6CO2 + 6H2O → 6O2 + C6H12O6

APPLICATION 4 Economic Models for Exchange of Goods
Suppose that in a primitive society the members of a tribe are engaged in three oc-
cupations: farming, manufacturing of tools and utensils, and weaving and sewing of
clothing. Assume that initially the tribe has no monetary system and that all goods and
services are bartered. Let us denote the three groups by F, M, and C, and suppose that
the directed graph in Figure 1.2.4 indicates how the bartering system works in practice.

The figure indicates that the farmers keep half of their produce and give one-fourth
of their produce to the manufacturers and one-fourth to the clothing producers. The
manufacturers divide the goods evenly among the three groups, one-third going to
each group. The group producing clothes gives half of the clothes to the farmers and
divides the other half evenly between the manufacturers and themselves. The result is
summarized in the following table:

F M C

F 1
2

1
3

1
2

M 1
4

1
3

1
4

C 1
4

1
3

1
4
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M C

F

1
2

1
3

1
3

1
3

1
4

1
4

1
4

1
4

1
2

Figure 1.2.4.

The first column of the table indicates the distribution of the goods produced by the
farmers, the second column indicates the distribution of the manufactured goods, and
the third column indicates the distribution of the clothing.

As the size of the tribe grows, the system of bartering becomes too cumbersome
and, consequently, the tribe decides to institute a monetary system of exchange. For
this simple economic system, we assume that there will be no accumulation of capital
or debt and that the prices for each of the three types of goods will reflect the values of
the existing bartering system. The question is how to assign values to the three types
of goods that fairly represent the current bartering system.

The problem can be turned into a linear system of equations using an economic
model that was originally developed by the Nobel Prize-winning economist Wassily
Leontief. For this model, we will let x1 be the monetary value of the goods produced
by the farmers, x2 be the value of the manufactured goods, and x3 be the value of all
the clothing produced. According to the first row of the table, the value of the goods
received by the farmers amounts to half the value of the farm goods produced, plus
one-third the value of the manufactured products, and half the value of the clothing
goods. Thus the total value of goods received by the farmer is 1

2 x1 + 1
3 x2 + 1

2 x3. If the
system is fair, the total value of goods received by the farmers should equal x1, the total
value of the farm goods produced. Hence, we have the linear equation

1

2
x1 + 1

3
x2 + 1

2
x3 = x1

Using the second row of the table and equating the value of the goods produced and
received by the manufacturers, we obtain a second equation:

1

4
x1 + 1

3
x2 + 1

4
x3 = x2
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Finally, using the third row of the table, we get

1

4
x1 + 1

3
x2 + 1

4
x3 = x3

These equations can be rewritten as a homogeneous system:

− 1
2 x1 + 1

3 x2 + 1
2 x3 = 0

1
4 x1 − 2

3 x2 + 1
4 x3 = 0

1
4 x1 + 1

3 x2 − 3
4 x3 = 0

The reduced row echelon form of the augmented matrix for this system is⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 − 5

3 0

0 1 −1 0

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭
There is one free variable: x3. Setting x3 = 3, we obtain the solution (5, 3, 3), and the
general solution consists of all multiples of (5, 3, 3). It follows that the variables x1, x2,
and x3 should be assigned values in the ratio

x1 : x2 : x3 = 5 : 3 : 3

This simple system is an example of the closed Leontief input-output model. Le-
ontief’s models are fundamental to our understanding of economic systems. Modern
applications would involve thousands of industries and lead to very large linear sys-
tems. The Leontief models will be studied in greater detail later in Section 6.8 of the
book.

SECTION 1.2 EXERCISES
1. Which of the matrices that follow are in row ech-

elon form? Which are in reduced row echelon
form?

(a)
⎧⎪⎩ 1 2 3 4

0 0 1 2

⎫⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 3 0
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
0 1
0 0
0 0

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 1 2
0 0 3

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
1 4 6
0 0 1
0 1 3

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
1 0 0 1 2
0 1 0 2 4
0 0 1 3 6

⎫⎪⎪⎪⎪⎪⎭ (h)

⎧⎪⎪⎪⎪⎪⎩
0 1 3 4
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭

2. The augmented matrices that follow are in row
echelon form. For each case, indicate whether the
corresponding linear system is consistent. If the
system has a unique solution, find it.

(a)

⎧⎪⎪⎪⎪⎪⎩
1 2 4
0 1 3
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 3 1
0 1 −1
0 0 0

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 −2 4 1
0 0 1 3
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
1 −2 2 −2
0 1 −1 3
0 0 1 2

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 3 2 −2
0 0 1 4
0 0 0 1

⎫⎪⎪⎪⎪⎪⎭
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(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 3 8
0 1 2 7
0 0 1 2
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. The augmented matrices that follow are in reduced

row echelon form. In each case, find the solution
set to the corresponding linear system.

(a)

⎧⎪⎪⎪⎪⎪⎩
1 0 0 −2
0 1 0 5
0 0 1 3

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 4 0 2
0 0 1 3
0 0 0 1

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 −3 0 2
0 0 1 −2
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎩ 1 2 0 1 5
0 0 1 3 4

⎫⎪⎭

(e)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 5 −2 0 3
0 0 0 1 6
0 0 0 0 0
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
0 1 0 2
0 0 1 −1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
4. For each of the systems in Exercise 3, make a list

of the lead variables and a second list of the free
variables.

5. For each of the systems of equations that follow,
use Gaussian elimination to obtain an equivalent
system whose coefficient matrix is in row echelon
form. Indicate whether the system is consistent.
If the system is consistent and involves no free
variables, use back substitution to find the unique
solution. If the system is consistent and there are
free variables, transform it to reduced row echelon
form and find all solutions.
(a) x1 − 2x2 = 3

2x1 − x2 = 9

(b) 2x1 − 3x2 = 5

−4x1 + 6x2 = 8

(c) x1 + x2 = 0

2x1 + 3x2 = 0

3x1 − 2x2 = 0

(d) 3x1+ 2x2− x3= 4

x1− 2x2+ 2x3= 1

11x1+ 2x2+ x3= 14

(e) 2x1 + 3x2 + x3 = 1

x1 + x2 + x3 = 3

3x1 + 4x2 + 2x3 = 4

(f) x1 − x2 + 2x3 = 4

2x1 + 3x2 − x3 = 1

7x1 + 3x2 + 4x3 = 7

(g) x1+ x2+ x3+ x4= 0

2x1+ 3x2− x3− x4= 2

3x1+ 2x2+ x3+ x4= 5

3x1+ 6x2− x3− x4= 4

(h) x1 − 2x2 = 3

2x1 + x2 = 1

−5x1 + 8x2 = 4

(i) −x1 + 2x2 − x3 = 2

−2x1 + 2x2 + x3 = 4

3x1 + 2x2 + 2x3 = 5

−3x1 + 8x2 + 5x3 = 17

(j) x1+ 2x2− 3x3+ x4= 1

−x1− x2+ 4x3− x4= 6

−2x1− 4x2+ 7x3− x4= 1

(k) x1+ 3x2+ x3+ x4= 3

2x1− 2x2+ x3+ 2x4= 8

x1− 5x2 + x4= 5

(l) x1 − 3x2 + x3 = 1

2x1 + x2 − x3 = 2

x1 + 4x2 − 2x3 = 1

5x1 − 8x2 + 2x3 = 5

6. Use Gauss–Jordan reduction to solve each of the
following systems.

(a) x1 + x2 = −1

4x1 − 3x2 = 3

(b) x1 + 3x2 + x3 + x4 = 3

2x1 − 2x2 + x3 + 2x4 = 8

3x1 + x2 + 2x3 − x4 = −1

(c) x1 + x2 + x3 = 0

x1 − x2 − x3 = 0

(d) x1 + x2 + x3 + x4 = 0

2x1 + x2 − x3 + 3x4 = 0

x1 − 2x2 + x3 + x4 = 0

7. Give a geometric explanation of why a homogen-
eous linear system consisting of two equations in
three unknowns must have infinitely many solu-
tions. What are the possible numbers of solutions
of a nonhomogeneous 2 × 3 linear system? Give a
geometric explanation of your answer.
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8. Consider a linear system whose augmented matrix
is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 1

−1 4 3 2

2 −2 a 3

⎫⎪⎪⎪⎪⎪⎪⎪⎭
For what values of a will the system have a unique
solution?

9. Consider a linear system whose augmented matrix
is of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 2 1 0

2 5 3 0

−1 1 β 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(a) Is it possible for the system to be inconsistent?

Explain.

(b) For what values of β will the system have
infinitely many solutions?

10. Consider a linear system whose augmented matrix
is of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 3 2

1 2 4 3

1 3 a b

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(a) For what values of a and b will the system have

infinitely many solutions?

(b) For what values of a and b will the system be
inconsistent?

11. Given the linear systems

(i) x1 + 2x2 = 2

3x1 + 7x2 = 8

(ii) x1 + 2x2 = 1

3x1 + 7x2 = 7

solve both systems by incorporating the right-hand
sides into a 2 × 2 matrix B and computing the
reduced row echelon form of

(A|B) =
⎧⎪⎪⎩ 1 2 2 1

3 7 8 7

⎫⎪⎪⎭
12. Given the linear systems

(i) x1 + 2x2 + x3 = 2

−x1 − x2 + 2x3 = 3

2x1 + 3x2 = 0

(ii) x1 + 2x2 + x3 = −1

−x1 − x2 + 2x3 = 2

2x1 + 3x2 = −2

solve both systems by computing the row echelon
form of an augmented matrix (A|B) and performing
back substitution twice.

13. Given a homogeneous system of linear equa-
tions, if the system is overdetermined, what are
the possibilities as to the number of solutions?
Explain.

14. Given a nonhomogeneous system of linear equa-
tions, if the system is underdetermined, what are
the possibilities as to the number of solutions?
Explain.

15. Determine the values of x1, x2, x3, x4 for the
following traffic flow diagram.

x4

x1

x2

x3

380

430 450

400540

420 470

420

16. Consider the traffic flow diagram that follows,
where a1, a2, a3, a4, b1, b2, b3, b4 are fixed positive
integers. Set up a linear system in the unknowns
x1, x2, x3, x4 and show that the system will be
consistent if and only if

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

What can you conclude about the number of
automobiles entering and leaving the traffic
network?
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x1 a4b1

x4

a3

b4

x3a2 b3

x2

a1

b2

17. Let (c1, c2) be a solution of the 2 × 2 system

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

Show that for any real number α the ordered pair
(αc1, αc2) is also a solution.

18. In Application 3 the solution (6, 6, 6, 1) was ob-
tained by setting the free variable x4 = 1.
(a) Determine the solution corresponding to x4 =

0. What information, if any, does this solution
give about the chemical reaction? Is the term
“trivial solution” appropriate in this case?

(b) Choose some other values of x4, such as 2, 4, or
5, and determine the corresponding solutions.
How are these nontrivial solutions related?

19. Liquid benzene burns in the atmosphere. If a cold
object is placed directly over the benzene, water
will condense on the object and a deposit of soot
(carbon) will also form on the object. The chemical
equation for this reaction is of the form

x1C6H6 + x2O2 → x3C + x4H2O

Determine values of x1, x2, x3, and x4 to balance the
equation.

20. Nitric acid is prepared commercially by a series of
three chemical reactions. In the first reaction, nitro-
gen (N2) is combined with hydrogen (H2) to form
ammonia (NH3). Next the ammonia is combined
with oxygen (O2) to form nitrogen dioxide (NO2)
and water. Finally, the NO2 reacts with some of the
water to form nitric acid (HNO3) and nitric oxide
(NO). The amounts of each of the components of
these reactions are measured in moles (a standard
unit of measurement for chemical reactions). How

many moles of nitrogen, hydrogen, and oxygen are
necessary to produce 8 moles of nitric acid?

21. In Application 4, determine the relative values of
x1, x2, and x3 if the distribution of goods is as
described in the following table.

F M C

F 1
3

1
3

1
3

M 1
3

1
2

1
6

C 1
3

1
6

1
2

22. Determine the amount of each current for the fol-
lowing networks:
(a)

A B

3 ohms

16 volts

2 ohms

2 ohms

i1

i2

i3

(b)

A B

2 ohms

20 volts 4 ohms

2 ohms i1

i2

i3

(c)

A B

4 ohms

8 volts

4 ohms

5 ohms

2 ohms

C D

i1

i4i3

10 volts
i6

i2

i5
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1.3 Matrix Arithmetic

In this section, we introduce the standard notations used for matrices and vectors and
define arithmetic operations (addition, subtraction, and multiplication) with matrices.
We will also introduce two additional operations: scalar multiplication and transposi-
tion. We will see how to represent linear systems as equations involving matrices and
vectors and then derive a theorem characterizing when a linear system is consistent.

The entries of a matrix are called scalars. They are usually either real or complex
numbers. For the most part, we will be working with matrices whose entries are real
numbers. Throughout the first five chapters of the book, the reader may assume that
the term scalar refers to a real number. However, in Chapter 6 there will be occasions
when we will use the set of complex numbers as our scalar field.

Matrix Notation
If we wish to refer to matrices without specifically writing out all their entries, we will
use capital letters A, B, C, and so on. In general, aij will denote the entry of the matrix
A that is in the ith row and the jth column. We will refer to this entry as the (i, j) entry
of A. Thus, if A is an m × n matrix, then

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We will sometimes shorten this to A = (aij). Similarly, a matrix B may be referred to
as (bij), a matrix C as (cij), and so on.

Vectors
Matrices that have only one row or one column are of special interest, since they are
used to represent solutions of linear systems. A solution of a system of m linear equa-
tions in n unknowns is an n-tuple of real numbers. We will refer to an n-tuple of real
numbers as a vector. If an n-tuple is represented in terms of a 1 × n matrix, then we
will refer to it as a row vector. Alternatively, if the n-tuple is represented by an n × 1
matrix, then we will refer to it as a column vector. For example, the solution of the
linear system

x1 + x2 = 3

x1 − x2 = 1

can be represented by the row vector (2, 1) or the column vector
⎧⎪⎩ 2

1

⎫⎪⎭.

In working with matrix equations, it is generally more convenient to represent the
solutions in terms of column vectors (n × 1 matrices). The set of all n × 1 matrices of
real numbers is called Euclidean n-space and is usually denoted by R

n. Since we will
be working almost exclusively with column vectors in the future, we will generally
omit the word “column” and refer to the elements of R

n as simply vectors, rather than
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as column vectors. The standard notation for a column vector is a boldface lowercase
letter, as in

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)

For row vectors, there is no universal standard notation. In this book, we will rep-
resent both row and column vectors with boldface lower case letters and to distinguish
a row vector from a column vector we will place a horizontal arrow above the let-
ter. Thus, the horizontal arrow indicates an horizontal array (row vector) rather than a
vertical array (column vector). For example,

�x = (x1, x2, x3, x4) and y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2

y3

y4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
are row and column vectors, respectively, with four entries each.

Given an m × n matrix A, it is often necessary to refer to a particular row or
column. The standard notation for the jth column vector of A is aj. There is no uni-
versally accepted standard notation for the ith row vector of a matrix A. In this book,
since we use horizontal arrows to indicate row vectors, we denote the ith row vector of
A by �ai.

If A is an m × n matrix, then the row vectors of A are given by

�ai = (ai1, ai2, . . . , ain) i = 1, . . . , m

and the column vectors are given by

aj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1j

a2j
...

amj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ j = 1, . . . , n

The matrix A can be represented in terms of either its column vectors or its row
vectors:

A = (a1, a2, . . . , an) or A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1

�a2
...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Similarly, if B is an n × r matrix, then

B = (b1, b2, . . . , br) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�b1�b2
...
�bn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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EXAMPLE 1 If

A =
⎧⎪⎩ 3 2 5

−1 8 4

⎫⎪⎭
then

a1 =
⎧⎪⎩ 3

−1

⎫⎪⎭ , a2 =
⎧⎪⎩ 2

8

⎫⎪⎭ , a3 =
⎧⎪⎩ 5

4

⎫⎪⎭
and

�a1 = (3, 2, 5), �a2 = (−1, 8, 4)

Equality
For two matrices to be equal, they must have the same dimensions and their
corresponding entries must agree.

Definition Two m × n matrices A and B are said to be equal if aij = bij for each i and j.

Scalar Multiplication
If A is a matrix and α is a scalar, then αA is the matrix formed by multiplying each of
the entries of A by α.

Definition If A is an m × n matrix and α is a scalar, then αA is the m × n matrix whose (i, j)
entry is αaij.

For example, if

A =
⎧⎪⎩ 4 8 2

6 8 10

⎫⎪⎭
then

1

2
A =

⎧⎪⎩ 2 4 1
3 4 5

⎫⎪⎭ and 3A =
⎧⎪⎩ 12 24 6

18 24 30

⎫⎪⎭
Matrix Addition
Two matrices with the same dimensions can be added by adding their corresponding
entries.

Definition If A = (aij) and B = (bij) are both m × n matrices, then the sum A + B is the m × n
matrix whose (i, j) entry is aij + bij for each ordered pair (i, j).



30 Chapter 1 Matrices and Systems of Equations

For example, ⎧⎪⎩ 3 2 1
4 5 6

⎫⎪⎭ +
⎧⎪⎩ 2 2 2

1 2 3

⎫⎪⎭ =
⎧⎪⎩ 5 4 3

5 7 9

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2
1
8

⎫⎪⎪⎪⎪⎪⎭ +
⎧⎪⎪⎪⎪⎪⎩

−8
3
2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

−6
4

10

⎫⎪⎪⎪⎪⎪⎭
If we define A − B to be A + (−1)B, then it turns out that A − B is formed by

subtracting the corresponding entry of B from each entry of A. Thus,⎧⎪⎩ 2 4
3 1

⎫⎪⎭ −
⎧⎪⎩ 4 5

2 3

⎫⎪⎭ =
⎧⎪⎩ 2 4

3 1

⎫⎪⎭ + (−1)
⎧⎪⎩ 4 5

2 3

⎫⎪⎭
=

⎧⎪⎩ 2 4
3 1

⎫⎪⎭ +
⎧⎪⎩ −4 −5

−2 −3

⎫⎪⎭
=

⎧⎪⎩ 2 − 4 4 − 5
3 − 2 1 − 3

⎫⎪⎭
=

⎧⎪⎩ −2 −1
1 −2

⎫⎪⎭
If O represents the matrix, with the same dimensions as A, whose entries are all 0, then

A + O = O + A = A

We will refer to O as the zero matrix. It acts as an additive identity on the set of all
m × n matrices. Furthermore, each m × n matrix A has an additive inverse. Indeed,

A + (−1)A = O = (−1)A + A

It is customary to denote the additive inverse by −A. Thus,

−A = (−1)A

Matrix Multiplication and Linear Systems
We have yet to define the most important operation: the multiplication of two matrices.
Much of the motivation behind the definition comes from the applications to linear
systems of equations. If we have a system of one linear equation in one unknown, it
can be written in the form

ax = b (2)

We generally think of a, x, and b as being scalars; however, they could also be treated
as 1 × 1 matrices. Our goal now is to generalize equation (2) so that we can represent
an m × n linear system by a single matrix equation of the form

Ax = b

where A is an m × n matrix, x is an unknown vector in R
n, and b is in R

m. We consider
first the case of one equation in several unknowns.
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Case 1. One Equation in Several Unknowns
Let us begin by examining the case of one equation in several variables. Consider, for
example, the equation

3x1 + 2x2 + 5x3 = 4

If we set

A =
⎧⎩ 3 2 5

⎫⎭ and x =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭
and define the product Ax by

Ax =
⎧⎩ 3 2 5

⎫⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ = 3x1 + 2x2 + 5x3

then the equation 3x1 + 2x2 + 5x3 = 4 can be written as the matrix equation

Ax = 4

For a linear equation with n unknowns of the form

a1x1 + a2x2 + · · · + anxn = b

if we let

A =
⎧⎩ a1 a2 . . . an

⎫⎭ and x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define the product Ax by

Ax = a1x1 + a2x2 + · · · + anxn

then the system can be written in the form Ax = b.
For example, if

A =
⎧⎩ 2 1 −3 4

⎫⎭ and x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
2
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
then

Ax = 2 · 3 + 1 · 2 + (−3) · 1 + 4 · (−2) = −3

Note that the result of multiplying a row vector on the left by a column vector on the
right is a scalar. Consequently, this type of multiplication is often referred to as a scalar
product.
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Case 2. M Equations in N Unknowns
Consider now an m × n linear system

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

(3)

It is desirable to write the system (3) in a form similar to (2), that is, as a matrix
equation

Ax = b (4)

where A = (aij) is known, x is an n × 1 matrix of unknowns, and b is an m × 1 matrix
representing the right-hand side of the system. Thus, if we set

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1

b2
...

bm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define the product Ax by

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

then the linear system of equations (3) is equivalent to the matrix equation (4).
Given an m × n matrix A and a vector x in R

n, it is possible to compute a product
Ax by (5). The product Ax will be an m × 1 matrix, that is, a vector in R

m. The rule for
determining the ith entry of Ax is

ai1x1 + ai2x2 + · · · + ainxn

which is equal to �aix, the scalar product of the ith row vector of A and the column
vector x. Thus,

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1x
�a2x

...
�anx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
EXAMPLE 2

A =
⎧⎪⎪⎪⎩ 4 2 1

5 3 7

⎫⎪⎪⎪⎭ , x =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Ax =

⎧⎪⎪⎪⎩ 4x1 + 2x2 + x3

5x1 + 3x2 + 7x3

⎫⎪⎪⎪⎭
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EXAMPLE 3

A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

−3 1
2 5
4 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭ , x =
⎧⎪⎪⎪⎩ 2

4

⎫⎪⎪⎪⎭
Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−3 · 2 + 1 · 4

2 · 2 + 5 · 4
4 · 2 + 2 · 4

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

−2
24
16

⎫⎪⎪⎪⎪⎪⎪⎪⎭
EXAMPLE 4 Write the following system of equations as a matrix equation of the form Ax = b:

3x1 + 2x2 + x3 = 5
x1 − 2x2 + 5x3 = −2

2x1 + x2 − 3x3 = 1

Solution ⎧⎪⎪⎪⎪⎪⎩
3 2 1
1 −2 5
2 1 −3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5
−2

1

⎫⎪⎪⎪⎪⎪⎭
An alternative way to represent the linear system (3) as a matrix equation is to

express the product Ax as a sum of column vectors:

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11

a21
...

am1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + x2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a12

a22
...

am2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + · · · + xn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1n

a2n
...

amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, we have

Ax = x1a1 + x2a2 + · · · + xnan (6)

Using this formula, we can represent the system of equations (3) as a matrix equation
of the form

x1a1 + x2a2 + · · · + xnan = b (7)

EXAMPLE 5 The linear system

2x1 + 3x2 − 2x3 = 5

5x1 − 4x2 + 2x3 = 6

can be written as a matrix equation

x1

⎧⎪⎩ 2
5

⎫⎪⎭ + x2

⎧⎪⎩ 3
−4

⎫⎪⎭ + x3

⎧⎪⎩ −2
2

⎫⎪⎭ =
⎧⎪⎩ 5

6

⎫⎪⎭
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Definition If a1, a2, . . . , an are vectors in R
m and c1, c2, . . . , cn are scalars, then a sum of the

form

c1a1 + c2a2 + · · · + cnan

is said to be a linear combination of the vectors a1, a2, . . . , an.

It follows from equation (6) that the product Ax is a linear combination of the
column vectors of A. Some books even use this linear combination representation as
the definition of matrix vector multiplication.

If A is an m × n matrix and x is a vector in R
n, then

Ax = x1a1 + x2a2 + · · · + xnan

EXAMPLE 6 If we choose x1 = 2, x2 = 3, and x3 = 4 in Example 5, then⎧⎪⎩ 5
6

⎫⎪⎭ = 2
⎧⎪⎩ 2

5

⎫⎪⎭ + 3
⎧⎪⎩ 3

−4

⎫⎪⎭ + 4
⎧⎪⎩ −2

2

⎫⎪⎭
Thus, the vector

⎧⎪⎩ 5
6

⎫⎪⎭ is a linear combination of the three column vectors of the

coefficient matrix. It follows that the linear system in Example 5 is consistent and

x =
⎧⎪⎪⎪⎪⎪⎩

2
3
4

⎫⎪⎪⎪⎪⎪⎭
is a solution of the system.

The matrix equation (7) provides a nice way of characterizing whether a linear sys-
tem of equations is consistent. Indeed, the following theorem is a direct consequence
of (7).

Theorem 1.3.1 Consistency Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b can be written as a linear
combination of the column vectors of A.

EXAMPLE 7 The linear system

x1 + 2x2 = 1

2x1 + 4x2 = 1

is inconsistent since the vector
⎧⎪⎩ 1

1

⎫⎪⎭ cannot be written as a linear combination of the

column vectors
⎧⎪⎩ 1

2

⎫⎪⎭ and
⎧⎪⎩ 2

4

⎫⎪⎭. Note that any linear combination of these vectors

would be of the form

x1

⎧⎪⎩ 1
2

⎫⎪⎭ + x2

⎧⎪⎩ 2
4

⎫⎪⎭ =
⎧⎪⎩ x1 + 2x2

2x1 + 4x2

⎫⎪⎭
and hence the second entry of the vector must be double the first entry.
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Matrix Multiplication
More generally, it is possible to multiply a matrix A times a matrix B if the number
of columns of A equals the number of rows of B. The first column of the product is
determined by the first column of B; that is, the first column of AB is Ab1, the second
column of AB is Ab2, and so on. Thus the product AB is the matrix whose columns are
Ab1, Ab2, . . . , Abn.

AB = (Ab1, Ab2, . . . , Abn)

The (i, j) entry of AB is the ith entry of the column vector Abj. It is determined by
multiplying the ith row vector of A times the jth column vector of B.

Definition If A = (aij) is an m × n matrix and B = (bij) is an n × r matrix, then the product
AB = C = (cij) is the m × r matrix whose entries are defined by

cij = �aibj =
n∑

k=1

aikbkj

EXAMPLE 8 If

A =
⎧⎪⎪⎪⎪⎪⎩

3 −2
2 4
1 −3

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎩ −2 1 3

4 1 6

⎫⎪⎭
then

AB =
⎧⎪⎪⎪⎪⎪⎩

3 −2
2 4
1 −3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩ −2 1 3

4 1 6

⎫⎪⎭

=
⎧⎪⎪⎪⎪⎪⎪⎪⎩

3 · (−2) − 2 · 4 3 · 1 − 2 · 1 3 · 3 − 2 · 6

2 · (−2) + 4 · 4 2 · 1 + 4 · 1 2 · 3 + 4 · 6
1 · (−2) − 3 · 4 1 · 1 − 3 · 1 1 · 3 − 3 · 6

⎫⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎩
−14 1 −3

12 6 30
−14 −2 −15

⎫⎪⎪⎪⎪⎪⎭
The shading indicates how the (2, 3) entry of the product AB is computed as a scalar
product of the second row vector of A and the third column vector of B. It is also
possible to multiply B times A; however, the resulting matrix BA is not equal to AB. In
fact, AB and BA do not even have the same dimensions.

BA =
⎧⎪⎪⎪⎩ −2 · 3 + 1 · 2 + 3 · 1 −2 · (−2) + 1 · 4 + 3 · (−3)

4 · 3 + 1 · 2 + 6 · 1 4 · (−2) + 1 · 4 + 6 · (−3)

⎫⎪⎪⎪⎭
=

⎧⎪⎪⎪⎩ −1 −1
20 −22

⎫⎪⎪⎪⎭
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EXAMPLE 9 If

A =
⎧⎪⎩ 3 4

1 2

⎫⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

1 2
4 5
3 6

⎫⎪⎪⎪⎪⎪⎭
then it is impossible to multiply A times B, since the number of columns of A does not
equal the number of rows of B. However, it is possible to multiply B times A.

BA =
⎧⎪⎪⎪⎪⎪⎩

1 2
4 5
3 6

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩ 3 4

1 2

⎫⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5 8
17 26
15 24

⎫⎪⎪⎪⎪⎪⎭
If A and B are both n × n matrices, then AB and BA will also be n × n matrices,

but, in general, they will not be equal. Multiplication of matrices is not commutative.

EXAMPLE 10 If

A =
⎧⎪⎩ 1 1

0 0

⎫⎪⎭ and B =
⎧⎪⎩ 1 1

2 2

⎫⎪⎭
then

AB =
⎧⎪⎩ 1 1

0 0

⎫⎪⎭ ⎧⎪⎩ 1 1
2 2

⎫⎪⎭ =
⎧⎪⎩ 3 3

0 0

⎫⎪⎭
and

BA =
⎧⎪⎩ 1 1

2 2

⎫⎪⎭⎧⎪⎩ 1 1
0 0

⎫⎪⎭ =
⎧⎪⎩ 1 1

2 2

⎫⎪⎭
Hence AB �= BA.

APPLICATION 1 Production Costs

A company manufactures three products. Its production expenses are divided into three
categories. In each category, an estimate is given for the cost of producing a single item
of each product. An estimate is also made of the amount of each product to be produced
per quarter. These estimates are given in Tables 1 and 2. At its stockholders’ meeting
the company would like to present a single table showing the total costs for each quarter
in each of the three categories: raw materials, labor, and overhead.

Table 1 Production Costs per Item (dollars)

Product

Expenses A B C

Raw materials 0.10 0.30 0.15

Labor 0.30 0.40 0.25

Overhead and miscellaneous 0.10 0.20 0.15
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Table 2 Amount Produced per Quarter

Season

Product Summer Fall Winter Spring

A 4000 4500 4500 4000

B 2000 2600 2400 2200

C 5800 6200 6000 6000

Solution
Let us consider the problem in terms of matrices. Each of the two tables can be
represented by a matrix, namely,

M =
⎧⎪⎪⎪⎪⎪⎩

0.10 0.30 0.15
0.30 0.40 0.25
0.10 0.20 0.15

⎫⎪⎪⎪⎪⎪⎭
and

P =
⎧⎪⎪⎪⎪⎪⎩

4000 4500 4500 4000
2000 2600 2400 2200
5800 6200 6000 6000

⎫⎪⎪⎪⎪⎪⎭
If we form the product MP, the first column of MP will represent the costs for the
summer quarter:

Raw materials: (0.10)(4000) + (0.30)(2000) + (0.15)(5800) = 1870
Labor: (0.30)(4000) + (0.40)(2000) + (0.25)(5800) = 3450
Overhead and
miscellaneous: (0.10)(4000) + (0.20)(2000) + (0.15)(5800) = 1670

The costs for the fall quarter are given in the second column of MP:

Raw materials: (0.10)(4500) + (0.30)(2600) + (0.15)(6200) = 2160
Labor: (0.30)(4500) + (0.40)(2600) + (0.25)(6200) = 3940
Overhead and
miscellaneous: (0.10)(4500) + (0.20)(2600) + (0.15)(6200) = 1900

Columns 3 and 4 of MP represent the costs for the winter and spring quarters.

MP =
⎧⎪⎪⎪⎪⎪⎩

1870 2160 2070 1960
3450 3940 3810 3580
1670 1900 1830 1740

⎫⎪⎪⎪⎪⎪⎭
The entries in row 1 of MP represent the total cost of raw materials for each of the four
quarters. The entries in rows 2 and 3 represent the total cost for labor and overhead,
respectively, for each of the four quarters. The yearly expenses in each category may
be obtained by adding the entries in each row. The numbers in each of the columns
may be added to obtain the total production costs for each quarter. Table 3 summarizes
the total production costs.
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Table 3

Season

Summer Fall Winter Spring Year

Raw materials 1870 2160 2070 1960 8060

Labor 3450 3940 3810 3580 14,780

Overhead and miscellaneous 1670 1900 1830 1740 7140

Total production costs 6990 8000 7710 7280 29,980

APPLICATION 2 Management Science—Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a common technique that is used for analyzing
complex decisions. The technique was developed by T. L. Saaty during the 1970s. AHP
is used in a wide variety of areas including business, industry, government, education,
and health care. The technique is applied to problems with a specific goal and a fixed
number of alternatives for achieving the goal. The decision as to which alternative to
pick is based on a list of evaluation criteria. In the case of more complex decisions,
each evaluation criterion could have a list of subcritera and these in turn could also
have subcriteria, and so on. Thus for complex decisions one could have a multilayered
hierarchy of decision criteria.

To illustrate how AHP actually works we consider a simple example. A search and
screen committee in the Mathematics Department of a state university is conducting
a screening process to fill a full professor position in the department. The committee
does a preliminary round of screening and narrows the pool down to three candidates:
Dr. Gauss, Dr. O’Leary, and Dr. Taussky. After interviewing the finalists the committee
must pick the candidate best qualified for the position. To do this they must evaluate
each of the candidates in terms of the following criteria: Research, Teaching Ability,
and Professional Activities. The hierarchal structural of the decision-making process
is illustrated in Figure 1.3.1.

Pick a Candidate

Teaching
Professional

Activities
ResearchCriteria

Dr Gauss
Dr O’Leary
Dr Taussky

Dr Gauss
Dr O’Leary
Dr Taussky

Dr Gauss
Dr O’Leary
Dr Taussky

Alternatives

Objective

Figure 1.3.1. Analytic Hierarchy Process

The first step of the AHP process is to determine the relative importance of the
three areas of evaluation. This can be done using pairwise comparisons. Suppose, for
example, that the committee decides that Research and Teaching should be given equal
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importance and that both of these categories are twice as important as the category
of Professional Activities. These relative ratings can be expressed mathematically by
assigning the weights 0.40, 0.40, and 0.20 to the respective categories of evaluation.
Note that the weights of the first two evaluation criteria are equal and have double the
weight of the third. Note also that the weights are chosen so that they all add up to 1.
The weight vector

w =
⎧⎪⎪⎪⎪⎪⎩

0.40
0.40
0.20

⎫⎪⎪⎪⎪⎪⎭
provides a numerical representation of the relative importance of the search criteria.

The next step in the process is to assign relative ratings or weights to the three can-
didates for each of the criteria in our list. Methods for assigning these weights may be
either quantitative or qualitative. For example, one could do a quantitative evaluation
of research using weights based on the total number of pages published by the candid-
ates in research journals. Thus if Gauss has published 500 pages, O’Leary 250 pages,
and Taussky 250 pages, then one could obtain weights by dividing each of these page
counts by 1000 (the combined page count for all three individuals). Thus the quantit-
ative weights produced in this manner would be 0.50, 0.25, and 0.25. The quantitative
method does not factor in differences in the quality of the publications. Determining
qualitative weights involves making some judgments, but the process need not be en-
tirely subjective. Later in the text (in Chapters 5 and 6) we will revisit this example and
discuss how to determine qualitative weights. The methods we will consider involve
making pairwise comparisons and then using advanced matrix techniques to assign
weights based on those comparisons.

Another way the committee could refine the search process would be to break
up the research criteria up into two subclasses, quantitative research and qualitative
research. In this case one would add a subcriteria row to Figure 1.3.1 directly below
the row for criteria. We will incorporate this refinement later when we revisit the AHP
application in Section 3 of Chapter 5.

For now, let us assume that the search committee has determined the relat-
ive weights for each of the three criteria and that those weights are specified in
Figure 1.3.2. The relative ratings for the candidates for research, teaching, and
professional activities are given by the vectors

a1 =
⎧⎪⎪⎪⎪⎪⎩

0.50
0.25
0.25

⎫⎪⎪⎪⎪⎪⎭ , a2 =
⎧⎪⎪⎪⎪⎪⎩

0.20
0.50
0.30

⎫⎪⎪⎪⎪⎪⎭ , a3 =
⎧⎪⎪⎪⎪⎪⎩

0.25
0.50
0.25

⎫⎪⎪⎪⎪⎪⎭
To determine the overall ranking for the candidates we multiply each of these vectors
by the corresponding weights w1, w2, w3 and add.

r = w1a1+w2a2+w3a3 = 0.40

⎧⎪⎪⎪⎪⎪⎩
0.50
0.25
0.25

⎫⎪⎪⎪⎪⎪⎭+ 0.40

⎧⎪⎪⎪⎪⎪⎩
0.20
0.50
0.30

⎫⎪⎪⎪⎪⎪⎭+ 0.20

⎧⎪⎪⎪⎪⎪⎩
0.25
0.50
0.25

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

0.33
0.40
0.27

⎫⎪⎪⎪⎪⎪⎭
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Pick a Candidate
1.00

Teaching
0.40

Professional
Activities

0.20

Research
0.40

Criteria

Dr Gauss
0.50

Dr O’Leary
0.25

Dr Taussky
0.25

Dr Gauss
0.20

Dr O’Leary
0.50

Dr Taussky
0.30

Dr Gauss
0.25

Dr O’Leary
0.50

Dr Taussky
0.25

Alternatives

Objective

Figure 1.3.2. APH Diagram with Weights

Note that if we set A =
⎧⎩ a1 a2 a3

⎫⎭, then the vector r of relative ratings is

determined by multiplying the matrix A times the vector w.

r = Aw =
⎧⎪⎪⎪⎪⎪⎩

0.50 0.20 0.25
0.25 0.50 0.50
0.25 0.30 0.25

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0.40
0.40
0.20

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

0.33
0.40
0.27

⎫⎪⎪⎪⎪⎪⎭
In this example the second candidate has the highest relative rating, so the committee
eliminates Gauss and Taussky and offers the position to O’Leary. If O’Leary refuses
the offer, then next in line is Gauss, the candidate with the second highest rating.

References
1. Saaty, T. L., The Analytic Hierarchy Process, McGraw Hill, 1980

Notational Rules
Just as in ordinary algebra, if an expression involves both multiplication and addition
and there are no parentheses to indicate the order of the operations, multiplications are
carried out before additions. This is true for both scalar and matrix multiplications. For
example, if

A =
⎧⎪⎩ 3 4

1 2

⎫⎪⎭ , B =
⎧⎪⎩ 1 3

2 1

⎫⎪⎭ , C =
⎧⎪⎩ −2 1

3 2

⎫⎪⎭
then

A + BC =
⎧⎪⎩ 3 4

1 2

⎫⎪⎭ +
⎧⎪⎩ 7 7

−1 4

⎫⎪⎭ =
⎧⎪⎩ 10 11

0 6

⎫⎪⎭
and

3A + B =
⎧⎪⎩ 9 12

3 6

⎫⎪⎭ +
⎧⎪⎩ 1 3

2 1

⎫⎪⎭ =
⎧⎪⎩ 10 15

5 7

⎫⎪⎭
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The Transpose of a Matrix
Given an m × n matrix A, it is often useful to form a new n × m matrix whose columns
are the rows of A.

Definition The transpose of an m × n matrix A is the n × m matrix B defined by

bji = aij (8)

for j = 1, . . . , n and i = 1, . . . , m. The transpose of A is denoted by AT .

It follows from (8) that the jth row of AT has the same entries, respectively, as the
jth column of A, and the ith column of AT has the same entries, respectively, as the ith
row of A.

EXAMPLE 11 (a) If A =
⎧⎪⎩ 1 2 3

4 5 6

⎫⎪⎭, then AT =
⎧⎪⎪⎪⎪⎪⎩

1 4
2 5
3 6

⎫⎪⎪⎪⎪⎪⎭.

(b) If B =
⎧⎪⎪⎪⎪⎪⎩

−3 2 1
4 3 2
1 2 5

⎫⎪⎪⎪⎪⎪⎭, then BT =
⎧⎪⎪⎪⎪⎪⎩

−3 4 1
2 3 2
1 2 5

⎫⎪⎪⎪⎪⎪⎭.

(c) If C =
⎧⎪⎩ 1 2

2 3

⎫⎪⎭, then CT =
⎧⎪⎩ 1 2

2 3

⎫⎪⎭.

The matrix C in Example 11 is its own transpose. This frequently happens with
matrices that arise in applications.

Definition An n × n matrix A is said to be symmetric if AT = A.

The following are some examples of symmetric matrices:

⎧⎪⎩ 1 0
0 −4

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 3 4
3 1 5
4 5 3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0 1 2
1 1 −2
2 −2 −3

⎫⎪⎪⎪⎪⎪⎭
APPLICATION 3 Information Retrieval

The growth of digital libraries on the Internet has led to dramatic improvements in
the storage and retrieval of information. Modern retrieval methods are based on matrix
theory and linear algebra.

In a typical situation, a database consists of a collection of documents and we
wish to search the collection and find the documents that best match some particular
search conditions. Depending on the type of database, we could search for such items
as research articles in journals, Web pages on the Internet, books in a library, or movies
in a film collection.
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To see how the searches are done, let us assume that our database consists of m
documents and that there are n dictionary words that can be used as keywords for
searches. Not all words are allowable since it would not be practical to search for com-
mon words such as articles or prepositions. If the key dictionary words are ordered
alphabetically, then we can represent the database by an m × n matrix A. Each docu-
ment is represented by a column of the matrix. The first entry in the jth column of A
would be a number representing the relative frequency of the first key dictionary word
in the jth document. The entry a2j represents the relative frequency of the second word
in the jth document, and so on. The list of keywords to be used in the search is repres-
ented by a vector x in R

m. The ith entry of x is taken to be 1 if the ith word in the list
of keywords is on our search list; otherwise, we set xi = 0. To carry out the search, we
simply multiply AT times x.

Simple Matching Searches
The simplest type of search determines how many of the key search words are in each
document; it does not take into account the relative frequencies of the words. Suppose,
for example, that our database consists of these book titles:

B1. Applied Linear Algebra
B2. Elementary Linear Algebra
B3. Elementary Linear Algebra with Applications
B4. Linear Algebra and Its Applications
B5. Linear Algebra with Applications
B6. Matrix Algebra with Applications
B7. Matrix Theory

The collection of keywords is given by the following alphabetical list:

algebra, application, elementary, linear, matrix, theory

For a simple matching search, we just use 0’s and 1’s, rather than relative frequen-
cies, for the entries of the database matrix. Thus, the (i, j) entry of the matrix will be 1
if the ith word appears in the title of the jth book and 0 if it does not. We will assume
that our search engine is sophisticated enough to equate various forms of a word. So,
for example, in our list of titles the words applied and applications are both counted
as forms of the word application. The database matrix for our list of books is the array
defined by Table 4.

If the words we are searching for are applied, linear, and algebra, then the database
matrix and search vector are, respectively, given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 1 1 0
1 0 1 1 1 1 0
0 1 1 0 0 0 0
1 1 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
0
1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Table 4 Array Representation for Database of Linear Algebra Books

Books

Key Words B1 B2 B3 B4 B5 B6 B7

algebra 1 1 1 1 1 1 0

application 1 0 1 1 1 1 0

elementary 0 1 1 0 0 0 0

linear 1 1 1 1 1 0 0

matrix 0 0 0 0 0 1 1

theory 0 0 0 0 0 0 1

If we set y = ATx, then

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
1 1 0 1 0 0
1 1 0 1 0 0
1 1 0 0 1 0
0 0 0 0 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1
0
1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
3
3
3
2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The value of y1 is the number of search word matches in the title of the first book,
the value of y2 is the number of matches in the second book title, and so on. Since
y1 = y3 = y4 = y5 = 3, the titles of books B1, B3, B4, and B5 must contain all three
search words. If the search is set up to find titles matching all search words, then the
search engine will report the titles of the first, third, fourth, and fifth books.

Relative Frequency Searches
Searches of noncommercial databases generally find all documents containing the key
search words and then order the documents based on the relative frequency. In this
case, the entries of the database matrix should represent the relative frequencies of
the keywords in the documents. For example, suppose that in the dictionary of all key
words of the database the 6th word is algebra and the 8th word is applied, where all
words are listed alphabetically. If, say, document 9 in the database contains a total of
200 occurrences of keywords from the dictionary and if the word algebra occurred
10 times in the document and the word applied occurred 6 times, then the relative
frequencies for these words would be 10

200 and 6
200 , and the corresponding entries in the

database matrix would be

a69 = 0.05 and a89 = 0.03

To search for these two words, we take our search vector x to be the vector whose
entries x6 and x8 are both equal to 1 and whose remaining entries are all 0. We then
compute

y = ATx
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The entry of y corresponding to document 9 is

y9 = a69 · 1 + a89 · 1 = 0.08

Note that 16 of the 200 words (8 percent of the words) in document 9 match the key
search words. If yj is the largest entry of y, this would indicate that the jth document in
the database is the one that contains the keywords with the greatest relative frequencies.

Advanced Search Methods
A search for the keywords linear and algebra could easily turn up hundreds of docu-
ments, some of which may not even be about linear algebra. If we were to increase the
number of search words and require that all search words be matched, then we would
run the risk of excluding some crucial linear algebra documents. Rather than match
all words of the expanded search list, our database search should give priority to those
documents which match most of the keywords with high relative frequencies. To ac-
complish this, we need to find the columns of the database matrix A that are “closest”
to the search vector x. One way to measure how close two vectors are is to define the
angle between the vectors. We will do this later in Section 5.1 of the book.

We will also revisit the information retrieval application after we have learned
about the singular value decomposition (Chapter 6, Section 5). This decomposition can
be used to find a simpler approximation to the database matrix, which will speed up
the searches dramatically. Often it has the added advantage of filtering out noise; that
is, using the approximate version of the database matrix may automatically have the
effect of eliminating documents that use keywords in unwanted contexts. For example,
a dental student and a mathematics student could both use calculus as one of their
search words. Since the list of mathematics search words does not contain any other
dental terms, a mathematics search using an approximate database matrix is likely to
eliminate all documents relating to dentistry. Similarly, the mathematics documents
would be filtered out in the dental student’s search.

Web Searches and Page Ranking
Modern Web searches could easily involve billions of documents with hundreds of
thousands of keywords. Indeed, as of July 2008, there were more than 1 trillion Web
pages on the Internet, and it is not uncommon for search engines to acquire or update
as many as 10 million Web pages in a single day. Although the database matrix for
pages on the Internet is extremely large, searches can be simplified dramatically, since
the matrices and search vectors are sparse; that is, most of the entries in any column
are 0’s.

For Internet searches, the better search engines will do simple matching searches
to find all pages matching the keywords, but they will not order them on the basis of the
relative frequencies of the keywords. Because of the commercial nature of the Internet,
people who want to sell products may deliberately make repeated use of keywords to
ensure that their Web site is highly ranked in any relative-frequency search. In fact, it
is easy to surreptitiously list a keyword hundreds of times. If the font color of the word
matches the background color of the page, then the viewer will not be aware that the
word is listed repeatedly.
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For Web searches, a more sophisticated algorithm is necessary for ranking the
pages that contain all of the key search words. In Chapter 6 we will study a special
type of matrix model for assigning probabilities in certain random processes. This type
of model is referred to as a Markov process or a Markov chain. In Section 6.3 we will
see how to use Markov chains to model Web surfing and obtain rankings of Web pages.
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SECTION 1.3 EXERCISES
1. If

A =
⎧⎪⎪⎪⎪⎪⎩

3 1 4
−2 0 1

1 2 2

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

1 0 2
−3 1 1

2 −4 1

⎫⎪⎪⎪⎪⎪⎭
compute
(a) 2A (b) A + B

(c) 2A − 3B (d) (2A)T − (3B)T

(e) AB (f) BA

(g) ATBT (h) (BA)T

2. For each of the pairs of matrices that follow, de-
termine whether it is possible to multiply the first
matrix times the second. If it is possible, perform
the multiplication.

(a)
⎧⎪⎩ 3 5 1

−2 0 2

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 1
1 3
4 1

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
4 −2
6 −4
8 −6

⎫⎪⎪⎪⎪⎪⎭
⎧⎩ 1 2 3

⎫⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1 4 3
0 1 4
0 0 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3 2
1 1
4 5

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎩ 4 6
2 1

⎫⎪⎭ ⎧⎪⎩ 3 1 5
4 1 6

⎫⎪⎭
(e)

⎧⎪⎩ 4 6 1
2 1 1

⎫⎪⎭ ⎧⎪⎩ 3 1 5
4 1 6

⎫⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
2

−1
3

⎫⎪⎪⎪⎪⎪⎭
⎧⎩ 3 2 4 5

⎫⎭

3. For which of the pairs in Exercise 2 is it possible to
multiply the second matrix times the first, and what
would the dimension of the product matrix be?

4. Write each of the following systems of equations
as a matrix equation:

(a) 3x1 + 2x2 = 1

2x1 − 3x2 = 5

(b) x1 + x2 = 5

2x1 + x2 − x3 = 6

3x1 − 2x2 + 2x3 = 7

(c) 2x1 + x2 + x3 = 4

x1 − x2 + 2x3 = 2

3x1 − 2x2 − x3 = 0

5. If

A =
⎧⎪⎪⎪⎪⎪⎩

3 4
1 1
2 7

⎫⎪⎪⎪⎪⎪⎭
verify that
(a) 5A = 3A + 2A (b) 6A = 3(2A)

(c) (AT )T = A

6. If

A =
⎧⎪⎩ 4 1 6

2 3 5

⎫⎪⎭ and B =
⎧⎪⎩ 1 3 0

−2 2 −4

⎫⎪⎭
verify that
(a) A + B = B + A

(b) 3(A + B) = 3A + 3B

(c) (A + B)T = AT + BT

7. If

A =
⎧⎪⎪⎪⎪⎪⎩

2 1
6 3

−2 4

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎩ 2 4

1 6

⎫⎪⎭
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verify that
(a) 3(AB) = (3A)B = A(3B),
(b) (AB)T = BTAT

8. If

A =
⎧⎪⎩ 2 4

1 3

⎫⎪⎭ , B =
⎧⎪⎩ −2 1

0 4

⎫⎪⎭ , C =
⎧⎪⎩ 3 1

2 1

⎫⎪⎭
verify that

(a) (A + B) + C = A + (B + C)
(b) (AB)C = A(BC)
(c) A(B + C) = AB + AC

(d) (A + B)C = AC + BC

9. Let

A =
⎧⎪⎩ 1 2

1 −2

⎫⎪⎭ , b =
⎧⎪⎩ 4

0

⎫⎪⎭ , c =
⎧⎪⎩ −3

−2

⎫⎪⎭
(a) Write b as a linear combination of the column

vectors a1 and a2.
(b) Use the result from part (a) to determine a solu-

tion of the linear system Ax = b. Does the
system have any other solutions? Explain.

(c) Write c as a linear combination of the column
vectors a1 and a2.

10. For each of the choices of A and b that follow, de-
termine whether the system Ax = b is consistent
by examining how b relates to the column vectors
of A. Explain your answers in each case.

(a) A =
⎧⎪⎩ 2 1

−2 −1

⎫⎪⎭ , b =
⎧⎪⎩ 3

1

⎫⎪⎭
(b) A =

⎧⎪⎩ 1 4
2 3

⎫⎪⎭ , b =
⎧⎪⎩ 5

5

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
3 2 1
3 2 1
3 2 1

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

1
0

−1

⎫⎪⎪⎪⎪⎪⎭
11. Let A be a 5 × 3 matrix. If

b = a1 + a2 = a2 + a3

then what can you conclude about the number of
solutions of the linear system Ax = b? Explain.

12. Let A be a 3 × 4 matrix. If

b = a1 + a2 + a3 + a4

then what can you conclude about the number of
solutions to the linear system Ax = b? Explain.

13. Let Ax = b be a linear system whose augmented
matrix (A|b) has reduced row echelon form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 0 3 1 −2
0 0 1 2 4 5
0 0 0 0 0 0
0 0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Find all solutions to the system.

(b) If

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
1
3
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and a3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2

−1
1
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
determine b.

14. Suppose in the search and screen example in
Application 2 the committee decides that research
is actually 1.5 times as important as teaching and 3
times as important as professional activities. The
committee still rates teaching twice as important
as professional activities. Determine a new weight
vector w that reflects these revised priorities. De-
termine also a new rating vector r. Will the new
weights have any effect on the overall rankings of
the candidates?

15. Let A be an m × n matrix. Explain why the matrix
multiplications ATA and AAT are possible.

16. A matrix A is said to be skew symmetric if
AT = −A. Show that if a matrix is skew symmetric,
then its diagonal entries must all be 0.

17. In Application 3, suppose that we are searching
the database of seven linear algebra books for the
search words elementary, matrix, algebra. Form a
search vector x, and then compute a vector y that
represents the results of the search. Explain the
significance of the entries of the vector y.

18. Let A be a 2 × 2 matrix with a11 �= 0 and let
α = a21/a11. Show that A can be factored into a
product of the form⎧⎪⎩ 1 0

α 1

⎫⎪⎭ ⎧⎪⎩ a11 a12

0 b

⎫⎪⎭
What is the value of b?

1.4 Matrix Algebra

The algebraic rules used for real numbers may or may not work when matrices are
used. For example, if a and b are real numbers, then

a + b = b + a and ab = ba
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For real numbers, the operations of addition and multiplication are both commutative.
The first of these algebraic rules works when we replace a and b by square matrices A
and B, that is,

A + B = B + A

However, we have already seen that matrix multiplication is not commutative. This fact
deserves special emphasis.

Warning: In general, AB �= BA. Matrix multiplication is not commutative.

In this section we examine which algebraic rules work for matrices and which
do not.

Algebraic Rules
The following theorem provides some useful rules for doing matrix algebra.

Theorem 1.4.1 Each of the following statements is valid for any scalars α and β and for any matrices
A, B, and C for which the indicated operations are defined.

1. A + B = B + A
2. (A + B) + C = A + (B + C)
3. (AB)C = A(BC)
4. A(B + C) = AB + AC
5. (A + B)C = AC + BC
6. (αβ)A = α(βA)
7. α(AB) = (αA)B = A(αB)
8. (α + β)A = αA + βA
9. α(A + B) = αA + αB

We will prove two of the rules and leave the rest for the reader to verify.

Proof of
Rule 4

Assume that A = (aij) is an m × n matrix and B = (bij) and C = (cij) are both n × r
matrices. Let D = A(B + C) and E = AB + AC. It follows that

dij =
n∑

k=1

aik(bkj + ckj)

and

eij =
n∑

k=1

aikbkj +
n∑

k=1

aikckj

But
n∑

k=1

aik(bkj + ckj) =
n∑

k=1

aikbkj +
n∑

k=1

aikckj

so that dij = eij and hence A(B + C) = AB + AC.



48 Chapter 1 Matrices and Systems of Equations

Proof of
Rule 3

Let A be an m × n matrix, B an n × r matrix, and C an r × s matrix. Let D = AB and
E = BC. We must show that DC = AE. By the definition of matrix multiplication,

dil =
n∑

k=1

aikbkl and ekj =
r∑

l=1

bklclj

The ijth term of DC is

r∑
l=1

dilclj =
r∑

l=1

(
n∑

k=1

aikbkl

)
clj

and the (i, j) entry of AE is

n∑
k=1

aikekj =
n∑

k=1

aik

(
r∑

l=1

bklclj

)

Since

r∑
l=1

(
n∑

k=1

aikbkl

)
clj =

r∑
l=1

(
n∑

k=1

aikbklclj

)
=

n∑
k=1

aik

(
r∑

l=1

bklclj

)

it follows that

(AB)C = DC = AE = A(BC)

The algebraic rules given in Theorem 1.4.1 seem quite natural, since they are
similar to the rules that we use with real numbers. However, there are important dif-
ferences between the rules for matrix algebra and the algebraic rules for real numbers.
Some of these differences are illustrated in Exercises 1 through 5 at the end of this
section.

EXAMPLE 1 If

A =
⎧⎪⎩ 1 2

3 4

⎫⎪⎭ , B =
⎧⎪⎩ 2 1

−3 2

⎫⎪⎭ , and C =
⎧⎪⎩ 1 0

2 1

⎫⎪⎭
verify that A(BC) = (AB)C and A(B + C) = AB + AC.

Solution

A(BC) =
⎧⎪⎩ 1 2

3 4

⎫⎪⎭ ⎧⎪⎩ 4 1
1 2

⎫⎪⎭ =
⎧⎪⎩ 6 5

16 11

⎫⎪⎭
(AB)C =

⎧⎪⎩ −4 5
−6 11

⎫⎪⎭⎧⎪⎩ 1 0
2 1

⎫⎪⎭ =
⎧⎪⎩ 6 5

16 11

⎫⎪⎭
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Thus

A(BC) =
⎧⎪⎩ 6 5

16 11

⎫⎪⎭ = (AB)C

A(B + C) =
⎧⎪⎩ 1 2

3 4

⎫⎪⎭⎧⎪⎩ 3 1
−1 3

⎫⎪⎭ =
⎧⎪⎩ 1 7

5 15

⎫⎪⎭
AB + AC =

⎧⎪⎩ −4 5
−6 11

⎫⎪⎭ +
⎧⎪⎩ 5 2

11 4

⎫⎪⎭ =
⎧⎪⎩ 1 7

5 15

⎫⎪⎭
Therefore,

A(B + C) = AB + AC

Notation

Since (AB)C = A(BC), we may simply omit the parentheses and write ABC. The same
is true for a product of four or more matrices. In the case where an n × n matrix is
multiplied by itself a number of times, it is convenient to use exponential notation.
Thus, if k is a positive integer, then

Ak = AA · · · A︸ ︷︷ ︸
k times

EXAMPLE 2 If

A =
⎧⎪⎩ 1 1

1 1

⎫⎪⎭
then

A2 =
⎧⎪⎩ 1 1

1 1

⎫⎪⎭ ⎧⎪⎩ 1 1
1 1

⎫⎪⎭ =
⎧⎪⎩ 2 2

2 2

⎫⎪⎭
A3 = AAA = AA2 =

⎧⎪⎩ 1 1
1 1

⎫⎪⎭⎧⎪⎩ 2 2
2 2

⎫⎪⎭ =
⎧⎪⎩ 4 4

4 4

⎫⎪⎭
and in general

An =
⎧⎪⎪⎩ 2n−1 2n−1

2n−1 2n−1

⎫⎪⎪⎭
APPLICATION 1 A Simple Model for Marital Status Computations

In a certain town, 30 percent of the married women get divorced each year and 20
percent of the single women get married each year. There are 8000 married women and
2000 single women. Assuming that the total population of women remains constant,
how many married women and how many single women will there be after one year?
After two years?
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Solution
Form a matrix A as follows: The entries in the first row of A will be the percentages of
married and single women, respectively, who are married after one year. The entries in
the second row will be the percentages of women who are single after one year. Thus,

A =
⎧⎪⎩ 0.70 0.20

0.30 0.80

⎫⎪⎭
If we let x =

⎧⎪⎩ 8000
2000

⎫⎪⎭, the number of married and single women after one year can

be computed by multiplying A times x.

Ax =
⎧⎪⎩ 0.70 0.20

0.30 0.80

⎫⎪⎭ ⎧⎪⎩ 8000
2000

⎫⎪⎭ =
⎧⎪⎩ 6000

4000

⎫⎪⎭
After one year, there will be 6000 married women and 4000 single women. To find the
number of married and single women after two years, compute

A2x = A(Ax) =
⎧⎪⎩ 0.70 0.20

0.30 0.80

⎫⎪⎭ ⎧⎪⎩ 6000
4000

⎫⎪⎭ =
⎧⎪⎩ 5000

5000

⎫⎪⎭
After two years, half of the women will be married and half will be single. In general,
the number of married and single women after n years can be determined by computing
Anx.

APPLICATION 2 Ecology: Demographics of the Loggerhead Sea Turtle

The management and preservation of many wildlife species depends on our ability to
model population dynamics. A standard modeling technique is to divide the life cycle
of a species into a number of stages. The models assume that the population sizes for
each stage depend only on the female population and that the probability of survival
of an individual female from one year to the next depends only on the stage of the life
cycle and not on the actual age of an individual. For example, let us consider a four-
stage model for analyzing the population dynamics of the loggerhead sea turtle (see
Figure 1.4.1).

Figure 1.4.1. Loggerhead Sea Turtle

At each stage, we estimate the probability of survival over a one-year period. We
also estimate the ability to reproduce in terms of the expected number of eggs laid in
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Table 1 Four-Stage Model for Loggerhead Sea Turtle Demographics

Stage Description Annual Eggs laid
Number (age in years) survivorship per year

1 Eggs, hatchlings (<1) 0.67 0

2 Juveniles and subadults (1–21) 0.74 0

3 Novice breeders (22) 0.81 127

4 Mature breeders (23–54) 0.81 79

a given year. The results are summarized in Table 1. The approximate ages for each
stage are listed in parentheses next to the stage description.

If di represents the duration of the ith stage and si is the annual survivorship rate for
that stage, then it can be shown that the proportion remaining in stage i the following
year will be

pi =
(

1 − sdi−1
i

1 − sdi
i

)
si (1)

and the proportion of the population that will survive and move into stage i + 1 the
following year will be

qi = sdi
i (1 − si)

1 − sdi
i

(2)

If we let ei denote the average number of eggs laid by a member of stage i (i = 2, 3, 4)
in 1 year and form the matrix

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
p1 e2 e3 e4

q1 p2 0 0
0 q2 p3 0
0 0 q3 p4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (3)

then L can be used to predict the turtle populations at each stage in future years. A
matrix of the form (3) is called a Leslie matrix, and the corresponding population model
is sometimes referred to as a Leslie population model. Using the figures from Table 1,
the Leslie matrix for our model is

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 127 79

0.67 0.7394 0 0
0 0.0006 0 0
0 0 0.81 0.8097

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Suppose that the initial populations at each stage were 200,000, 300,000, 500,

and 1500, respectively. If we represent these initial populations by a vector x0, the
populations at each stage after one year are determined by computing

x1 = Lx0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 127 79

0.67 0.7394 0 0
0 0.0006 0 0
0 0 0.81 0.8097

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

200,000
300,000

500
1500

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
182,000
355,820

180
1620

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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(The computations have been rounded to the nearest integer.) To determine the
population vector after two years, we multiply again by the matrix L.

x2 = Lx1 = L2x0

In general, the population after k years is determined by computing xk = Lkx0. To see
longer-range trends, we compute x10, x25, x50, and x100. The results are summarized in
Table 2. The model predicts that the total number of breeding-age turtles will decrease
by approximately 95 percent over a 100-year period.

Table 2 Loggerhead Sea Turtle Population Projections

Stage Initial 10 25 50 100
Number population years years years years

1 200,000 115,403 75,768 37,623 9276

2 300,000 331,274 217,858 108,178 26,673

3 500 215 142 70 17

4 1500 1074 705 350 86

A seven-stage model describing the population dynamics is presented in refer-
ence [1] to follow. We will use the seven-stage model in the computer exercises at the
end of this chapter. Reference [2] is the original paper by Leslie.

References
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The Identity Matrix
Just as the number 1 acts as an identity for the multiplication of real numbers, there is
a special matrix I that acts as an identity for matrix multiplication; that is,

IA = AI = A (4)

for any n×n matrix A. It is easy to verify that, if we define I to be an n×n matrix with
1’s on the main diagonal and 0’s elsewhere, then I satisfies equation (4) for any n × n
matrix A. More formally, we have the following definition:

Definition The n × n identity matrix is the matrix I = (δij), where

δij =
{

1 if i = j
0 if i �= j
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As an example, let us verify equation (4) in the case n = 3.⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭
and ⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

3 4 1
2 6 3
0 1 8

⎫⎪⎪⎪⎪⎪⎭
In general, if B is any m × n matrix and C is any n × r matrix, then

BI = B and IC = C

The column vectors of the n × n identity matrix I are the standard vectors used
to define a coordinate system in Euclidean n-space. The standard notation for the jth
column vector of I is ej, rather than the usual ij. Thus, the n × n identity matrix can be
written

I = (e1, e2, . . . , en)

Matrix Inversion
A real number a is said to have a multiplicative inverse if there exists a number b such
that ab = 1. Any nonzero number a has a multiplicative inverse b = 1

a . We generalize
the concept of multiplicative inverses to matrices with the following definition.

Definition An n × n matrix A is said to be nonsingular or invertible if there exists a matrix
B such that AB = BA = I. The matrix B is said to be a multiplicative inverse of A.

If B and C are both multiplicative inverses of A, then

B = BI = B(AC) = (BA)C = IC = C

Thus, a matrix can have at most one multiplicative inverse. We will refer to the mul-
tiplicative inverse of a nonsingular matrix A as simply the inverse of A and denote it
by A−1.

EXAMPLE 3 The matrices ⎧⎪⎩ 2 4
3 1

⎫⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩ − 1
10

2
5

3
10 − 1

5

⎫⎪⎪⎪⎪⎪⎭
are inverses of each other, since

⎧⎪⎩ 2 4
3 1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩ − 1

10
2
5

3
10 − 1

5

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ 1 0

0 1

⎫⎪⎭
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and ⎧⎪⎪⎪⎪⎪⎩ − 1
10

2
5

3
10 − 1

5

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩ 2 4

3 1

⎫⎪⎭ =
⎧⎪⎩ 1 0

0 1

⎫⎪⎭
EXAMPLE 4 The 3 × 3 matrices ⎧⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩
1 −2 5
0 1 −4
0 0 1

⎫⎪⎪⎪⎪⎪⎭
are inverses, since ⎧⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
and ⎧⎪⎪⎪⎪⎪⎩

1 −2 5
0 1 −4
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 2 3
0 1 4
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
EXAMPLE 5 The matrix

A =
⎧⎪⎩ 1 0

0 0

⎫⎪⎭
has no inverse. Indeed, if B is any 2 × 2 matrix, then

BA =
⎧⎪⎩ b11 b12

b21 b22

⎫⎪⎭ ⎧⎪⎩ 1 0
0 0

⎫⎪⎭ =
⎧⎪⎩ b11 0

b21 0

⎫⎪⎭
Thus, BA cannot equal I.

Definition An n × n matrix is said to be singular if it does not have a multiplicative inverse.

Note

Only square matrices have multiplicative inverses. One should not use the terms
singular and nonsingular when referring to nonsquare matrices.

Often we will be working with products of nonsingular matrices. It turns out that
any product of nonsingular matrices is nonsingular. The following theorem character-
izes how the inverse of the product of a pair of nonsingular matrices A and B is related
to the inverses of A and B:

Theorem 1.4.2 If A and B are nonsingular n × n matrices, then AB is also nonsingular and
(AB)−1 = B−1A−1.
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Proof (B−1A−1)AB = B−1(A−1A)B = B−1B = I
(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = I

It follows by induction that, if A1, . . . , Ak are all nonsingular n × n matrices, then
the product A1A2 · · · Ak is nonsingular and

(A1A2 · · · Ak)−1 = A−1
k · · · A−1

2 A−1
1

In the next section we will learn how to determine whether a matrix has a multiplic-
ative inverse. We will also learn a method for computing the inverse of a nonsingular
matrix.

Algebraic Rules for Transposes
There are four basic algebraic rules involving transposes.

Algebraic Rules for Transposes

1. (AT )T = A
2. (αA)T = αAT

3. (A + B)T = AT + BT

4. (AB)T = BTAT

The first three rules are straightforward. We leave it to the reader to verify that they are
valid. To prove the fourth rule, we need only show that the (i, j) entries of (AB)T and
BTAT are equal. If A is an m × n matrix, then, for the multiplications to be possible, B
must have n rows. The (i, j) entry of (AB)T is the (j, i) entry of AB. It is computed by
multiplying the jth row vector of A times the ith column vector of B:

�ajbi = (aj1, aj2, . . . , ajn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1i

b2i
...

bni

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = aj1b1i + aj2b2i + · · · + ajnbni (5)

The (i, j) entry of BTAT is computed by multiplying the ith row of BT times the jth
column of AT . Since the ith row of BT is the transpose of the ith column of B and the
jth column of AT is the transpose of the jth row of A, it follows that the (i, j) entry of
BTAT is given by

bT
i �aT

j = (b1i, b2i, . . . , bni)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
aj1

aj2
...

ajn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = b1iaj1 + b2iaj2 + · · · + bniajn (6)

It follows from (5) and (6) that the (i, j) entries of (AB)T and BTAT are equal.
The next example illustrates the idea behind the last proof.
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EXAMPLE 6 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
3 3 5
2 4 1

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

1 0 2
2 1 1
5 4 1

⎫⎪⎪⎪⎪⎪⎭
Note that, on the one hand, the (3, 2) entry of AB is computed taking the scalar product
of the third row of A and the second column of B.

AB =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
3 3 5
2 4 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 2
2 1 1
5 4 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

10 6 5
34 23 14
15 8 9

⎫⎪⎪⎪⎪⎪⎭
When the product is transposed, the (3, 2) entry of AB becomes the (2, 3) entry
of (AB)T .

(AB)T =
⎧⎪⎪⎪⎪⎪⎩

10 34 15
6 23 8
5 14 9

⎫⎪⎪⎪⎪⎪⎭
On the other hand, the (2, 3) entry of BTAT is computed taking the scalar product of
the second row of BT and the third column of AT .

BTAT =
⎧⎪⎪⎪⎪⎪⎩

1 2 5
0 1 4
2 1 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 3 2
2 3 4
1 5 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

10 34 15
6 23 8
5 14 9

⎫⎪⎪⎪⎪⎪⎭
In both cases, the arithmetic for computing the (2, 3) entry is the same.

Symmetric Matrices and Networks
Recall that a matrix A is symmetric if AT = A. One type of application that leads to
symmetric matrices is problems involving networks. These problems are often solved
using the techniques of an area of mathematics called graph theory.

APPLICATION 3 Networks and Graphs

Graph theory is an important area of applied mathematics. It is used to model problems
in virtually all the applied sciences. Graph theory is particularly useful in applications
involving communications networks.

A graph is defined to be a set of points called vertices, together with a set of
unordered pairs of vertices, which are referred to as edges. Figure 1.4.2 gives a geo-
metrical representation of a graph. We can think of the vertices V1, V2, V3, V4, and V5

as corresponding to the nodes in a communications network.
The line segments joining the vertices correspond to the edges:

{V1, V2}, {V2, V5}, {V3, V4}, {V3, V5}, {V4, V5}
Each edge represents a direct communications link between two nodes of the network.

An actual communications network could involve a large number of vertices and
edges. Indeed, if there are millions of vertices, a graphical picture of the network would
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V1 V2

V3

V4V5

Figure 1.4.2.

be quite confusing. An alternative is to use a matrix representation for the network. If
the graph contains a total of n vertices, we can define an n × n matrix A by

aij =
{

1 if {Vi, Vj} is an edge of the graph
0 if there is no edge joining Vi and Vj

The matrix A is called the adjacency matrix of the graph. The adjacency matrix for the
graph in Figure 1.4.2 is given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Note that the matrix A is symmetric. Indeed, any adjacency matrix must be symmetric,
for if {Vi, Vj} is an edge of the graph, then aij = aji = 1 and aij = aji = 0 if there is no
edge joining Vi and Vj. In either case, aij = aji.

We can think of a walk in a graph as a sequence of edges linking one vertex to
another. For example, in Figure 1.4.2 the edges {V1, V2}, {V2, V5} represent a walk from
vertex V1 to vertex V5. The length of the walk is said to be 2 since it consists of two
edges. A simple way to describe the walk is to indicate the movement between vertices
by arrows. Thus, V1 → V2 → V5 denotes a walk of length 2 from V1 to V5. Similarly,
V4 → V5 → V2 → V1 represents a walk of length 3 from V4 to V1. It is possible to
traverse the same edges more than once in a walk. For example, V5 → V3 → V5 → V3

is a walk of length 3 from V5 to V3. In general, by taking powers of the adjacency
matrix we can determine the number of walks of any specified length between two
vertices.

Theorem 1.4.3 If A is an n × n adjacency matrix of a graph and a(k)
ij represents the (i, j) entry of Ak,

then a(k)
ij is equal to the number of walks of length k from Vi to Vj.

Proof The proof is by mathematical induction. In the case k = 1, it follows from the definition
of the adjacency matrix that aij represents the number of walks of length 1 from Vi to
Vj. Assume for some m that each entry of Am is equal to the number of walks of length
m between the corresponding vertices. Thus a(m)

il is the number of walks of length m
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from Vi to Vl. Now on the one hand, if there is an edge {Vl, Vj}, then a(m)
il alj = a(m)

il is
the number of walks of length m + 1 from Vi to Vj of the form

Vi → · · · → Vl → Vj

On the other hand, if {Vl, Vj} is not an edge, then there are no walks of length m + 1 of
this form from Vi to Vj and

a(m)
il alj = a(m)

il · 0 = 0

It follows that the total number of walks of length m + 1 from Vi to Vj is given by

a(m)
i1 a1j + a(m)

i2 a2j + · · · + a(m)
in anj

But this is just the (i, j) entry of Am+1.

EXAMPLE 7 To determine the number of walks of length 3 between any two vertices of the graph
in Figure 1.4.2, we need only compute

A3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 2 1 1 0
2 0 1 1 4
1 1 2 3 4
1 1 3 2 4
0 4 4 4 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, the number of walks of length 3 from V3 to V5 is a(3)

35 = 4. Note that the matrix
A3 is symmetric. This reflects the fact that there are the same number of walks of length
3 from Vi to Vj as there are from Vj to Vi.

SECTION 1.4 EXERCISES
1. Explain why each of the following algebraic rules

will not work in general when the real numbers a
and b are replaced by n × n matrices A and B.
(a) (a + b)2 = a2 + 2ab + b2

(b) (a + b)(a − b) = a2 − b2

2. Will the rules in Exercise 1 work if a is replaced by
an n × n matrix A and b is replaced by the n × n
identity matrix I?

3. Find nonzero 2 × 2 matrices A and B such that
AB = O.

4. Find nonzero matrices A, B, and C such that

AC = BC and A �= B

5. The matrix

A =
⎧⎪⎩ 1 −1

1 −1

⎫⎪⎭
has the property that A2 = O. Is it possible for
a nonzero symmetric 2 × 2 matrix to have this
property? Prove your answer.

6. Prove the associative law of multiplication for 2×2
matrices; that is, let

A =
⎧⎪⎩ a11 a12

a21 a22

⎫⎪⎭ , B =
⎧⎪⎩ b11 b12

b21 b22

⎫⎪⎭ ,

C =
⎧⎪⎩ c11 c12

c21 c22

⎫⎪⎭
and show that

(AB)C = A(BC)
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7. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1
2 − 1

2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
Compute A2 and A3 . What will An turn out to be?

8. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2 − 1
2 − 1

2

− 1
2

1
2 − 1

2 − 1
2

− 1
2 − 1

2
1
2 − 1

2

− 1
2 − 1

2 − 1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Compute A2 and A3. What will A2n and A2n+1 turn
out to be?

9. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Show that An = O for n ≥ 4.

10. Let A and B be symmetric n × n matrices. For each
of the following, determine whether the given mat-
rix must be symmetric or could be nonsymmetric:
(a) C = A + B (b) D = A2

(c) E = AB (d) F = ABA

(e) G = AB + BA (f) H = AB − BA

11. Let C be a nonsymmetric n × n matrix. For each of
the following, determine whether the given matrix
must necessarily be symmetric or could possibly be
nonsymmetric:
(a) A = C + CT (b) B = C − CT

(c) D = CTC (d) E = CTC − CCT

(e) F = (I + C)(I + CT )
(f) G = (I + C)(I − CT )

12. Let

A =
⎧⎪⎩ a11 a12

a21 a22

⎫⎪⎭
Show that if d = a11a22 − a21a12 �= 0, then

A−1 = 1

d

⎧⎪⎩ a22 −a12

−a21 a11

⎫⎪⎭
13. Use the result from Exercise 12 to find the inverse

of each of the following matrices:

(a)
⎧⎪⎩ 7 2

3 1

⎫⎪⎭ (b)
⎧⎪⎩ 3 5

2 3

⎫⎪⎭ (c)
⎧⎪⎩ 4 3

2 2

⎫⎪⎭
14. Let A and B are n × n matrices. Show that if

AB = A and B �= I

then A must be singular.
15. Let A be a nonsingular matrix. Show that A−1 is

also nonsingular and (A−1)−1 = A.
16. Prove that if A is nonsingular then AT is nonsingular

and

(AT )−1 = (A−1)T

Hint: (AB)T = BTAT .
17. Let A be an n × n matrix and let x and y be vectors

in R
n. Show that if Ax = Ay and x �= y, then the

matrix A must be singular.
18. Let A be a nonsingular n × n matrix. Use mathem-

atical induction to prove that Am is nonsingular and

(Am)−1 = (A−1)m

for m = 1, 2, 3, . . . .
19. Let A be an n × n matrix. Show that if A2 = O, then

I − A is nonsingular and (I − A)−1 = I + A.
20. Let A be an n × n matrix. Show that if Ak+1 = O,

then I − A is nonsingular and

(I − A)−1 = I + A + A2 + · · · + Ak

21. Given

R =
⎧⎪⎩ cos θ − sin θ

sin θ cos θ

⎫⎪⎭
show that R is nonsingular and R−1 = RT .

22. An n × n matrix A is said to be an involution if
A2 = I. Show that if G is any matrix of the form

G =
⎧⎪⎩ cos θ sin θ

sin θ − cos θ

⎫⎪⎭
then G is an involution.

23. Let u be a unit vector in R
n (i.e., uT u = 1) and let

H = I − 2uuT . Show that H is an involution.
24. A matrix A is said to be idempotent if A2 = A. Show

that each of the following matrices are idempotent.

(a)

⎧⎪⎪⎪⎩ 1 0

1 0

⎫⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎩
2
3

1
3

2
3

1
3

⎫⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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25. Let A be an idempotent matrix.
(a) Show that I − A is also idempotent.
(b) Show that I + A is nonsingular and

(I + A)−1 = I − 1
2 A

26. Let D be an n × n diagonal matrix whose diagonal
entries are either 0 or 1.
(a) Show that D is idempotent.
(b) Show that if X is a nonsingular matrix and

A = XDX−1, then A is idempotent.
27. Let A be an involution matrix and let

B = 1

2
(I + A) and C = 1

2
(I − A)

Show that B and C are both idempotent and
BC = O.

28. Let A be an m × n matrix. Show that ATA and AAT

are both symmetric.
29. Let A and B be symmetric n × n matrices. Prove

that AB = BA if and only if AB is also symmetric.
30. Let A be an n × n matrix and let

B = A + AT and C = A − AT

(a) Show that B is symmetric and C is skew
symmetric.

(b) Show that every n × n matrix can be repres-
ented as a sum of a symmetric matrix and a
skew-symmetric matrix.

31. In Application 1, how many married women and
how many single women will there be after 3 years?

32. Consider the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 1 1
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
1 0 1 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Draw a graph that has A as its adjacency

matrix. Be sure to label the vertices of the
graph.

(b) By inspecting the graph, determine the number
of walks of length 2 from V2 to V3 and from V2

to V5.
(c) Compute the second row of A3 and use it to de-

termine the number of walks of length 3 from
V2 to V3 and from V2 to V5.

33. Consider the graph

V2 V3

V5

V4V1

(a) Determine the adjacency matrix A of the
graph.

(b) Compute A2. What do the entries in the first
row of A2 tell you about walks of length 2 that
start from V1?

(c) Compute A3. How many walks of length 3
are there from V2 to V4? How many walks of
length less than or equal to 3 are there from V2

to V4?
For each of the conditional statements that follow,
answer true if the statement is always true and
answer false otherwise. In the case of a true state-
ment, explain or prove your answer. In the case of
a false statement, give an example to show that the
statement is not always true.

34. If Ax = Bx for some nonzero vector x, then the
matrices A and B must be equal.

35. If A and B are singular n × n matrices, then A + B
is also singular.

36. If A and B are nonsingular matrices, then (AB)T is
nonsingular and

((AB)T )−1 = (A−1)T (B−1)T

1.5 Elementary Matrices

In this section, we view the process of solving a linear system in terms of matrix mul-
tiplications rather than row operations. Given a linear system Ax = b, we can multiply
both sides by a sequence of special matrices to obtain an equivalent system in row ech-
elon form. The special matrices we will use are called elementary matrices. We will
use them to see how to compute the inverse of a nonsingular matrix and also to obtain
an important matrix factorization. We begin by considering the effects of multiplying
both sides of a linear system by a nonsingular matrix.
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Equivalent Systems
Given an m × n linear system Ax = b, we can obtain an equivalent system by
multiplying both sides of the equation by a nonsingular m × m matrix M:

Ax = b (1)

MAx = Mb (2)

Clearly, any solution of (1) will also be a solution of (2). However, if x̂ is a solution
of (2), then

M−1(MAx̂) = M−1(Mb)
Ax̂ = b

and it follows that the two systems are equivalent.
To obtain an equivalent system that is easier to solve, we can apply a sequence

of nonsingular matrices E1, . . . , Ek to both sides of the equation Ax = b to obtain a
simpler system of the form

Ux = c

where U = Ek · · · E1A and c = Ek · · · E2E1b. The new system will be equivalent to the
original, provided that M = Ek · · · E1 is nonsingular. However, M is nonsingular since
it is a product of nonsingular matrices.

We will show next that any of the three elementary row operations can be
accomplished by multiplying A on the left by a nonsingular matrix.

Elementary Matrices
If we start with the identity matrix I and then perform exactly one elementary row
operation, the resulting matrix is called an elementary matrix.

There are three types of elementary matrices corresponding to the three types of
elementary row operations.

Type I An elementary matrix of type I is a matrix obtained by interchanging two rows
of I.

EXAMPLE 1 The matrix

E1 =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
is an elementary matrix of type I since it was obtained by interchanging the first two
rows of I. If A is a 3 × 3 matrix, then

E1A =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a21 a22 a23

a11 a12 a13

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
AE1 =

⎧⎪⎪⎪⎪⎪⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a12 a11 a13

a22 a21 a23

a32 a31 a33

⎫⎪⎪⎪⎪⎪⎭
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Multiplying A on the left by E1 interchanges the first and second rows of A. Right mul-
tiplication of A by E1 is equivalent to the elementary column operation of interchanging
the first and second columns.

Type II An elementary matrix of type II is a matrix obtained by multiplying a row of
I by a nonzero constant.

EXAMPLE 2

E2 =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭
is an elementary matrix of type II. If A is a 3 × 3 matrix, then

E2A =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a11 a12 a13

a21 a22 a23

3a31 3a32 3a33

⎫⎪⎪⎪⎪⎪⎭
AE2 =

⎧⎪⎪⎪⎪⎪⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

a11 a12 3a13

a21 a22 3a23

a31 a32 3a33

⎫⎪⎪⎪⎪⎪⎭
Multiplication on the left by E2 performs the elementary row operation of multiplying
the third row by 3, while multiplication on the right by E2 performs the elementary
column operation of multiplying the third column by 3.

Type III An elementary matrix of type III is a matrix obtained from I by adding a
multiple of one row to another row.

EXAMPLE 3

E3 =
⎧⎪⎪⎪⎪⎪⎩

1 0 3
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
is an elementary matrix of type III. If A is a 3 × 3 matrix, then

E3A =
⎧⎪⎪⎪⎪⎪⎩

a11 + 3a31 a12 + 3a32 a13 + 3a33

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
AE3 =

⎧⎪⎪⎪⎪⎪⎩
a11 a12 3a11 + a13

a21 a22 3a21 + a23

a31 a32 3a31 + a33

⎫⎪⎪⎪⎪⎪⎭
Multiplication on the left by E3 adds 3 times the third row to the first row. Multiplica-
tion on the right adds 3 times the first column to the third column.

In general, suppose that E is an n × n elementary matrix. We can think of E as
being obtained from I by either a row operation or a column operation. If A is an n × r
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matrix, premultiplying A by E has the effect of performing that same row operation on
A. If B is an m×n matrix, postmultiplying B by E is equivalent to performing that same
column operation on B.

Theorem 1.5.1 If E is an elementary matrix, then E is nonsingular and E−1 is an elementary matrix of
the same type.

Proof If E is the elementary matrix of type I formed from I by interchanging the ith and jth
rows, then E can be transformed back into I by interchanging these same rows again.
Therefore EE = I and hence E is its own inverse. If E is the elementary matrix of
type II formed by multiplying the ith row of I by a nonzero scalar α, then E can be
transformed into the identity matrix by multiplying either its ith row or its ith column
by 1/α. Thus,

E−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
. . . O

1
1/α

1

O
. . .

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
ith row

Finally, if E is the elementary matrix of type III formed from I by adding m times the
ith row to the jth row, that is,

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
...

. . . O
0 · · · 1
...

. . .
0 · · · m · · · 1
...

. . .
0 · · · 0 · · · 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ith row

jth row

then E can be transformed back into I either by subtracting m times the ith row from
the jth row or by subtracting m times the jth column from the ith column. Thus,

E−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
...

. . . O
0 · · · 1
...

. . .
0 · · · −m · · · 1
...

. . .
0 · · · 0 · · · 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Definition A matrix B is row equivalent to a matrix A if there exists a finite sequence
E1, E2, . . . , Ek of elementary matrices such that

B = EkEk−1 · · · E1A

In other words, B is row equivalent to A if B can be obtained from A by a finite
number of row operations. In particular, if two augmented matrices (A | b) and (B | c)
are row equivalent, then Ax = b and Bx = c are equivalent systems.

The following properties of row equivalent matrices are easily established.

I. If A is row equivalent to B, then B is row equivalent to A.
II. If A is row equivalent to B, and B is row equivalent to C, then A is row

equivalent to C.

Property (I) can be proved using Theorem 1.5.1. The details of the proofs of (I) and
(II) are left as an exercise for the reader.

Theorem 1.5.2 Equivalent Conditions for Nonsingularity
Let A be an n × n matrix. The following are equivalent:

(a) A is nonsingular.
(b) Ax = 0 has only the trivial solution 0.
(c) A is row equivalent to I.

Proof We prove first that statement (a) implies statement (b). If A is nonsingular and x̂ is a
solution of Ax = 0, then

x̂ = Ix̂ = (A−1A)x̂ = A−1(Ax̂) = A−10 = 0

Thus, Ax = 0 has only the trivial solution. Next, we show that statement (b) implies
statement (c). If we use elementary row operations, the system can be transformed into
the form Ux = 0, where U is in row echelon form. If one of the diagonal elements of U
were 0, the last row of U would consist entirely of 0’s. But then Ax = 0 would be equi-
valent to a system with more unknowns than equations and hence, by Theorem 1.2.1,
would have a nontrivial solution. Thus, U must be a strictly triangular matrix with di-
agonal elements all equal to 1. It then follows that I is the reduced row echelon form
of A and hence A is row equivalent to I.

Finally, we will show that statement (c) implies statement (a). If A is row equivalent
to I, there exist elementary matrices E1, E2, . . . , Ek such that

A = EkEk−1 · · · E1I = EkEk−1 · · · E1

But since Ei is invertible, i = 1, . . . , k, the product EkEk−1 · · · E1 is also invertible.
Hence, A is nonsingular and

A−1 = (EkEk−1 · · · E1)−1 = E−1
1 E−1

2 · · · E−1
k
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Corollary 1.5.3 The system Ax = b of n linear equations in n unknowns has a unique solution if and
only if A is nonsingular.

Proof If A is nonsingular, and x̂ is any solution of Ax = b, then

Ax̂ = b

Multiplying both sides of this equation by A−1, we see that x̂ must be equal to A−1b.
Conversely, if Ax = b has a unique solution x̂, then we claim that A cannot be

singular. Indeed, if A were singular, then the equation Ax = 0 would have a solution
z �= 0. But this would imply that y = x̂ + z is a second solution of Ax = b, since

Ay = A(x̂ + z) = Ax̂ + Az = b + 0 = b

Therefore if Ax = b has a unique solution, then A must be nonsingular.

If A is nonsingular then A is row equivalent to I and hence there exist elementary
matrices E1, . . . , Ek such that

EkEk−1 · · · E1A = I

Multiplying both sides of this equation on the right by A−1, we obtain

EkEk−1 · · · E1I = A−1

Thus the same series of elementary row operations that transforms a nonsingular matrix
A into I will transform I into A−1. This gives us a method for computing A−1. If we
augment A by I and perform the elementary row operations that transform A into I on
the augmented matrix, then I will be transformed into A−1. That is, the reduced row
echelon form of the augmented matrix (A|I) will be (I|A−1).

EXAMPLE 4 Compute A−1 if

A =
⎧⎪⎪⎪⎪⎪⎩

1 4 3
−1 −2 0

2 2 3

⎫⎪⎪⎪⎪⎪⎭
Solution ⎧⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
−1 −2 0 0 1 0

2 2 3 0 0 1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 4 3 1 0 0
0 2 3 1 1 0
0 −6 −3 −2 0 1

⎫⎪⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 4 3 1 0 0

0 2 3 1 1 0

0 0 6 1 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 4 0 1

2 − 3
2 − 1

2

0 2 0 1
2 − 1

2 − 1
2

0 0 6 1 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 − 1

2 − 1
2

1
2

0 2 0 1
2 − 1

2 − 1
2

0 0 6 1 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 − 1

2 − 1
2

1
2

0 1 0 1
4 − 1

4 − 1
4

0 0 1 1
6

1
2

1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Thus

A−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 − 1
2

1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
EXAMPLE 5 Solve the system

x1 + 4x2 + 3x3 = 12
−x1 − 2x2 = −12
2x1 + 2x2 + 3x3 = 8

Solution
The coefficient matrix of this system is the matrix A of the last example. The solution
of the system is then

x = A−1b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 − 1
2

1
2

1
4 − 1

4 − 1
4

1
6

1
2

1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

12
−12

8

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4
4

− 8
3

⎫⎪⎪⎪⎪⎪⎭

Diagonal and Triangular Matrices
An n×n matrix A is said to be upper triangular if aij = 0 for i > j and lower triangular
if aij = 0 for i < j. Also, A is said to be triangular if it is either upper triangular or
lower triangular. For example, the 3 × 3 matrices

⎧⎪⎪⎪⎪⎪⎩
3 2 1
0 2 1
0 0 5

⎫⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩
1 0 0
6 0 0
1 4 3

⎫⎪⎪⎪⎪⎪⎭
are both triangular. The first is upper triangular and the second is lower triangular.

A triangular matrix may have 0’s on the diagonal. However, for a linear system
Ax = b to be in strict triangular form, the coefficient matrix A must be upper triangular
with nonzero diagonal entries.

An n × n matrix A is diagonal if aij = 0 whenever i �= j. The matrices

⎧⎪⎩ 1 0
0 2

⎫⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 3 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 2 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
are all diagonal. A diagonal matrix is both upper triangular and lower triangular.
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Triangular Factorization
If an n × n matrix A can be reduced to strict upper triangular form using only row
operation III, then it is possible to represent the reduction process in terms of a matrix
factorization. We illustrate how this is done in the next example.

EXAMPLE 6 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫⎪⎪⎪⎪⎪⎭
and let us use only row operation III to carry out the reduction process. At the first step,
we subtract 1

2 times the first row from the second and then we subtract twice the first
row from the third. ⎧⎪⎪⎪⎪⎪⎩

2 4 2
1 5 2
4 −1 9

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 −9 5

⎫⎪⎪⎪⎪⎪⎭
To keep track of the multiples of the first row that were subtracted, we set l21 =
1
2 and l31 = 2. We complete the elimination process by eliminating the −9 in
the (3,2) position. ⎧⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 −9 5

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 4 2
0 3 1
0 0 8

⎫⎪⎪⎪⎪⎪⎭
Let l32 = −3, the multiple of the second row subtracted from the third row. If we call
the resulting matrix U and set

L =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
l21 1 0
l31 l32 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

2 −3 1

⎫⎪⎪⎪⎪⎪⎪⎭
then it is easily verified that

LU =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

2 −3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 4 2

0 3 1

0 0 8

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 4 2

1 5 2

4 −1 9

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = A

The matrix L in the previous example is lower triangular with 1’s on the diagonal.
We say that L is unit lower triangular. The factorization of the matrix A into a product
of a unit lower triangular matrix L times a strictly upper triangular matrix U is often
referred to as an LU factorization.

To see why the factorization in Example 6 works, let us view the reduction process
in terms of elementary matrices. The three row operations that were applied to the
matrix A can be represented in terms of multiplications by elementary matrices

E3E2E1A = U (3)
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where

E1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

− 1
2 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ , E2 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

−2 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ , E3 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

0 3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
correspond to the row operations in the reduction process. Since each of the elementary
matrices is nonsingular, we can multiply equation (3) by their inverses.

A = E−1
1 E−1

2 E−1
3 U

[We multiply in reverse order because (E3E2E1)−1 = E−1
1 E−1

2 E−1
3 .] However, when the

inverses are multiplied in this order, the multipliers l21, l31, l32 fill in below the diagonal
in the product:

E−1
1 E−1

2 E−1
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

2 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0 1 0

0 −3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = L

In general, if an n×n matrix A can be reduced to strict upper triangular form using only
row operation III, then A has an LU factorization. The matrix L is unit lower triangular,
and if i > j, then lij is the multiple of the jth row subtracted from the ith row during the
reduction process.

The LU factorization is a very useful way of viewing the elimination process. We
will find it particularly useful in Chapter 7 when we study computer methods for solv-
ing linear systems. Many of the major topics in linear algebra can be viewed in terms
of matrix factorizations. We will study other interesting and important factorizations
in Chapters 5 through 7.

SECTION 1.5 EXERCISES
1. Which of the matrices that follow are elementary

matrices? Classify each elementary matrix by type.

(a)
⎧⎪⎩ 0 1

1 0

⎫⎪⎭ (b)
⎧⎪⎩ 2 0

0 3

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
5 0 1

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 5 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
2. Find the inverse of each matrix in Exercise 1. For

each elementary matrix, verify that its inverse is an
elementary matrix of the same type.

3. For each of the following pairs of matrices, find an
elementary matrix E such that EA = B.

(a) A =
⎧⎪⎩ 2 −1

5 3

⎫⎪⎭, B =
⎧⎪⎩ −4 2

5 3

⎫⎪⎭
(b) A =

⎧⎪⎪⎪⎪⎪⎩
2 1 3

−2 4 5
3 1 4

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
3 1 4

−2 4 5

⎫⎪⎪⎪⎪⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
4 −2 3
1 0 2

−2 3 1

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

4 −2 3
1 0 2
0 3 5

⎫⎪⎪⎪⎪⎪⎭
4. For each of the following pairs of matrices, find an

elementary matrix E such that AE = B.

(a) A =
⎧⎪⎪⎪⎪⎪⎩

4 1 3
2 1 4
1 3 2

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

3 1 4
4 1 2
2 3 1

⎫⎪⎪⎪⎪⎪⎭
(b) A =

⎧⎪⎩ 2 4
1 6

⎫⎪⎭, B =
⎧⎪⎩ 2 −2

1 3

⎫⎪⎭
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(c) A =
⎧⎪⎪⎪⎪⎪⎩

4 −2 3
−2 4 2

6 1 −2

⎫⎪⎪⎪⎪⎪⎭,

B =
⎧⎪⎪⎪⎪⎪⎩

2 −2 3
−1 4 2

3 1 −2

⎫⎪⎪⎪⎪⎪⎭
5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 4
2 1 3
1 0 2

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

1 2 4
2 1 3
2 2 6

⎫⎪⎪⎪⎪⎪⎭ ,

C =
⎧⎪⎪⎪⎪⎪⎩

1 2 4
0 −1 −3
2 2 6

⎫⎪⎪⎪⎪⎪⎭
(a) Find an elementary matrix E such that

EA = B.
(b) Find an elementary matrix F such that

FB = C.
(c) Is C row equivalent to A? Explain.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 1
6 4 5
4 1 3

⎫⎪⎪⎪⎪⎪⎭
(a) Find elementary matrices E1, E2, E3 such that

E3E2E1A = U

where U is an upper triangular matrix.
(b) Determine the inverses of E1, E2, E3 and set

L = E−1
1 E−1

2 E−1
3 . What type of matrix is L?

Verify that A = LU.
7. Let

A =
⎧⎪⎩ 2 1

6 4

⎫⎪⎭
(a) Express A−1 as a product of elementary

matrices.
(b) Express A as a product of elementary matrices.

8. Compute the LU factorization of each of the fol-
lowing matrices.

(a)
⎧⎪⎩ 3 1

9 5

⎫⎪⎭ (b)
⎧⎪⎩ 2 4

−2 1

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
3 5 6

−2 2 7

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
−2 1 2

4 1 −2
−6 −3 4

⎫⎪⎪⎪⎪⎪⎭
9. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 1
3 3 4
2 2 3

⎫⎪⎪⎪⎪⎪⎭

(a) Verify that

A−1 =
⎧⎪⎪⎪⎪⎪⎩

1 2 −3
−1 1 −1

0 −2 3

⎫⎪⎪⎪⎪⎪⎭
(b) Use A−1 to solve Ax = b for the following

choices of b.
(i) b = (1, 1, 1)T (ii) b = (1, 2, 3)T

(iii) b = (−2, 1, 0)T

10. Find the inverse of each of the following matrices.

(a)
⎧⎪⎩ −1 1

1 0

⎫⎪⎭ (b)
⎧⎪⎩ 2 5

1 3

⎫⎪⎭
(c)

⎧⎪⎩ 2 6
3 8

⎫⎪⎭ (d)
⎧⎪⎩ 3 0

9 3

⎫⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
2 0 5
0 3 0
1 0 3

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
−1 −3 −3

2 6 1
3 8 3

⎫⎪⎪⎪⎪⎪⎭(h)

⎧⎪⎪⎪⎪⎪⎩
1 0 1

−1 1 1
−1 −2 −3

⎫⎪⎪⎪⎪⎪⎭
11. Given

A =
⎧⎪⎩ 3 1

5 2

⎫⎪⎭ and B =
⎧⎪⎩ 1 2

3 4

⎫⎪⎭
compute A−1 and use it to:
(a) Find a 2 × 2 matrix X such that AX = B.

(b) Find a 2 × 2 matrix Y such that YA = B.
12. Let

A =
⎧⎪⎩ 5 3

3 2

⎫⎪⎭ , B =
⎧⎪⎩ 6 2

2 4

⎫⎪⎭ , C =
⎧⎪⎩ 4 −2

−6 3

⎫⎪⎭
Solve each of the following matrix equations.
(a) AX + B = C (b) XA + B = C

(c) AX + B = X (d) XA + C = X

13. Is the transpose of an elementary matrix an ele-
mentary matrix of the same type? Is the product of
two elementary matrices an elementary matrix?

14. Let U and R be n × n upper triangular matrices and
set T = UR. Show that T is also upper triangular
and that tjj = ujjrjj for j = 1, . . . , n.

15. Let A be a 3 × 3 matrix and suppose that

2a1 + a2 − 4a3 = 0

How many solutions will the system Ax = 0 have?
Explain. Is A nonsingular? Explain.

16. Let A be a 3 × 3 matrix and suppose that

a1 = 3a2 − 2a3

Will the system Ax = 0 have a nontrivial solution?
Is A nonsingular? Explain your answers.
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17. Let A and B be n × n matrices and let C = A − B.
Show that if Ax0 = Bx0 and x0 �= 0, then C must
be singular.

18. Let A and B be n × n matrices and let C = AB.
Prove that if B is singular then C must be singular.
Hint: Use Theorem 1.5.2.

19. Let U be an n × n upper triangular matrix with
nonzero diagonal entries.
(a) Explain why U must be nonsingular.

(b) Explain why U−1 must be upper triangular.
20. Let A be a nonsingular n × n matrix and let B be

an n× r matrix. Show that the reduced row echelon
form of (A|B) is (I|C), where C = A−1B.

21. In general, matrix multiplication is not commutat-
ive (i.e., AB �= BA). However, in certain special
cases the commutative property does hold. Show
that
(a) if D1 and D2 are n × n diagonal matrices, then

D1D2 = D2D1.

(b) if A is an n × n matrix and

B = a0I + a1A + a2A2 + · · · + akAk

where a0, a1, . . . , ak are scalars, then AB = BA.
22. Show that if A is a symmetric nonsingular matrix

then A−1 is also symmetric.

23. Prove that if A is row equivalent to B then B is row
equivalent to A.

24. (a) Prove that if A is row equivalent to B and B is
row equivalent to C, then A is row equivalent
to C.

(b) Prove that any two nonsingular n × n matrices
are row equivalent.

25. Let A and B be an m × n matrices. Prove that if B is
row equivalent to A and U is any row echelon form
of A, then B is row equivalent to U.

26. Prove that B is row equivalent to A if and only
if there exists a nonsingular matrix M such that
B = MA.

27. Is it possible for a singular matrix B to be row
equivalent to a nonsingular matrix A? Explain.

28. Given a vector x ∈ R
n+1, the (n+1)×(n+1) matrix

V defined by

vij =
{

1 if j = 1
xj−1

i for j = 2, . . . , n + 1

is called the Vandermonde matrix.
(a) Show that if

Vc = y

and

p(x) = c1 + c2x + · · · + cn+1xn

then

p(xi) = yi, i = 1, 2, . . . , n + 1

(b) Suppose that x1, x2, . . . , xn+1 are all distinct.
Show that if c is a solution of Vx = 0 then
the coefficients c1, c2, . . . , cn must all be zero,
and hence V must be nonsingular.

For each of following, answer true if the statement
is always true and answer false otherwise. In the
case of a true statement, explain or prove your
answer. In the case of a false statement, give an
example to show that the statement is not always
true.

29. If A is row equivalent to I and AB = AC, then B
must equal C.

30. If E and F are elementary matrices and G = EF,
then G is nonsingular.

31. If A is a 4 × 4 matrix and a1 + a2 = a3 + 2a4, then
A must be singular.

32. If A is row equivalent to both B and C, then A is
row equivalent to B + C.

1.6 Partitioned Matrices

Often it is useful to think of a matrix as being composed of a number of submatrices.
A matrix C can be partitioned into smaller matrices by drawing horizontal lines
between the rows and vertical lines between the columns. The smaller matrices are
often referred to as blocks. For example, let

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 4 1 3
2 1 1 1 1
3 3 2 −1 2
4 6 2 2 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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If lines are drawn between the second and third rows and between the third and fourth
columns, then C will be divided into four submatrices, C11, C12, C21, and C22.

⎧⎪⎪⎪⎩ C11 C12

C21 C22

⎫⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 4 1 3

2 1 1 1 1

3 3 2 −1 2

4 6 2 2 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
One useful way of partitioning a matrix is to partition it into columns. For

example, if

B =
⎧⎪⎪⎪⎪⎪⎩

−1 2 1
2 3 1
1 4 1

⎫⎪⎪⎪⎪⎪⎭
we can partition B into three column submatrices:

B = (b1 b2 b3) =
⎧⎪⎪⎪⎪⎪⎩

−1 2 1
2 3 1
1 4 1

⎫⎪⎪⎪⎪⎪⎭
Suppose that we are given a matrix A with three columns; then the product AB can

be viewed as a block multiplication. Each block of B is multiplied by A and the result
is a matrix with three blocks: Ab1, Ab2, and Ab3; that is,

AB = A(b1 b2 b3) =
⎧⎩ Ab1 Ab2 Ab3

⎫⎭
For example, if

A =
⎧⎪⎩ 1 3 1

2 1 −2

⎫⎪⎭
then

Ab1 =
⎧⎪⎩ 6

−2

⎫⎪⎭ , Ab2 =
⎧⎪⎩ 15

−1

⎫⎪⎭ , Ab3 =
⎧⎪⎩ 5

1

⎫⎪⎭
and hence

A(b1 b2 b3) =
⎧⎪⎩ 6 15 5

−2 −1 1

⎫⎪⎭
In general, if A is an m×n matrix and B is an n×r matrix that has been partitioned

into columns
⎧⎩ b1 · · · br

⎫⎭, then the block multiplication of A times B is given by

AB = (Ab1 Ab2 · · · Abr)

In particular,

(a1 · · · an) = A = AI = (Ae1 · · · Aen)
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Let A be an m × n matrix. If we partition A into rows, then

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1

�a2
...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If B is an n × r matrix, the ith row of the product AB is determined by multiplying the
ith row of A times B. Thus the ith row of AB is �aiB. In general, the product AB can be
partitioned into rows as follows:

AB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
�a1B
�a2B

...
�amB

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
To illustrate this result, let us look at an example. If

A =
⎧⎪⎪⎪⎪⎪⎩

2 5
3 4
1 7

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎩ 3 2 −3

−1 1 1

⎫⎪⎭
then

�a1B =
⎧⎩ 1 9 −1

⎫⎭
�a2B =

⎧⎩ 5 10 −5
⎫⎭

�a3B =
⎧⎩ −4 9 4

⎫⎭
These are the row vectors of the product AB:

AB =
⎧⎪⎪⎪⎪⎪⎩

�a1B
�a2B
�a3B

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 9 −1
5 10 −5

−4 9 4

⎫⎪⎪⎪⎪⎪⎭
Next, we consider how to compute the product AB in terms of more general

partitions of A and B.

Block Multiplication
Let A be an m × n matrix and B an n × r matrix. It is often useful to partition A and B
and express the product in terms of the submatrices of A and B. Consider the following
four cases.
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Case 1. If B =
⎧⎩ B1 B2

⎫⎭, where B1 is an n × t matrix and B2 is an n × (r − t)

matrix, then

AB = A(b1, . . . , bt, bt+1 . . . br)
= (Ab1, . . . , Abt, Abt+1, . . . , Abr)
= (A(b1 . . . bt), A(bt+1 · · · br))

=
⎧⎩ AB1 AB2

⎫⎭
Thus,

A
⎧⎩ B1 B2

⎫⎭ =
⎧⎩ AB1 AB2

⎫⎭

Case 2. If A =
⎧⎪⎩ A1

A2

⎫⎪⎭, where A1 is a k × n matrix and A2 is an (m − k) × n matrix,

then

⎧⎪⎪⎪⎩ A1

A2

⎫⎪⎪⎪⎭ B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a1
...

�ak

�ak+1
...

�am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�a1B
...

�akB
�ak+1B

...
�amB

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎩
�a1
...
�ak

⎫⎪⎪⎪⎪⎪⎪⎪⎭B

⎧⎪⎪⎪⎪⎪⎪⎪⎩
�ak+1

...
�am

⎫⎪⎪⎪⎪⎪⎪⎪⎭B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎩ A1B
A2B

⎫⎪⎭

Thus,

⎧⎪⎩ A1

A2

⎫⎪⎭B =
⎧⎪⎩ A1B

A2B

⎫⎪⎭

Case 3. Let A =
⎧⎩ A1 A2

⎫⎭ and B =
⎧⎪⎩ B1

B2

⎫⎪⎭, where A1 is an m × s matrix, A2 is an

m × (n − s) matrix, B1 is an s × r matrix, and B2 is an (n − s) × r matrix. If C = AB,
then

cij =
n∑

l=1

ailblj =
s∑

l=1

ailblj +
n∑

l=s+1

ailblj
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Thus cij is the sum of the (i, j) entry of A1B1 and the (i, j) entry of A2B2. Therefore,

AB = C = A1B1 + A2B2

and it follows that

⎧⎩ A1 A2

⎫⎭⎧⎪⎩ B1

B2

⎫⎪⎭ = A1B1 + A2B2

Case 4. Let A and B both be partitioned as follows:

A =
⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭ k
m − k ,

s n − s

B =
⎧⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎭ s
n − s

t r − t

Let

A1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩ A11

A21

⎫⎪⎪⎪⎪⎪⎪⎪⎭, A2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
A12

A22

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭,

B1 =
⎧⎪⎩ B11 B12

⎫⎪⎭, B2 =
⎧⎪⎩ B21 B22

⎫⎪⎭
It follows from case 3 that

AB =
⎧⎩ A1 A2

⎫⎭ ⎧⎪⎩ B1

B2

⎫⎪⎭ = A1B1 + A2B2

It follows from cases 1 and 2 that

A1B1 =
⎧⎪⎩ A11

A21

⎫⎪⎭ B1 =
⎧⎪⎩ A11B1

A21B1

⎫⎪⎭ =
⎧⎪⎩ A11B11 A11B12

A21B11 A21B12

⎫⎪⎭
A2B2 =

⎧⎪⎩ A12

A22

⎫⎪⎭ B2 =
⎧⎪⎩ A12B2

A22B2

⎫⎪⎭ =
⎧⎪⎩ A12B21 A12B22

A22B21 A22B22

⎫⎪⎭
Therefore,⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

⎫⎪⎪⎪⎭
In general, if the blocks have the proper dimensions, the block multiplication can

be carried out in the same manner as ordinary matrix multiplication, that is, if

A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

A11 · · · A1t
...

As1 · · · Ast

⎫⎪⎪⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

B11 · · · B1r
...

Bt1 · · · Btr

⎫⎪⎪⎪⎪⎪⎪⎪⎭



1.6 Partitioned Matrices 75

then

AB =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

C11 · · · C1r
...

Cs1 · · · Csr

⎫⎪⎪⎪⎪⎪⎪⎪⎭
where

Cij =
t∑

k=1

AikBkj

The multiplication can be carried out in this manner only if the number of columns of
Aik equals the number of rows of Bkj for each k.

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1
2 2 1 1
3 3 2 2

⎫⎪⎪⎪⎪⎪⎭
and

B =
⎧⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Partition A into four blocks and perform the block multiplication.

Solution
Since each Bkj has two rows, the Aik’s must each have two columns. Thus, we have one
of two possibilities

(i)

⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
in which case

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

8 6 4 5

10 9 6 7

18 15 10 12

⎫⎪⎪⎪⎪⎪⎪⎪⎭
or

(ii)

⎧⎪⎪⎪⎩ A11 A12

A21 A22

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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in which case

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

2 2 1 1

3 3 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1

1 2 1 1

3 1 1 1

3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

8 6 4 5

10 9 6 7

18 15 10 12

⎫⎪⎪⎪⎪⎪⎪⎪⎭
EXAMPLE 2 Let A be an n × n matrix of the form⎧⎪⎩ A11 O

O A22

⎫⎪⎭
where A11 is a k × k matrix (k < n). Show that A is nonsingular if and only if A11 and
A22 are nonsingular.

Solution
If A11 and A22 are nonsingular, then⎧⎪⎪⎩ A−1

11 O
O A−1

22

⎫⎪⎪⎭⎧⎪⎩ A11 O
O A22

⎫⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ = I

and ⎧⎪⎩ A11 O
O A22

⎫⎪⎭⎧⎪⎪⎩ A−1
11 O
O A−1

22

⎫⎪⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ = I

so A is nonsingular and

A−1 =
⎧⎪⎪⎩ A−1

11 O
O A−1

22

⎫⎪⎪⎭
Conversely, if A is nonsingular, then let B = A−1 and partition B in the same manner
as A. Since

BA = I = AB

it follows that⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭⎧⎪⎩ A11 O
O A22

⎫⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ =
⎧⎪⎩ A11 O

O A22

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭⎧⎪⎩ B11A11 B12A22

B21A11 B22A22

⎫⎪⎭ =
⎧⎪⎩ Ik O

O In−k

⎫⎪⎭ =
⎧⎪⎩ A11B11 A11B12

A22B21 A22B22

⎫⎪⎭
Thus,

B11A11 = Ik = A11B11

B22A22 = In−k = A22B22

Hence, A11 and A22 are both nonsingular with inverses B11 and B22, respectively.
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Outer Product Expansions
Given two vectors x and y in R

n, it is possible to perform a matrix multiplication of the
vectors if we transpose one of the vectors first. The matrix product xTy is the product
of a row vector (a 1 × n matrix) and a column vector (an n × 1 matrix). The result will
be a 1 × 1 matrix, or simply a scalar:

xTy =
⎧⎩ x1 x2 · · · xn

⎫⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1

y2
...

yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = x1y1 + x2y2 + · · · + xnyn

This type of product is referred to as a scalar product or an inner product. The scalar
product is one of the most commonly performed operations. For example, when we
multiply two matrices, each entry of the product is computed as a scalar product (a row
vector times a column vector).

It is also useful to multiply a column vector times a row vector. The matrix product
xyT is the product of an n × 1 matrix times a 1 × n matrix. The result is a full n × n
matrix.

xyT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎩ y1 y2 · · · yn

⎫⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1y1 x1y2 · · · x1yn

x2y1 x2y2 · · · x2yn
...

xny1 xny2 · · · xnyn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The product xyT is referred to as the outer product of x and y. The outer product matrix
has special structure in that each of its rows is a multiple of yT and each of its column
vectors is a multiple of x. For example, if

x =
⎧⎪⎪⎪⎪⎪⎩

4
1
3

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

3
5
2

⎫⎪⎪⎪⎪⎪⎭
then

xyT =
⎧⎪⎪⎪⎪⎪⎩

4
1
3

⎫⎪⎪⎪⎪⎪⎭
⎧⎩ 3 5 2

⎫⎭ =
⎧⎪⎪⎪⎪⎪⎩

12 20 8
3 5 2
9 15 6

⎫⎪⎪⎪⎪⎪⎭
Note that each row is a multiple of (3, 5, 2) and each column is a multiple of x.

We are now ready to generalize the idea of an outer product from vectors to
matrices. Suppose that we start with an m × n matrix X and a k × n matrix Y . We
can then form a matrix product XYT . If we partition X into columns and YT into rows
and perform the block multiplication, we see that XYT can be represented as a sum of
outer products of vectors:

XYT =
⎧⎩ x1 x2 · · · xn

⎫⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yT
1

yT
2
...

yT
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = x1yT
1 + x2yT

2 + · · · + xnyT
n
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This representation is referred to as an outer product expansion. These types of ex-
pansions play an important role in many applications. In Section 5 of Chapter 6, we
will see how outer product expansions are used in digital imaging and in information
retrieval applications.

EXAMPLE 3 Given

X =
⎧⎪⎪⎪⎪⎪⎩

3 1
2 4
1 2

⎫⎪⎪⎪⎪⎪⎭ and Y =
⎧⎪⎪⎪⎪⎪⎩

1 2
2 4
3 1

⎫⎪⎪⎪⎪⎪⎭
compute the outer product expansion of XYT .

Solution

XYT =
⎧⎪⎪⎪⎪⎪⎩

3 1
2 4
1 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩ 1 2 3

2 4 1

⎫⎪⎭
=

⎧⎪⎪⎪⎪⎪⎩
3
2
1

⎫⎪⎪⎪⎪⎪⎭
⎧⎩ 1 2 3

⎫⎭ +
⎧⎪⎪⎪⎪⎪⎩

1
4
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎩ 2 4 1

⎫⎭

=
⎧⎪⎪⎪⎪⎪⎩

3 6 9
2 4 6
1 2 3

⎫⎪⎪⎪⎪⎪⎭ +
⎧⎪⎪⎪⎪⎪⎩

2 4 1
8 16 4
4 8 2

⎫⎪⎪⎪⎪⎪⎭
SECTION 1.6 EXERCISES

1. Let A be a nonsingular n × n matrix. Perform the
following multiplications:

(a) A−1
⎧⎩ A I

⎫⎭ (b)
⎧⎪⎩ A

I

⎫⎪⎭ A−1

(c)
⎧⎩ A I

⎫⎭T ⎧⎩ A I
⎫⎭

(d)
⎧⎩ A I

⎫⎭⎧⎩ A I
⎫⎭T

(e)
⎧⎪⎩ A−1

I

⎫⎪⎭ ⎧⎩ A I
⎫⎭

2. Let B = ATA. Show that bij = aT
i aj.

3. Let

A =
⎧⎪⎩ 1 1

2 −1

⎫⎪⎭ and B =
⎧⎪⎩ 2 1

1 3

⎫⎪⎭
(a) Calculate Ab1 and Ab2.

(b) Calculate �a1B and �a2B.

(c) Multiply AB and verify that its column vectors
are the vectors in part (a) and its row vectors
are the vectors in part (b).

4. Let

I =
⎧⎪⎩ 1 0

0 1

⎫⎪⎭ , E =
⎧⎪⎩ 0 1

1 0

⎫⎪⎭ , O =
⎧⎪⎩ 0 0

0 0

⎫⎪⎭
C =

⎧⎪⎩ 1 0
−1 1

⎫⎪⎭ , D =
⎧⎪⎩ 2 0

0 2

⎫⎪⎭
and

B =
⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 2 1 1
3 1 1 1
3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Perform each of the following block multiplica-
tions.

(a)
⎧⎪⎩ O I

I O

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
(b)

⎧⎪⎩ C O
O C

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
(c)

⎧⎪⎩ D O
O I

⎫⎪⎭⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
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(d)
⎧⎪⎩ E O

O E

⎫⎪⎭ ⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
5. Perform each of the following block multiplica-

tions:

(a)
⎧⎪⎩ 1 1 1 −1

2 1 2 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 −2 1
2 3 1
1 1 2
1 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 −2
2 3
1 1
1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩ 1 1 1 −1

2 1 2 −1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 − 4

5 0 0
4
5

3
5 0 0

0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
5

4
5 0

− 4
5

3
5 0

0 0 1

0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1
2 −2
3 −3
4 −4
5 −5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
6. Given

X =
⎧⎪⎩ 2 1 5

4 2 3

⎫⎪⎭, Y =
⎧⎪⎩ 1 2 4

2 3 1

⎫⎪⎭
(a) Compute the outer product expansion of XYT .

(b) Compute the outer product expansion of YXT .
How is the outer product expansion of YXT re-
lated to the outer product expansion of XYT?

7. Let

A =
⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭ and AT =
⎧⎪⎪⎪⎪⎪⎩ AT

11 AT
21

AT
12 AT

22

⎫⎪⎪⎪⎪⎪⎭
Is it possible to perform the block multiplications
of AAT and ATA? Explain.

8. Let A be an m × n matrix, X an n × r matrix, and B
an m × r matrix. Show that

AX = B

if and only if

Axj = bj, j = 1, . . . , r

9. Let A be an n × n matrix and let D be an n × n
diagonal matrix.

(a) Show that D = (d11e1, d22e2, . . . , dnnen).

(b) Show that AD = (d11a1, d22a2, . . . , dnnan).
10. Let U be an m × m matrix, let V be an n × n matrix,

and let

� =
⎧⎪⎩ �1

O

⎫⎪⎭
where �1 is an n × n diagonal matrix with diagonal
entries σ1, σ2, . . . , σn and O is the (m − n) × n zero
matrix.
(a) Show that if U = (U1, U2), where U1 has n

columns, then

U� = U1�1

(b) Show that if A = U�VT , then A can be ex-
pressed as an outer product expansion of the
form

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n

11. Let

A =
⎧⎪⎩ A11 A12

O A22

⎫⎪⎭
where all four blocks are n × n matrices.
(a) If A11 and A22 are nonsingular, show that A

must also be nonsingular and that A−1 must be
of the form ⎧⎪⎪⎪⎪⎩ A−1

11 C

O A−1
22

⎫⎪⎪⎪⎪⎭
(b) Determine C.

12. Let A and B be n × n matrices and let M be a block
matrix of the form

M =
⎧⎪⎩ A O

O B

⎫⎪⎭
Use condition (b) of Theorem 1.5.2 to show that if
either A or B is singular, then M must be singular.

13. Let

A =
⎧⎪⎩ O I

B O

⎫⎪⎭
where all four submatrices are k × k. Determine A2

and A4.

14. Let I denote the n × n identity matrix. Find a block
form for the inverse of each of the following 2n×2n
matrices.

(a)
⎧⎪⎩ O I

I O

⎫⎪⎭ (b)
⎧⎪⎩ I O

B I

⎫⎪⎭
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15. Let O be the k × k matrix whose entries are all 0, I
be the k × k identity matrix, and B be a k × k matrix
with the property that B2 = O. If

A =
⎧⎪⎩ O I

I B

⎫⎪⎭
determine the block form of A−1 + A2 + A3.

16. Let A and B be n × n matrices and define 2n × 2n
matrices S and M by

S =
⎧⎪⎩ I A

O I

⎫⎪⎭ , M =
⎧⎪⎩ AB O

B O

⎫⎪⎭
Determine the block form of S−1 and use it to
compute the block form of the product S−1MS.

17. Let

A =
⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭
where A11 is a k × k nonsingular matrix. Show that
A can be factored into a product⎧⎪⎩ I O

B I

⎫⎪⎭ ⎧⎪⎩ A11 A12

O C

⎫⎪⎭
where

B = A21A−1
11 and C = A22 − A21A−1

11 A12

(Note that this problem gives a block matrix ver-
sion of the factorization in Exercise 18 of Sec-
tion 1.3.)

18. Let A, B, L, M, S, and T be n × n matrices with
A, B, and M nonsingular and L, S, and T singular.
Determine whether it is possible to find matrices X
and Y such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O I O O O O
O O I O O O
O O O I O O
O O O O I O
O O O O O X
Y O O O O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
A
T
L
A
B

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
T
L
A
S
T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If so, show how; if not, explain why.

19. Let A be an n × n matrix and x ∈ R
n.

(a) A scalar c can also be considered as a 1 × 1
matrix C = (c), and a vector b ∈ R

n can be
considered as an n × 1 matrix B. Although the
matrix multiplication CB is not defined, show
that the matrix product BC is equal to cb, the
scalar multiplication of c times b.

(b) Partition A into columns and x into rows and
perform the block multiplication of A times x.

(c) Show that

Ax = x1a1 + x2a2 + · · · + xnan

20. If A is an n×n matrix with the property that Ax = 0
for all x ∈ R

n, show that A = O. Hint: Let x = ej

for j = 1, . . . , n.

21. Let B and C be n×n matrices with the property that
Bx = Cx for all x ∈ R

n. Show that B = C.

22. Consider a system of the form⎧⎪⎪⎪⎪⎩ A a

cT β

⎫⎪⎪⎪⎪⎭
⎧⎪⎩ x

xn+1

⎫⎪⎭ =
⎧⎪⎩ b

bn+1

⎫⎪⎭
where A is a nonsingular n × n matrix and a, b, and
c are vectors in R

n.
(a) Multiply both sides of the system by⎧⎪⎪⎪⎪⎩ A−1 0

−cTA−1 1

⎫⎪⎪⎪⎪⎭
to obtain an equivalent triangular system.

(b) Set y = A−1a and z = A−1b. Show that if
β − cT y �= 0, then the solution of the system
can be determined by letting

xn+1 = bn+1 − cT z
β − cT y

and then setting

x = z − xn+1y

Chapter One Exercises

MATLAB EXERCISES

The exercises that follow are to be solved computa-
tionally with the software package MATLAB, which
is described in the appendix of this book. The exer-
cises also contain questions that are related to the

underlying mathematical principles illustrated in the
computations. Save a record of your session in a file.
After editing and printing out the file, you can fill in the
answers to the questions directly on the printout.
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MATLAB has a help facility that explains all its
operations and commands. For example, to obtain in-
formation on the MATLAB command rand, you need
only type help rand. The commands used in the MAT-
LAB exercises for this chapter are inv, floor, rand,
tic, toc, rref, abs, max, round, sum, eye,
triu, ones, zeros, and magic. The operations in-
troduced are +, −, ∗, ′, and \. The + and − represent
the usual addition and subtraction operations for both
scalars and matrices. The ∗ corresponds to multiplica-
tion of either scalars or matrices. For matrices whose
entries are all real numbers the ′ operation corresponds
to the transpose operation. If A is a nonsingular n × n
matrix and B is any n × r matrix, the operation A\B is
equivalent to computing A−1B.

1. Use MATLAB to generate random 4×4 matrices A
and B. For each of the following, compute A1, A2,
A3, and A4 as indicated and determine which of the
matrices are equal (you can use MATLAB to test
whether two matrices are equal by computing their
difference).
(a) A1 = A ∗ B, A2 = B ∗ A, A3 = (A′ ∗ B′)′,

A4 = (B′ ∗ A′)′

(b) A1 = A′ ∗ B′, A2 = (A ∗ B)′, A3 = B′ ∗ A′,
A4 = (B ∗ A)′

(c) A1 = inv(A ∗ B), A2 = inv(A) ∗ inv(B),
A3 = inv(B ∗ A), A4 = inv(B) ∗ inv(A)

(d) A1 = inv((A ∗ B)′), A2 = inv(A′ ∗ B′),
A3 = inv(A′) ∗ inv(B′),
A4 = (inv(A) ∗ inv(B))′

2. Set n = 200 and generate an n × n matrix and
two vectors in R

n, both having integer entries, by
setting

A = floor(10 ∗ rand(n));

b = sum(A′)′;
z = ones(n, 1);

(Since the matrix and vectors are large, we use
semicolons to suppress the printout.)
(a) The exact solution of the system Ax = b

should be the vector z. Why? Explain. One
could compute the solution in MATLAB us-
ing the “\” operation or by computing A−1

and then multiplying A−1 times b. Let us
compare these two computational methods for
both speed and accuracy. One can use MAT-
LAB’s tic and toc commands to measure
the elapsed time for each computation. To do
this, use the commands

tic, x = A\b; toc

tic, y = inv(A) ∗ b; toc

Which method is faster?
To compare the accuracy of the two meth-

ods, we can measure how close the computed
solutions x and y are to the exact solution z. Do
this with the commands

max(abs(x − z))

max(abs(y − z))

Which method produces the most accurate
solution?

(b) Repeat part (a), using n = 500 and n = 1000.
3. Set A = floor(10 ∗ rand(6)). By construction,

the matrix A will have integer entries. Let us change
the sixth column of A so as to make the matrix
singular. Set

B = A′, A(:, 6) = −sum(B(1 : 5, :))′

(a) Set x = ones(6, 1) and use MATLAB to com-
pute Ax. Why do we know that A must be
singular? Explain. Check that A is singular by
computing its reduced row echelon form.

(b) Set

B = x ∗ [1 : 6]

The product AB should equal the zero mat-
rix. Why? Explain. Verify that this is so by
computing AB with the MATLAB operation ∗.

(c) Set

C = floor(10 ∗ rand(6))

and

D = B + C

Although C �= D, the products AC and AD
should be equal. Why? Explain. Compute A∗C
and A∗D, and verify that they are indeed equal.

4. Construct a matrix as follows: Set

B = eye(10) − triu(ones(10), 1)

Why do we know that B must be nonsingular? Set

C = inv(B) and x = C(:, 10)

Now change B slightly by setting B(10, 1) =
−1/256. Use MATLAB to compute the product
Bx. From the result of this computation, what can
you conclude about the new matrix B? Is it still
nonsingular? Explain. Use MATLAB to compute
its reduced row echelon form.
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5. Generate a matrix A by setting

A = floor(10 ∗ rand(6))

and generate a vector b by setting

b = floor(20 ∗ rand(6, 1)) − 10

(a) Since A was generated randomly, we would ex-
pect it to be nonsingular. The system Ax = b
should have a unique solution. Find the solu-
tion using the “\” operation. Use MATLAB to
compute the reduced row echelon form U of
[A b]. How does the last column of U compare
with the solution x? In exact arithmetic, they
should be the same. Why? Explain. To com-
pare the two, compute the difference U(:, 7)−x
or examine both using format long.

(b) Let us now change A so as to make it singular.
Set

A(:, 3) = A(:, 1 : 2) ∗ [ 4 3 ]′

Use MATLAB to compute rref([A b]). How
many solutions will the system Ax = b have?
Explain.

(c) Set

y = floor(20 ∗ rand(6, 1)) − 10

and

c = A ∗ y

Why do we know that the system Ax = c
must be consistent? Explain. Compute the re-
duced row echelon form U of [ A c ]. How
many solutions does the system Ax = c have?
Explain.

(d) The free variable determined by the echelon
form should be x3. By examining the system
corresponding to the matrix U, you should be
able to determine the solution corresponding
to x3 = 0. Enter this solution into MATLAB
as a column vector w. To check that Aw = c,
compute the residual vector c − Aw.

(e) Set U(:, 7) = zeros(6, 1). The matrix U
should now correspond to the reduced row ech-
elon form of ( A | 0 ). Use U to determine the
solution of the homogeneous system when the
free variable x3 = 1 (do this by hand) and enter
your result as a vector z. Check your answer by
computing A ∗ z.

(f) Set v = w + 3 ∗ z. The vector v should be a
solution of the system Ax = c. Why? Explain.
Verify that v is a solution by using MATLAB
to compute the residual vector c − Av. What

is the value of the free variable x3 for this
solution? How could we determine all possible
solutions of the system in terms of the vectors
w and z? Explain.

6. Consider the graph

V1

V8 V7

V5 V6

V2

V3V4

(a) Determine the adjacency matrix A for the
graph and enter it in MATLAB.

(b) Compute A2 and determine the number of
walks of length 2 from (i) V1 to V7, (ii) V4 to
V8, (iii) V5 to V6, and (iv) V8 to V3.

(c) Compute A4, A6, and A8 and answer the ques-
tions in part (b) for walks of lengths 4, 6, and 8.
Make a conjecture as to when there will be no
walks of even length from vertex Vi to vertex
Vj.

(d) Compute A3, A5, and A7 and answer the ques-
tions from part (b) for walks of lengths 3, 5,
and 7. Does your conjecture from part (c) hold
for walks of odd length? Explain. Make a con-
jecture as to whether there are any walks of
length k from Vi to Vj based on whether i+j+k
is odd or even.

(e) If we add the edges {V3, V6}, {V5, V8} to the
graph, the adjacency matrix B for the new
graph can be generated by setting B = A and
then setting

B(3, 6) = 1, B(6, 3) = 1,

B(5, 8) = 1, B(8, 5) = 1

Compute Bk for k = 2, 3, 4, 5. Is your con-
jecture from part (d) still valid for the new
graph?

(f) Add the edge {V6, V8} to the figure and con-
struct the adjacency matrix C for the resulting
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graph. Compute powers of C to determine
whether your conjecture from part (d) will still
hold for this new graph.

7. In Application 1 of Section 1.4, the numbers
of married and single women after 1 and 2
years were determined by computing the products

AX and A2X for the given matrices A and X.
Use format long and enter these matrices
in MATLAB. Compute Ak and AkX for k =
5, 10, 15, 20. What is happening to Ak as k gets
large? What is the long-run distribution of married
and single women in the town?

8. The following table describes a seven-stage model for the life cycle of the loggerhead sea turtle.

Table 1 Seven-Stage Model for Loggerhead Sea Turtle Demographics

Stage Description Annual Eggs laid
Number (age in years) survivorship per year

1 Eggs, hatchlings (<1) 0.6747 0

2 Small juveniles (1–7) 0.7857 0

3 Large juveniles (8–15) 0.6758 0

4 Subadults (16–21) 0.7425 0

5 Novice breeders (22) 0.8091 127

6 First-year remigrants (23) 0.8091 4

7 Mature breeders (24–54) 0.8091 80

The corresponding Leslie matrix is

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0 0 127 4 80
0.6747 0.7370 0 0 0 0 0

0 0.0486 0.6610 0 0 0 0
0 0 0.0147 0.6907 0 0 0
0 0 0 0.0518 0 0 0
0 0 0 0 0.8091 0 0
0 0 0 0 0 0.8091 0.8089

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Suppose that the number of turtles in each stage of the initial turtle population is described by the vector

x0 = (200, 000 130, 000 100, 000 70, 000 500 400 1100)T

(a) Enter L into MATLAB and then set

x0 = [200000, 130000, 100000, 70000, 500, 400, 1100]′

Use the command

x50 = round(Lˆ50∗x0)

to compute x50. Compute also the values of
x100, x150, x200, x250, and x300.

(b) Loggerhead sea turtles lay their eggs on
land. Suppose that conservationists take spe-
cial measures to protect these eggs and, as a
result, the survival rate for eggs and hatchlings
increases to 77 percent. To incorporate this
change into our model, we need only change
the (2,1) entry of L to 0.77. Make this modi-
fication to the matrix L and repeat part (a).

Has the survival potential of the loggerhead sea
turtle improved significantly?

(c) Suppose that, instead of improving the sur-
vival rate for eggs and hatchlings, we could
devise a means of protecting the small juven-
iles so that their survival rate increases to 88
percent. Use equations (1) and (2) from Ap-
plication 2 of Section 1.4 to determine the
proportion of small juveniles that survive and
remain in the same stage and the proportion
that survive and grow to the next stage. Modify
your original matrix L accordingly and repeat
part (a), using the new matrix. Has the survival
potential of the loggerhead sea turtle improved
significantly?
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9. Set A = magic(8) and then compute its reduced
row echelon form. The leading 1’s should corres-
pond to the first three variables x1, x2, and x3, and
the remaining five variables are all free.
(a) Set c = [1 : 8]′ and determine whether the

system Ax = c is consistent by computing the
reduced row echelon form of [A c]. Does the
system turn out to be consistent? Explain.

(b) Set

b = [ 8 − 8 − 8 8 8 − 8 − 8 8 ]′;
and consider the system Ax = b. This sys-
tem should be consistent. Verify that it is by
computing U = rref([A b]). We should
be able to find a solution for any choice
of the five free variables. Indeed, set x2 =
floor(10 ∗ rand(5, 1)). If x2 represents the
last five coordinates of a solution of the sys-
tem, then we should be able to determine x1 =
(x1, x2, x3)T in terms of x2. To do this, set
U = rref([A b]). The nonzero rows of
U correspond to a linear system with block
form ⎧⎩ I V

⎫⎭⎧⎪⎩ x1
x2

⎫⎪⎭ = c (1)

To solve equation (1), set

V = U(1 : 3, 4 : 8), c = U(1 : 3, 9)

and use MATLAB to compute x1 in terms of
x2, c, and V . Set x = [x1; x2] and verify that
x is a solution of the system.

10. Set

B = [−1, −1; 1, 1]

and

A = [zeros(2),eye(2); eye(2), B]

and verify that B2 = O.

(a) Use MATLAB to compute A2, A4, A6, and A8.
Make a conjecture as to what the block form
of A2k will be in terms of the submatrices I,
O, and B. Use mathematical induction to prove
that your conjecture is true for any positive
integer k.

(b) Use MATLAB to compute A3, A5, A7, and A9.
Make a conjecture as to what the block form of
A2k−1 will be in terms of the submatrices I, O,
and B. Prove your conjecture.

11. (a) The MATLAB commands

A = floor(10 ∗ rand(6)), B = A′ ∗ A

will result in a symmetric matrix with in-
teger entries. Why? Explain. Compute B in this
way and verify these claims. Next, partition B
into four 3 × 3 submatrices. To determine the
submatrices in MATLAB, set

B11 = B(1 : 3, 1 : 3), B12 = B(1 : 3, 4 : 6)

and define B21 and B22 in a similar manner
using rows 4 through 6 of B.

(b) Set C = inv(B11). It should be the case that
CT = C and B21T = B12. Why? Explain.
Use the MATLAB operation ′ to compute the
transposes and verify these claims. Next, set

E = B21 ∗ C and F = B22 − B21 ∗ C ∗ B21′

and use the MATLAB functions eye and
zeros to construct

L =
⎧⎪⎩ I O

E I

⎫⎪⎭ , D =
⎧⎪⎩ B11 O

O F

⎫⎪⎭
Compute H = L∗D∗L′ and compare H with B
by computing H−B. Prove that if all computa-
tions had been done in exact arithmetic, LDLT

would equal B exactly.

CHAPTER TEST A True or False

This chapter test consists of true-or-false questions. In
each case, answer true if the statement is always true
and false otherwise. In the case of a true statement,
explain or prove your answer. In the case of a false
statement, give an example to show that the statement
is not always true. For example, consider the following
statements about n × n matrices A and B:

(i) A + B = B + A

(ii) AB = BA

Statement (i) is always true. Explanation: The (i, j)
entry of A + B is aij + bij and the (i, j) entry of B + A
is bij + aij. Since aij + bij = bij + aij for each i and j, it
follows that A + B = B + A.

The answer to statement (ii) is false. Although the
statement may be true in some cases, it is not always
true. To show this, we need only exhibit one instance in
which equality fails to hold. For example, if

A =
⎧⎪⎩ 1 2

3 1

⎫⎪⎭ and B =
⎧⎪⎩ 2 3

1 1

⎫⎪⎭
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then

AB =
⎧⎪⎩ 4 5

7 10

⎫⎪⎭ and BA =
⎧⎪⎩ 11 7

4 3

⎫⎪⎭
This proves that statement (ii) is false.

1. If the row reduced echelon form of A involves
free variables, then the system Ax = b will have
infinitely many solutions.

2. Every homogeneous linear system is consistent.
3. An n × n matrix A is nonsingular if and only if the

reduced row echelon form of A is I (the identity
matrix).

4. If A is nonsingular, then A can be factored into a
product of elementary matrices.

5. If A and B are nonsingular n × n matrices, then A+
B is also nonsingular and (A + B)−1 = A−1 + B−1.

6. If A = A−1, then A must be equal to either I or −I.
7. If A and B are n × n matrices, then (A − B)2 =

A2 − 2AB + B2.

8. If AB = AC and A �= O (the zero matrix), then
B = C.

9. If AB = O, then BA = O.

10. If A is a 3 × 3 matrix and a1 + 2a2 − a3 = 0, then
A must be singular.

11. If A is a 4 × 3 matrix and b = a1 + a3, then the
system Ax = b must be consistent.

12. Let A be a 4 × 3 matrix with a2 = a3. If b =
a1 + a2 + a3, then the system Ax = b will have
infinitely many solutions.

13. If E is an elementary matrix, then ET is also an
elementary matrix.

14. The product of two elementary matrices is an
elementary matrix.

15. If x and y are nonzero vectors in R
n and A = xyT ,

then the row echelon form of A will have exactly
one nonzero row.

CHAPTER TEST B

1. Find all solutions of the linear system

x1 − x2 + 3x3 + 2x4 = 1

−x1 + x2 − 2x3 + x4 = −2

2x1 − 2x2 + 7x3 + 7x4 = 1

2. (a) A linear equation in two unknowns corresponds
to a line in the plane. Give a similar geomet-
ric interpretation of a linear equation in three
unknowns.

(b) Given a linear system consisting of two equa-
tions in three unknowns, what is the possible
number of solutions? Give a geometric explan-
ation of your answer.

(c) Given a homogeneous linear system con-
sisting of two equations in three un-
knowns, how many solutions will it have?
Explain.

3. Let Ax = b be a system of n linear equations in
n unknowns and suppose that x1 and x2 are both
solutions and x1 �= x2.

(a) How many solutions will the system have? Ex-
plain.

(b) Is the matrix A nonsingular? Explain.
4. Let A be a matrix of the form

A =
⎧⎪⎩ α β

2α 2β

⎫⎪⎭

where α and β are fixed scalars not both equal to 0.
(a) Explain why the system

Ax =
⎧⎪⎩ 3

1

⎫⎪⎭
must be inconsistent.

(b) How can one choose a nonzero vector b so that
the system Ax = b will be consistent? Explain.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
4 2 7
1 3 5

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
1 3 5
4 2 7

⎫⎪⎪⎪⎪⎪⎭,

C =
⎧⎪⎪⎪⎪⎪⎩

0 1 3
0 2 7

−5 3 5

⎫⎪⎪⎪⎪⎪⎭
(a) Find an elementary matrix E such that

EA = B.
(b) Find an elementary matrix F such that

AF = C.
6. Let A be a 3 × 3 matrix and let

b = 3a1 + a2 + 4a3

Will the system Ax = b be consistent? Explain.

7. Let A be a 3 × 3 matrix and suppose that

a1 − 3a2 + 2a3 = 0 (the zero vector)

Is A nonsingular? Explain.
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8. Given the vector

x0 =
⎧⎪⎩ 1

1

⎫⎪⎭
is it possible to find 2 × 2 matrices A and B so that
A �= B and Ax0 = Bx0? Explain.

9. Let A and B be symmetric n × n matrices and let
C = AB. Is C symmetric? Explain.

10. Let E and F be n × n elementary matrices and let
C = EF. Is C nonsingular? Explain.

11. Given

A =
⎧⎪⎪⎪⎪⎪⎩

I O O
O I O
O B I

⎫⎪⎪⎪⎪⎪⎭

where all of the submatrices are n × n, determine
the block form of A−1.

12. Let A and B be 10×10 matrices that are partitioned
into submatrices as follows

A =
⎧⎪⎩ A11 A12

A21 A22

⎫⎪⎭, B =
⎧⎪⎩ B11 B12

B21 B22

⎫⎪⎭
(a) If A11 is a 6 × 5 matrix, and B11 is a k × r mat-

rix, what conditions, if any, must k and r satisfy
in order to make the block multiplication of A
times B possible?

(b) Assuming that the block multiplication is pos-
sible, how would the (2, 2) block of the product
be determined?
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Determinants
With each square matrix, it is possible to associate a real number called the determinant
of the matrix. The value of this number will tell us whether the matrix is singular.

In Section 2.1, the definition of the determinant of a matrix is given. In Section 2.2,
we study properties of determinants and derive an elimination method for evaluating
determinants. The elimination method is generally the simplest method to use for eval-
uating the determinant of an n × n matrix when n > 3. In Section 2.3, we see how
determinants can be applied to solving n × n linear systems and how they can be
used to calculate the inverse of a matrix. Two applications of determinants are presen-
ted in Section 2.3. Additional applications will also be presented later in Chapters 3
and 6.

2.1 The Determinant of a Matrix

With each n × n matrix A it is possible to associate a scalar, det(A), whose value will
tell us whether the matrix is nonsingular. Before proceeding to the general definition,
let us consider the following cases.

Case 1. 1 × 1 Matrices If A = (a) is a 1 × 1 matrix, then A will have a multiplicative
inverse if and only if a �= 0. Thus, if we define

det(A) = a

then A will be nonsingular if and only if det(A) �= 0.

Case 2. 2 × 2 Matrices Let

A =
⎧⎪⎩ a11 a12

a21 a22

⎫⎪⎭
By Theorem 1.5.2, A will be nonsingular if and only if it is row equivalent to I. Then,
if a11 �= 0, we can test whether A is row equivalent to I by performing the following
operations:

87
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1. Multiply the second row of A by a11⎧⎪⎩ a11 a12

a11a21 a11a22

⎫⎪⎭
2. Subtract a21 times the first row from the new second row⎧⎪⎩ a11 a12

0 a11a22 − a21a12

⎫⎪⎭
Since a11 �= 0, the resulting matrix will be row equivalent to I if and only if

a11a22 − a21a12 �= 0 (1)

If a11 = 0, we can switch the two rows of A. The resulting matrix⎧⎪⎩ a21 a22

0 a12

⎫⎪⎭
will be row equivalent to I if and only if a21a12 �= 0. This requirement is equivalent to
condition (1) when a11 = 0. Thus, if A is any 2 × 2 matrix and we define

det(A) = a11a22 − a12a21

then A is nonsingular if and only if det(A) �= 0.

Notation

We can refer to the determinant of a specific matrix by enclosing the array between
vertical lines. For example, if

A =
⎧⎪⎩ 3 4

2 1

⎫⎪⎭
then ∣∣∣∣ 3 4

2 1

∣∣∣∣
represents the determinant of A.

Case 3. 3 × 3 Matrices We can test whether a 3 × 3 matrix is nonsingular by per-
forming row operations to see if the matrix is row equivalent to the identity matrix
I. To carry out the elimination in the first column of an arbitrary 3 × 3 matrix A, let
us first assume that a11 �= 0. The elimination can then be performed by subtracting
a21/a11 times the first row from the second and a31/a11 times the first row from the
third:

⎧⎪⎪⎪⎪⎪⎩
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 a13

0
a11a22 − a21a12

a11

a11a23 − a21a13

a11

0
a11a32 − a31a12

a11

a11a33 − a31a13

a11

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The matrix on the right will be row equivalent to I if and only if

a11

∣∣∣∣∣∣∣∣
a11a22 − a21a12

a11

a11a23 − a21a13

a11

a11a32 − a31a12

a11

a11a33 − a31a13

a11

∣∣∣∣∣∣∣∣ �= 0

Although the algebra is somewhat messy, this condition can be simplified to

a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23 (2)

+ a13a21a32 − a13a31a22 �= 0

Thus, if we define

det(A) = a11a22a33 − a11a32a23 − a12a21a33 (3)

+ a12a31a23 + a13a21a32 − a13a31a22

then, for the case a11 �= 0, the matrix will be nonsingular if and only if det(A) �= 0.
What if a11 = 0? Consider the following possibilities:

(i) a11 = 0, a21 �= 0
(ii) a11 = a21 = 0, a31 �= 0

(iii) a11 = a21 = a31 = 0

In case (i), it is not difficult to show that A is row equivalent to I if and only if

−a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22 �= 0

But this condition is the same as condition (2) with a11 = 0. The details of case (i) are
left as an exercise for the reader (see Exercise 7 at the end of the section).

In case (ii), it follows that

A =
⎧⎪⎪⎪⎪⎪⎩

0 a12 a13

0 a22 a23

a31 a32 a33

⎫⎪⎪⎪⎪⎪⎭
is row equivalent to I if and only if

a31(a12a23 − a22a13) �= 0

Again, this is a special case of condition (2) with a11 = a21 = 0.
Clearly, in case (iii) the matrix A cannot be row equivalent to I and hence must be

singular. In this case, if we set a11, a21, and a31 equal to 0 in formula (3), the result will
be det(A) = 0.

In general, then, formula (2) gives a necessary and sufficient condition for a 3 × 3
matrix A to be nonsingular (regardless of the value of a11).

We would now like to define the determinant of an n × n matrix. To see how to do
this, note that the determinant of a 2 × 2 matrix

A =
⎧⎪⎩ a11 a12

a21 a22

⎫⎪⎭
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can be defined in terms of the two 1 × 1 matrices

M11 = (a22) and M12 = (a21)

The matrix M11 is formed from A by deleting its first row and first column, and M12 is
formed from A by deleting its first row and second column.

The determinant of A can be expressed in the form

det(A) = a11a22 − a12a21 = a11 det(M11) − a12 det(M12) (4)

For a 3 × 3 matrix A, we can rewrite equation (3) in the form

det(A) = a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22)

For j = 1, 2, 3, let M1j denote the 2 × 2 matrix formed from A by deleting its first row
and jth column. The determinant of A can then be represented in the form

det(A) = a11 det(M11) − a12 det(M12) + a13 det(M13) (5)

where

M11 =
⎧⎪⎩ a22 a23

a32 a33

⎫⎪⎭ , M12 =
⎧⎪⎩ a21 a23

a31 a33

⎫⎪⎭ , M13 =
⎧⎪⎩ a21 a22

a31 a32

⎫⎪⎭
To see how to generalize (4) and (5) to the case n > 3, we introduce the following

definition.

Definition Let A = (aij) be an n × n matrix and let Mij denote the (n − 1) × (n − 1) matrix
obtained from A by deleting the row and column containing aij. The determinant of
Mij is called the minor of aij. We define the cofactor Aij of aij by

Aij = (−1)i+j det(Mij)

In view of this definition, for a 2 × 2 matrix A, we may rewrite equation (4) in the
form

det(A) = a11A11 + a12A12 (n = 2) (6)

Equation (6) is called the cofactor expansion of det(A) along the first row of A. Note
that we could also write

det(A) = a21(−a12) + a22a11 = a21A21 + a22A22 (7)

Equation (7) expresses det(A) in terms of the entries of the second row of A and their
cofactors. Actually, there is no reason that we must expand along a row of the matrix;
the determinant could just as well be represented by the cofactor expansion along one
of the columns:

det(A) = a11a22 + a21(−a12)

= a11A11 + a21A21 (first column)

det(A) = a12(−a21) + a22a11

= a12A12 + a22A22 (second column)
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For a 3 × 3 matrix A, we have

det(A) = a11A11 + a12A12 + a13A13 (8)

Thus, the determinant of a 3 × 3 matrix can be defined in terms of the elements in the
first row of the matrix and their corresponding cofactors.

EXAMPLE 1 If

A =
⎧⎪⎪⎪⎪⎪⎩

2 5 4
3 1 2
5 4 6

⎫⎪⎪⎪⎪⎪⎭
then

det(A) = a11A11 + a12A12 + a13A13

= (−1)2a11 det(M11) + (−1)3a12 det(M12) + (−1)4a13 det(M13)

= 2

∣∣∣∣ 1 2
4 6

∣∣∣∣ − 5

∣∣∣∣ 3 2
5 6

∣∣∣∣ + 4

∣∣∣∣ 3 1
5 4

∣∣∣∣
= 2(6 − 8) − 5(18 − 10) + 4(12 − 5)

= −16

As in the case of 2×2 matrices, the determinant of a 3×3 matrix can be represented
as a cofactor expansion using any row or column. For example, equation (3) can be
rewritten in the form

det(A) = a12a31a23 − a13a31a22 − a11a32a23 + a13a21a32 + a11a22a33 − a12a21a33

= a31(a12a23 − a13a22) − a32(a11a23 − a13a21) + a33(a11a22 − a12a21)
= a31A31 + a32A32 + a33A33

This is the cofactor expansion along the third row of A.

EXAMPLE 2 Let A be the matrix in Example 1. The cofactor expansion of det(A) along the second
column is given by

det(A) = −5

∣∣∣∣ 3 2
5 6

∣∣∣∣ + 1

∣∣∣∣ 2 4
5 6

∣∣∣∣ − 4

∣∣∣∣ 2 4
3 2

∣∣∣∣
= −5(18 − 10) + 1(12 − 20) − 4(4 − 12) = −16

The determinant of a 4 × 4 matrix can be defined in terms of a cofactor expansion
along any row or column. To compute the value of the 4 × 4 determinant, we would
have to evaluate four 3 × 3 determinants.
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Definition The determinant of an n × n matrix A, denoted det(A), is a scalar associated with
the matrix A that is defined inductively as

det(A) =
{

a11 if n = 1
a11A11 + a12A12 + · · · + a1nA1n if n > 1

where

A1j = (−1)1+j det(M1j) j = 1, . . . , n

are the cofactors associated with the entries in the first row of A.

As we have seen, it is not necessary to limit ourselves to using the first row for the
cofactor expansion. We state the following theorem without proof:

Theorem 2.1.1 If A is an n×n matrix with n ≥ 2, then det(A) can be expressed as a cofactor expansion
using any row or column of A.

det(A) = ai1Ai1 + ai2Ai2 + · · · + ainAin

= a1jA1j + a2jA2j + · · · + anjAnj

for i = 1, . . . , n and j = 1, . . . , n.

The cofactor expansion of a 4×4 determinant will involve four 3×3 determinants.
We can often save work by expanding along the row or column that contains the most
zeros. For example, to evaluate ∣∣∣∣∣∣∣

0 2 3 0
0 4 5 0
0 1 0 3
2 0 1 3

∣∣∣∣∣∣∣
we would expand down the first column. The first three terms will drop out, leaving

−2

∣∣∣∣∣∣
2 3 0
4 5 0
1 0 3

∣∣∣∣∣∣ = −2 · 3 ·
∣∣∣∣ 2 3

4 5

∣∣∣∣ = 12

For n ≤ 3, we have seen that an n × n matrix A is nonsingular if and only if
det(A) �= 0. In the next section we will show that this result holds for all values of
n. In that section we also look at the effect of row operations on the value of the
determinant, and we will make use of row operations to derive a more efficient method
for computing the value of a determinant.

We close this section with three theorems that are simple consequences of the
cofactor expansion definition. The proofs of the last two theorems are left for the reader
(see Exercises 8, 9, and 10 at the end of this section).

Theorem 2.1.2 If A is an n × n matrix, then det(AT ) = det(A).
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Proof The proof is by induction on n. Clearly, the result holds if n = 1, since a 1 × 1 matrix
is necessarily symmetric. Assume that the result holds for all k × k matrices and that A
is a (k + 1) × (k + 1) matrix. Expanding det(A) along the first row of A, we get

det(A) = a11 det(M11) − a12 det(M12) + − · · · ± a1,k+1 det(M1,k+1)

Since the Mij’s are all k × k matrices, it follows from the induction hypothesis that

det(A) = a11 det(MT
11) − a12 det(MT

12) + − · · · ± a1,k+1 det(MT
1,k+1) (9)

The right-hand side of (9) is just the expansion by minors of det(AT ) using the first
column of AT . Therefore,

det(AT ) = det(A)

Theorem 2.1.3 If A is an n × n triangular matrix, then the determinant of A equals the product of the
diagonal elements of A.

Proof In view of Theorem 2.1.2, it suffices to prove the theorem for lower triangular matrices.
The result follows easily using the cofactor expansion and induction on n. The details
are left for the reader (see Exercise 8 at the end of the section).

Theorem 2.1.4 Let A be an n × n matrix.

(i) If A has a row or column consisting entirely of zeros, then det(A) = 0.
(ii) If A has two identical rows or two identical columns, then det(A) = 0.

Both of these results can be easily proved with the use of the cofactor expansion.
The proofs are left for the reader (see Exercises 9 and 10).

In the next section we look at the effect of row operations on the value of the
determinant. This will allow us to make use of Theorem 2.1.3 to derive a more efficient
method for computing the value of a determinant.

SECTION 2.1 EXERCISES
1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

3 2 4
1 −2 3
2 3 2

⎫⎪⎪⎪⎪⎪⎭
(a) Find the values of det(M21), det(M22), and

det(M23).

(b) Find the values of A21, A22, and A23.

(c) Use your answers from part (b) to compute
det(A).

2. Use determinants to determine whether the follow-
ing 2 × 2 matrices are nonsingular:

(a)
⎧⎪⎩ 3 5

2 4

⎫⎪⎭ (b)
⎧⎪⎩ 3 6

2 4

⎫⎪⎭
(c)

⎧⎪⎩ 3 −6
2 4

⎫⎪⎭
3. Evaluate the following determinants:

(a)

∣∣∣∣ 3 5
−2 −3

∣∣∣∣ (b)

∣∣∣∣ 5 −2
−8 4

∣∣∣∣
(c)

∣∣∣∣∣∣
3 1 2
2 4 5
2 4 5

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣
4 3 0
3 1 2
5 −1 −4

∣∣∣∣∣∣
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(e)

∣∣∣∣∣∣
1 3 2
4 1 −2
2 1 3

∣∣∣∣∣∣ (f)

∣∣∣∣∣∣
2 −1 2
1 3 2
5 1 6

∣∣∣∣∣∣
(g)

∣∣∣∣∣∣∣
2 0 0 1
0 1 0 0
1 6 2 0
1 1 −2 3

∣∣∣∣∣∣∣

(h)

∣∣∣∣∣∣∣
2 1 2 1
3 0 1 1

−1 2 −2 1
−3 2 3 1

∣∣∣∣∣∣∣
4. Evaluate the following determinants by inspection:

(a)

∣∣∣∣ 3 5
2 4

∣∣∣∣ (b)

∣∣∣∣∣∣
2 0 0
4 1 0
7 3 −2

∣∣∣∣∣∣
(c)

∣∣∣∣∣∣
3 0 0
2 1 1
1 2 2

∣∣∣∣∣∣ (d)

∣∣∣∣∣∣∣
4 0 2 1
5 0 4 2
2 0 3 4
1 0 2 3

∣∣∣∣∣∣∣
5. Evaluate the following determinant. Write your

answer as a polynomial in x:∣∣∣∣∣∣
a − x b c

1 −x 0
0 1 −x

∣∣∣∣∣∣
6. Find all values of λ for which the following determ-

inant will equal 0:∣∣∣∣ 2 − λ 4
3 3 − λ

∣∣∣∣

7. Let A be a 3 × 3 matrix with a11 = 0 and a21 �= 0.
Show that A is row equivalent to I if and only if

− a12a21a33 + a12a31a23

+ a13a21a32 − a13a31a22 �= 0

8. Write out the details of the proof of Theorem 2.1.3.
9. Prove that if a row or a column of an n × n matrix

A consists entirely of zeros, then det(A) = 0.
10. Use mathematical induction to prove that if A is an

(n + 1) × (n + 1) matrix with two identical rows,
then det(A) = 0.

11. Let A and B be 2 × 2 matrices.
(a) Does det(A + B) = det(A) + det(B)?
(b) Does det(AB) = det(A) det(B)?
(c) Does det(AB) = det(BA)?
Justify your answers.

12. Let A and B be 2 × 2 matrices and let

C =
⎧⎪⎩ a11 a12

b21 b22

⎫⎪⎭ , D =
⎧⎪⎩ b11 b12

a21 a22

⎫⎪⎭ ,

E =
⎧⎪⎩ 0 α

β 0

⎫⎪⎭
(a) Show that det(A + B) = det(A) + det(B) +

det(C) + det(D).
(b) Show that if B = EA, then det(A + B) =

det(A) + det(B).
13. Let A be a symmetric tridiagonal matrix (i.e., A is

symmetric and aij = 0 whenever |i − j| > 1). Let
B be the matrix formed from A by deleting the first
two rows and columns. Show that

det(A) = a11 det(M11) − a2
12 det(B)

2.2 Properties of Determinants

In this section we consider the effects of row operations on the determinant of a matrix.
Once these effects have been established, we will prove that a matrix A is singular
if and only if its determinant is zero, and we will develop a method for evaluating
determinants by using row operations. Also, we will establish an important theorem
about the determinant of the product of two matrices. We begin with the following
lemma:

Lemma 2.2.1 Let A be an n × n matrix. If Ajk denotes the cofactor of ajk for k = 1, . . . , n, then

ai1Aj1 + ai2Aj2 + · · · + ainAjn =
{

det(A) if i = j
0 if i �= j

(1)
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Proof If i = j, (1) is just the cofactor expansion of det(A) along the ith row of A. To prove (1)
in the case i �= j, let A∗ be the matrix obtained by replacing the jth row of A by the ith
row of A:

A∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n
...

ai1 ai2 · · · ain
...

ai1 ai2 · · · ain
...

an1 an2 · · · ann

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

jth row

Since two rows of A∗ are the same, its determinant must be zero. It follows from the
cofactor expansion of det(A∗) along the jth row that

0 = det(A∗) = ai1A∗
j1 + ai2A∗

j2 + · · · + ainA∗
jn

= ai1Aj1 + ai2Aj2 + · · · + ainAjn

Let us now consider the effects of each of the three row operations on the value of
the determinant.

Row Operation I
Two rows of A are interchanged.

If A is a 2 × 2 matrix and

E =
⎧⎪⎩ 0 1

1 0

⎫⎪⎭
then

det(EA) =
∣∣∣∣ a21 a22

a11 a12

∣∣∣∣ = a21a12 − a22a11 = − det(A)

For n > 2, let Eij be the elementary matrix that switches rows i and j of A. It is a simple
induction proof to show that det(EijA) = − det(A). We illustrate the idea behind the
proof for the case n = 3. Suppose that the first and third rows of a 3 × 3 matrix A have
been interchanged. Expanding det(E13A) along the second row and making use of the
result for 2 × 2 matrices, we see that

det(E13A) =
∣∣∣∣∣∣

a31 a32 a33

a21 a22 a23

a11 a12 a13

∣∣∣∣∣∣
= −a21

∣∣∣∣ a32 a33

a12 a13

∣∣∣∣ + a22

∣∣∣∣ a31 a33

a11 a13

∣∣∣∣ − a23

∣∣∣∣ a31 a32

a11 a12

∣∣∣∣
= a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣ − a22

∣∣∣∣ a11 a13

a31 a33

∣∣∣∣ + a23

∣∣∣∣ a11 a12

a31 a32

∣∣∣∣
= − det(A)
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In general, if A is an n × n matrix and Eij is the n × n elementary matrix formed by
interchanging the ith and jth rows of I, then

det(EijA) = − det(A)

In particular,

det(Eij) = det(EijI) = − det(I) = −1

Thus, for any elementary matrix E of type I,

det(EA) = − det(A) = det(E) det(A)

Row Operation II
A row of A is multiplied by a nonzero scalar.

Let E denote the elementary matrix of type II formed from I by multiplying the
ith row by the nonzero scalar α. If det(EA) is expanded by cofactors along the ith row,
then

det(EA) = αai1Ai1 + αai2Ai2 + · · · + αainAin

= α(ai1Ai1 + ai2Ai2 + · · · + ainAin)

= α det(A)

In particular,

det(E) = det(EI) = α det(I) = α

and hence,

det(EA) = α det(A) = det(E) det(A)

Row Operation III
A multiple of one row is added to another row.

Let E be the elementary matrix of type III formed from I by adding c times the ith
row to the jth row. Since E is triangular and its diagonal elements are all 1, it follows
that det(E) = 1. We will show that

det(EA) = det(A) = det(E) det(A)

If det(EA) is expanded by cofactors along the jth row, it follows from Lemma 2.2.1 that

det(EA) = (aj1 +cai1)Aj1 + (aj2 +cai2)Aj2 + · · · + (ajn +cain)Ajn

= (aj1Aj1 + · · · + ajnAjn) + c(ai1Aj1 + · · · + ainAjn)
= det(A)

Thus,

det(EA) = det(A) = det(E) det(A)
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SUMMARY In summation, if E is an elementary matrix, then

det(EA) = det(E) det(A)

where

det(E) =
⎧⎨
⎩

−1 if E is of type I
α �= 0 if E is of type II
1 if E is of type III

(2)

Similar results hold for column operations. Indeed, if E is an elementary mat-
rix, then ET is also an elementary matrix (see Exercise 8 at the end of the section)
and

det(AE) = det
(
(AE)T

) = det
(
ETAT

)
= det

(
ET

)
det

(
AT

) = det(E) det(A)

Thus, the effects that row or column operations have on the value of the determinant
can be summarized as follows:

I. Interchanging two rows (or columns) of a matrix changes the sign of the
determinant.

II. Multiplying a single row or column of a matrix by a scalar has the effect of
multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the
value of the determinant.

Note

As a consequence of III, if one row (or column) of a matrix is a multiple of another,
the determinant of the matrix must equal zero.

Main Results
We can now make use of the effects of row operations on determinants to prove two
major theorems and to establish a simpler method of computing determinants. It fol-
lows from (2) that all elementary matrices have nonzero determinants. This observation
can be used to prove the following theorem:

Theorem 2.2.2 An n × n matrix A is singular if and only if

det(A) = 0

Proof The matrix A can be reduced to row echelon form with a finite number of row
operations. Thus,

U = EkEk−1 · · · E1A
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where U is in row echelon form and the Ei’s are all elementary matrices. It follows that

det(U) = det(EkEk−1 · · · E1A)
= det(Ek) det(Ek−1) · · · det(E1) det(A)

Since the determinants of the Ei’s are all nonzero, it follows that det(A) = 0 if and only
if det(U) = 0. If A is singular, then U has a row consisting entirely of zeros, and hence
det(U) = 0. If A is nonsingular, then U is triangular with 1’s along the diagonal and
hence det(U) = 1.

From the proof of Theorem 2.2.2, we can obtain a method for computing det(A).
We reduce A to row echelon form.

U = EkEk−1 · · · E1A

If the last row of U consists entirely of zeros, A is singular and det(A) = 0. Otherwise,
A is nonsingular and

det(A) = [
det(Ek) det(Ek−1) · · · det(E1)

]−1

Actually, if A is nonsingular, it is simpler to reduce A to triangular form. This can be
done using only row operations I and III. Thus,

T = EmEm−1 · · · E1A

and hence,

det(A) = ± det(T) = ±t11t22 · · · tnn

where the tii’s are the diagonal entries of T . The sign will be positive if row operation
I has been used an even number of times and negative otherwise.

EXAMPLE 1 Evaluate ∣∣∣∣∣∣
2 1 3
4 2 1
6 −3 4

∣∣∣∣∣∣
Solution ∣∣∣∣∣∣

2 1 3
4 2 1
6 −3 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 1 3
0 0 −5
0 −6 −5

∣∣∣∣∣∣ = (−1)

∣∣∣∣∣∣
2 1 3
0 −6 −5
0 0 −5

∣∣∣∣∣∣
= (−1)(2)(−6)(−5)
= −60

We now have two methods for evaluating the determinant of an n × n matrix A.
If n > 3 and A has nonzero entries, elimination is the most efficient method, in the
sense that it involves fewer arithmetic operations. In Table 1, the number of arithmetic
operations involved in each method is given for n = 2, 3, 4, 5, 10. It is not difficult
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Table 1 Operation Counts

Cofactors Elimination

Multiplications
n Additions Multiplications Additions and Divisions

2

3

4

5

10

1

5

23

119

3,628,799

2

9

40

205

6,235,300

1

5

14

30

285

3

10

23

44

339

to derive general formulas for the number of operations in each of the methods (see
Exercises 20 and 21 at the end of the section).

We have seen that, for any elementary matrix E,

det(EA) = det(E) det(A) = det(AE)

This is a special case of the following theorem:

Theorem 2.2.3 If A and B are n × n matrices, then

det(AB) = det(A) det(B)

Proof If B is singular, it follows from Theorem 1.5.2 that AB is also singular (see Exercise 14
of Section 1.5), and therefore,

det(AB) = 0 = det(A) det(B)

If B is nonsingular, B can be written as a product of elementary matrices. We have
already seen that the result holds for elementary matrices. Thus

det(AB) = det(AEkEk−1 · · · E1)
= det(A) det(Ek) det(Ek−1) · · · det(E1)
= det(A) det(EkEk−1 · · · E1)
= det(A) det(B)

If A is singular, the computed value of det(A) using exact arithmetic must be
0. However, this result is unlikely if the computations are done by computer. Since
computers use a finite number system, roundoff errors are usually unavoidable. Con-
sequently, it is more likely that the computed value of det(A) will only be near
0. Because of roundoff errors, it is virtually impossible to determine computation-
ally whether a matrix is exactly singular. In computer applications, it is often more
meaningful to ask whether a matrix is “close” to being singular. In general, the
value of det(A) is not a good indicator of nearness to singularity. In Section 5 of
Chapter 6 we will discuss how to determine whether a matrix is close to being
singular.
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SECTION 2.2 EXERCISES
1. Evaluate each of the following determinants by

inspection.

(a)

∣∣∣∣∣∣
0 0 3
0 4 1
2 3 1

∣∣∣∣∣∣

(b)

∣∣∣∣∣∣∣
1 1 1 3
0 3 1 1
0 0 2 2

−1 −1 −1 2

∣∣∣∣∣∣∣

(c)

∣∣∣∣∣∣∣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

∣∣∣∣∣∣∣
2. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 2 3
1 1 1 1

−2 −2 3 3
1 2 −2 −3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use the elimination method to evaluate det(A).

(b) Use the value of det(A) to evaluate

∣∣∣∣∣∣∣
0 1 2 3

−2 −2 3 3
1 2 −2 −3
1 1 1 1

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

0 1 2 3
1 1 1 1

−1 −1 4 4
2 3 −1 −2

∣∣∣∣∣∣∣
3. For each of the following, compute the determ-

inant and state whether the matrix is singular or
nonsingular:

(a)
⎧⎪⎩ 3 1

6 2

⎫⎪⎭ (b)
⎧⎪⎩ 3 1

4 2

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
3 3 1
0 1 2
0 2 3

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
4 3 5
2 1 2

⎫⎪⎪⎪⎪⎪⎭

(e)

⎧⎪⎪⎪⎪⎪⎩
2 −1 3

−1 2 −2
1 4 0

⎫⎪⎪⎪⎪⎪⎭

(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
2 −1 3 2
0 1 2 1
0 0 7 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

4. Find all possible choices of c that would make the
following matrix singular:⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 9 c
1 c 3

⎫⎪⎪⎪⎪⎪⎭
5. Let A be an n × n matrix and α a scalar. Show that

det(αA) = αn det(A)

6. Let A be a nonsingular matrix. Show that

det(A−1) = 1

det(A)

7. Let A and B be 3 × 3 matrices with det(A) = 4 and
det(B) = 5. Find the value of
(a) det(AB) (b) det(3A)

(c) det(2AB) (d) det(A−1B)
8. Show that if E is an elementary matrix, then ET is

an elementary matrix of the same type as E.

9. Let E1, E2, and E3 be 3 × 3 elementary matrices
of types I, II, and III, respectively, and let A be a
3 × 3 matrix with det(A) = 6. Assume, addition-
ally, that E2 was formed from I by multiplying its
second row by 3. Find the values of each of the
following:
(a) det(E1A) (b) det(E2A)

(c) det(E3A) (d) det(AE1)

(e) det(E2
1) (f) det(E1E2E3)

10. Let A and B be row equivalent matrices, and sup-
pose that B can be obtained from A by using only
row operations I and III. How do the values of
det(A) and det(B) compare? How will the values
compare if B can be obtained from A using only
row operation III? Explain your answers.

11. Let A be an n × n matrix. Is it possible for A2 + I =
O in the case where n is odd? Answer the same
question in the case where n is even.

12. Consider the 3 × 3 Vandermonde matrix

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that det(V) = (x2 − x1)(x3 − x1)(x3 − x2).

Hint: Make use of row operation III.

(b) What conditions must the scalars x1, x2, and x3

satisfy in order for V to be nonsingular?
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13. Suppose that a 3×3 matrix A factors into a product

⎧⎪⎪⎪⎪⎪⎩
1 0 0
l21 1 0
l31 l32 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

u11 u12 u13

0 u22 u23

0 0 u33

⎫⎪⎪⎪⎪⎪⎭
Determine the value of det(A).

14. Let A and B be n×n matrices. Prove that the product
AB is nonsingular if and only if A and B are both
nonsingular.

15. Let A and B be n×n matrices. Prove that if AB = I,
then BA = I. What is the significance of this
result in terms of the definition of a nonsingular
matrix?

16. A matrix A is said to be skew symmetric if
AT = −A. For example,

A =
⎧⎪⎩ 0 1

−1 0

⎫⎪⎭
is skew symmetric, since

AT =
⎧⎪⎩ 0 −1

1 0

⎫⎪⎭ = −A

If A is an n × n skew-symmetric matrix and n is
odd, show that A must be singular.

17. Let A be a nonsingular n × n matrix with a nonzero
cofactor Ann, and set

c = det(A)

Ann

Show that if we subtract c from ann, then the
resulting matrix will be singular.

18. Let A be a k × k matrix and let B be an
(n − k) × (n − k) matrix. Let

E =
⎧⎪⎩ Ik O

O B

⎫⎪⎭ , F =
⎧⎪⎩ A O

O In−k

⎫⎪⎭ ,

C =
⎧⎪⎩ A O

O B

⎫⎪⎭
where Ik and In−k are the k × k and
(n − k) × (n − k) identity matrices.
(a) Show that det(E) = det(B).
(b) Show that det(F) = det(A).
(c) Show that det(C) = det(A) det(B).

19. Let A and B be k × k matrices and let

M =
⎧⎪⎩ O B

A O

⎫⎪⎭
Show that det(M) = (−1)k det(A) det(B).

20. Show that evaluating the determinant of an n × n
matrix by cofactors involves (n! − 1) additions and
n−1∑
k=1

n!/k! multiplications.

21. Show that the elimination method of computing
the value of the determinant of an n × n mat-
rix involves [n(n − 1)(2n − 1)]/6 additions and
[(n − 1)(n2 + n + 3)]/3 multiplications and divi-
sions. Hint: At the ith step of the reduction process,
it takes n − i divisions to calculate the multiples
of the ith row that are to be subtracted from the
remaining rows below the pivot. We must then cal-
culate new values for the (n − i)2 entries in rows
i + 1 through n and columns i + 1 through n.

2.3 Additional Topics and Applications

In this section, we learn a method for computing the inverse of a nonsingular mat-
rix A using determinants and we learn a method for solving linear systems using
determinants. Both methods depend on Lemma 2.2.1. We also show how to use de-
terminants to define the cross product of two vectors. The cross product is useful in
physics applications involving the motion of a particle in 3-space.

The Adjoint of a Matrix
Let A be an n × n matrix. We define a new matrix called the adjoint of A by

adj A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A11 A21 · · · An1
A12 A22 · · · An2

...
A1n A2n · · · Ann

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Thus, to form the adjoint, we must replace each term by its cofactor and then transpose
the resulting matrix. By Lemma 2.2.1,

ai1Aj1 + ai2Aj2 + · · · + ainAjn =
{

det(A) if i = j
0 if i �= j

and it follows that

A(adj A) = det(A)I

If A is nonsingular, det(A) is a nonzero scalar, and we may write

A

(
1

det(A)
adj A

)
= I

Thus,

A−1 = 1

det(A)
adj A when det(A) �= 0

EXAMPLE 1 For a 2 × 2 matrix,

adj A =
⎧⎪⎩ a22 −a12

−a21 a11

⎫⎪⎭
If A is nonsingular, then

A−1 = 1

a11a22 − a12a21

⎧⎪⎩ a22 −a12

−a21 a11

⎫⎪⎭
EXAMPLE 2 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 2
3 2 2
1 2 3

⎫⎪⎪⎪⎪⎪⎭
Compute adj A and A−1.

Solution

adj A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ 2 2
2 3

∣∣∣∣ −
∣∣∣∣ 3 2

1 3

∣∣∣∣
∣∣∣∣ 3 2

1 2

∣∣∣∣
−

∣∣∣∣ 1 2
2 3

∣∣∣∣
∣∣∣∣ 2 2

1 3

∣∣∣∣ −
∣∣∣∣ 2 1

1 2

∣∣∣∣∣∣∣∣ 1 2
2 2

∣∣∣∣ −
∣∣∣∣ 2 2

3 2

∣∣∣∣
∣∣∣∣ 2 1

3 2

∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

=
⎧⎪⎪⎪⎪⎪⎩

2 1 −2
−7 4 2

4 −3 1

⎫⎪⎪⎪⎪⎪⎭



2.3 Additional Topics and Applications 103

A−1 = 1

det(A)
adj A = 1

5

⎧⎪⎪⎪⎪⎪⎩
2 1 −2

−7 4 2
4 −3 1

⎫⎪⎪⎪⎪⎪⎭
Using the formula

A−1 = 1

det(A)
adj A

we can derive a rule for representing the solution to the system Ax = b in terms of
determinants.

Cramer’s Rule

Theorem 2.3.1 Cramer’s Rule
Let A be a nonsingular n × n matrix, and let b ∈ R

n. Let Ai be the matrix obtained by
replacing the ith column of A by b. If x is the unique solution of Ax = b, then

xi = det(Ai)

det(A)
for i = 1, 2, . . . , n

Proof Since

x = A−1b = 1

det(A)
(adj A)b

it follows that

xi = b1A1i + b2A2i + · · · + bnAni

det(A)

= det(Ai)

det(A)

EXAMPLE 3 Use Cramer’s rule to solve

x1 + 2x2 + x3 = 5

2x1 + 2x2 + x3 = 6

x1 + 2x2 + 3x3 = 9

Solution

det(A) =
∣∣∣∣∣∣

1 2 1
2 2 1
1 2 3

∣∣∣∣∣∣ = −4 det(A1) =
∣∣∣∣∣∣

5 2 1
6 2 1
9 2 3

∣∣∣∣∣∣ = −4

det(A2) =
∣∣∣∣∣∣

1 5 1
2 6 1
1 9 3

∣∣∣∣∣∣ = −4 det(A3) =
∣∣∣∣∣∣

1 2 5
2 2 6
1 2 9

∣∣∣∣∣∣ = −8
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Therefore,

x1 = −4

−4
= 1, x2 = −4

−4
= 1, x3 = −8

−4
= 2

Cramer’s rule gives us a convenient method for writing the solution of an n×n sys-
tem of linear equations in terms of determinants. To compute the solution, however, we
must evaluate n+1 determinants of order n. Evaluating even two of these determinants
generally involves more computation than solving the system by Gaussian elimination.

APPLICATION 1 Coded Messages

A common way of sending a coded message is to assign an integer value to each
letter of the alphabet and to send the message as a string of integers. For example, the
message

SEND MONEY

might be coded as

5, 8, 10, 21, 7, 2, 10, 8, 3

Here the S is represented by a 5, the E by an 8, and so on. Unfortunately, this type of
code is generally easy to break. In a longer message we might be able to guess which
letter is represented by a number on the basis of the relative frequency of occurrence
of that number. For example, if 8 is the most frequently occurring number in the coded
message, then it is likely that it represents the letter E, the letter that occurs most
frequently in the English language.

We can disguise the message further by using matrix multiplications. If A is a
matrix whose entries are all integers and whose determinant is ±1, then, since A−1 =
± adj A, the entries of A−1 will be integers. We can use such a matrix to transform the
message. The transformed message will be more difficult to decipher. To illustrate the
technique, let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
2 5 3
2 3 2

⎫⎪⎪⎪⎪⎪⎭
The coded message is put into the columns of a matrix B having three rows:

B =
⎧⎪⎪⎪⎪⎪⎩

5 21 10
8 7 8

10 2 3

⎫⎪⎪⎪⎪⎪⎭
The product

AB =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
2 5 3
2 3 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

5 21 10
8 7 8

10 2 3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

31 37 29
80 83 69
54 67 50

⎫⎪⎪⎪⎪⎪⎭
gives the coded message to be sent:

31, 80, 54, 37, 83, 67, 29, 69, 50
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The person receiving the message can decode it by multiplying by A−1:⎧⎪⎪⎪⎪⎪⎩
1 −1 1
2 0 −1

−4 1 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

31 37 29
80 83 69
54 67 50

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5 21 10
8 7 8

10 2 3

⎫⎪⎪⎪⎪⎪⎭
To construct a coding matrix A, we can begin with the identity I and successively

apply row operation III, being careful to add integer multiples of one row to another.
Row operation I can also be used. The resulting matrix A will have integer entries, and
since

det(A) = ± det(I) = ±1

A−1 will also have integer entries.

References
1. Hansen, Robert, Integer Matrices Whose Inverses Contain Only Integers, Two-

Year College Mathematics Journal, 13(1), 1982.

The Cross Product
Given two vectors x and y in R

3, one can define a third vector, the cross product,
denoted x × y, by

x × y =
⎧⎪⎪⎪⎪⎪⎩

x2y3 − y2x3

y1x3 − x1y3

x1y2 − y1x2

⎫⎪⎪⎪⎪⎪⎭ (1)

If C is any matrix of the form

C =
⎧⎪⎪⎪⎪⎪⎩

w1 w2 w3

x1 x2 x3

y1 y2 y3

⎫⎪⎪⎪⎪⎪⎭
then

x × y = C11e1 + C12e2 + C13e3 =
⎧⎪⎪⎪⎪⎪⎩

C11

C12

C13

⎫⎪⎪⎪⎪⎪⎭
Expanding det(C) by cofactors along the first row, we see that

det(C) = w1C11 + w2C12 + w3C13 = wT (x × y)

In particular, if we choose w = x or w = y, then the matrix C will have two identical
rows, and hence its determinant will be 0. We then have

xT (x × y) = yT (x × y) = 0 (2)

In calculus books, it is standard to use row vectors

x = (x1, x2, x3) and y = (y1, y2, y3)
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and to define the cross product to be the row vector

x × y = (x2y3 − y2x3)i − (x1y3 − y1x3)j + (x1y2 − y1x2)k

where i, j, and k are the row vectors of the 3 × 3 identity matrix. If one uses i, j, and k
in place of w1, w2, and w3, respectively, in the first row of the matrix M, then the cross
product can be written as a determinant.

x × y =
∣∣∣∣∣∣

i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
In linear algebra courses it is generally more standard to view x, y and x × y as column
vectors. In this case we can represent the cross product in terms of the determinant of
a matrix whose entries in the first row are e1, e2, e3, the column vectors of the 3 × 3
identity matrix:

x × y =
∣∣∣∣∣∣

e1 e2 e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
The relation given in equation (2) has applications in Newtonian mechanics. In

particular, the cross product can be used to define a binormal direction, which Newton
used to derive the laws of motion for a particle in 3-space.

APPLICATION 2 Newtonian Mechanics
If x is a vector in either R

2 or R
3 then we can define the length of x, denoted ‖x‖, by

‖x‖ = (xTx)
1
2

A vector x is said to be a unit vector if ‖x‖ = 1. Unit vectors were used by Newton
to derive the laws of motion for a particle in either the plane or 3-space. If x and y are
nonzero vectors in R

2, then the angle θ between the vectors is the smallest angle of
rotation necessary to rotate one of the two vectors clockwise so that it ends up in the
same direction as the other vector (see Figure 2.3.1).

A particle moving in a plane traces out a curve in the plane. The position of the
particle at any time t can be represented by a vector (x1(t), x2(t)). In describing the
motion of a particle, Newton found it convenient to represent the position of vectors at
time t as linear combinations of the vectors T(t) and N(t), where T(t) is a unit vector
in the direction of the tangent line to curve at the point (x1(t), x2(t)) and N(t) is a unit
vector in the direction of a normal line (a line perpendicular to the tangent line) to the
curve at the given point (see Figure 2.3.2).

In Chapter 5, we will show that if x and y are nonzero vectors and θ is the angle
between the vectors, then

xTy = ‖x‖‖y‖ cos θ (3)

This equation can also be used to define the angle between nonzero vectors in R
3.

It follows from (3) that the angle between the vectors is a right angle if and only if
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Figure 2.3.1.
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Figure 2.3.2.

xTy = 0. In this case, we say that the vectors x and y are orthogonal. In particular
since T(t) and N(t) are unit orthogonal vectors in R

2, we have ‖T(t)‖ = ‖N(t)‖ = 1
and the angle between the vectors is π

2 . It follows from (3) that

T(t)TN(t) = 0

In Chapter 5, we will also show that if x and y are vectors in R
3 and θ is the angle

between the vectors, then

‖x × y‖ = ‖x‖‖y‖ sin θ (4)

A particle moving in three dimensions will trace out a curve in 3-space. In this
case, at time t the tangent and normal lines to the curve at the point (x1(t), x2(t)) de-
termine a plane in 3-space. However, in 3-space the motion is not restricted to a plane.
To derive laws describing the motion, Newton needed to use a third vector, a vector
in a direction normal to the plane determined by T(t) and N(t). If z is any nonzero
vector in the direction of the normal line to this plane, then the angle between the
vectors z and T(t) and the angle between z and N(t) should both be right angles. If
we set

B(t) = T(t) × N(t) (5)

then it follows from (2) that B(t) is orthogonal to both T(t) and N(t) and hence is
in the direction of the normal line. Furthermore B(t) is a unit vector since it follows
from (4) that

‖B(t)‖ = ‖T(t) × N(t)‖ = ‖T(t)‖‖N(t)‖ sin
π

2
= 1
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B(t)

N(t)

T(t)

Figure 2.3.3.

The vector B(t) defined by (5) is called the binormal vector (see Figure 2.3.3).

SECTION 2.3 EXERCISES
1. For each of the following, compute (i) det(A),

(ii) adj A, and (iii) A−1:

(a) A =
⎧⎪⎩ 1 2

3 −1

⎫⎪⎭ (b) A =
⎧⎪⎩ 3 1

2 4

⎫⎪⎭

(c) A =
⎧⎪⎪⎪⎪⎪⎩

1 3 1
2 1 1

−2 2 −1

⎫⎪⎪⎪⎪⎪⎭

(d) A =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
2. Use Cramer’s rule to solve each of the following

systems:
(a) x1 + 2x2 = 3

3x1 − x2 = 1
(b) 2x1 + 3x2 = 2

3x1 + 2x2 = 5

(c) 2x1 + x2 − 3x3 = 0
4x1 + 5x2 + x3 = 8

−2x1 − x2 + 4x3 = 2

(d) x1 + 3x2 + x3 = 1
2x1 + x2 + x3 = 5

−2x1 + 2x2 − x3 = −8

(e) x1 + x2 = 0
x2 + x3 − 2x4 = 1

x1 + 2x3 + x4 = 0
x1 + x2 + x4 = 0

3. Given

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 1
0 4 3
1 2 2

⎫⎪⎪⎪⎪⎪⎭
determine the (2, 3) entry of A−1 by computing a
quotient of two determinants.

4. Let A be the matrix in Exercise 3. Compute the
third column of A−1 by using Cramer’s rule to solve
Ax = e3.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 3
2 3 4
3 4 5

⎫⎪⎪⎪⎪⎪⎭
(a) Compute the determinant of A. Is A nonsingu-

lar?
(b) Compute adj A and the product A adj A.

6. If A is singular, what can you say about the product
A adj A?
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7. Let Bj denote the matrix obtained by replacing the
jth column of the identity matrix with a vector
b = (b1, . . . , bn)T . Use Cramer’s rule to show that

bj = det(Bj) for j = 1, . . . , n

8. Let A be a nonsingular n × n matrix with n > 1.
Show that

det(adj A) = (det(A))n−1

9. Let A be a 4 × 4 matrix. If

adj A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0 0
0 2 1 0
0 4 3 2
0 −2 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) calculate the value of det(adj A). What should

the value of det(A) be? Hint: Use the result
from Exercise 8.

(b) find A.
10. Show that if A is nonsingular, then adj A is nonsin-

gular and

(adj A)−1 = det(A−1)A = adj A−1

11. Show that if A is singular, then adj A is also singu-
lar.

12. Show that if det(A) = 1, then

adj(adj A) = A

13. Suppose that Q is a matrix with the property Q−1 =
QT . Show that

qij = Qij

det(Q)

14. In coding a message, a blank space was represented
by 0, an A by 1, a B by 2, a C by 3, and so on. The
message was transformed using the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1 −1 2 0

1 1 −1 0
0 0 −1 1
1 0 0 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
and sent as

− 19, 19, 25, −21, 0, 18, −18, 15, 3, 10,

− 8, 3, −2, 20, −7, 12

What was the message?

15. Let x, y, and z be vectors in R
3. Show each of the

following:
(a) x × x = 0 (b) y × x = −(x × y)

(c) x × (y + z) = (x × y) + (x × z)

(d) zT (x × y) =
∣∣∣∣∣∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣
16. Let x and y be vectors in R

3 and define the skew-
symmetric matrix Ax by

Ax =
⎧⎪⎪⎪⎪⎪⎩

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎫⎪⎪⎪⎪⎪⎭
(a) Show that x × y = Axy.

(b) Show that y × x = AT
x y.

Chapter Two Exercises

MATLAB EXERCISES

The first four exercises that follow involve integer
matrices and illustrate some of the properties of de-
terminants that were covered in this chapter. The last
two exercises illustrate some of the differences that may
arise when we work with determinants in floating-point
arithmetic.

In theory, the value of the determinant should tell
us whether the matrix is nonsingular. However, if the
matrix is singular and its determinant is computed
using finite-precision arithmetic, then, because of roun-
doff errors, the computed value of the determinant may
not equal zero. A computed value near zero does not

necessarily mean that the matrix is singular or even
close to being singular. Furthermore, a matrix may be
nearly singular and have a determinant that is not even
close to zero (see Exercise 6).

1. Generate random 5×5 matrices with integer entries
by setting

A = round(10 ∗ rand(5))

and
B = round(20 ∗ rand(5)) − 10
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Use MATLAB to compute each of the pairs of
numbers that follow. In each case, check whether
the first number is equal to the second.
(a) det(A) det(AT )

(b) det(A + B) det(A) + det(B)

(c) det(AB) det(A) det(B)

(d) det(AT BT ) det(AT ) det(BT )

(e) det(A−1) 1/ det(A)

(f) det(AB−1) det(A)/ det(B)
2. Are n × n magic squares nonsingular? Use the

MATLAB command det(magic(n)) to compute
the determinants of the magic squares matrices in
the cases n = 3, 4, . . . , 10. What seems to be hap-
pening? Check the cases n = 24 and 25 to see if
the pattern still holds.

3. Set A = round(10 ∗ rand(6)). In each of the fol-
lowing, use MATLAB to compute a second matrix
as indicated. State how the second matrix is re-
lated to A and compute the determinants of both
matrices. How are the determinants related?
(a) B = A; B(2, :) = A(1, :); B(1, :) = A(2, :)

(b) C = A; C(3, :) = 4 ∗ A(3, :)

(c) D = A; D(5, :) = A(5, :) + 2 ∗ A(4, :)
4. We can generate a random 6 × 6 matrix A whose

entries consist entirely of 0’s and 1’s by setting

A = round(rand(6))

(a) What percentage of these random 0–1 matrices
are singular? You can estimate the percentage
in MATLAB by setting

y = zeros(1, 100);

and then generating 100 test matrices and set-
ting y(j) = 1 if the jth matrix is singular and
0 otherwise. The easy way to do this in MAT-
LAB is to use a for loop. Generate the loop as
follows:

for j = 1 : 100

A = round(rand(6));

y(j) = (det(A) == 0);

end

(Note: A semicolon at the end of a line sup-
presses printout. It is recommended that you
include one at the end of each line of calcula-
tion that occurs inside a for loop.) To determine
how many singular matrices were generated,
use the MATLAB command sum(y). What
percentage of the matrices generated were
singular?

(b) For any positive integer n, we can generate
a random 6 × 6 matrix A whose entries are
integers from 0 to n by setting

A = round(n ∗ rand(6))

What percentage of random integer matrices
generated in this manner will be singular if
n = 3? If n = 6? If n = 10? We can estimate
the answers to these questions by using MAT-
LAB. In each case, generate 100 test matrices
and determine how many of the matrices are
singular.

5. If a matrix is sensitive to roundoff errors, the com-
puted value of its determinant may differ drastically
from the exact value. For an example of this, set

U = round(100 ∗ rand(10));

U = triu(U, 1) + 0.1 ∗ eye(10)

In theory,

det(U) = det(UT ) = 10−10

and

det(UUT ) = det(U) det(UT ) = 10−20

Compute det(U), det(U′), and det(U ∗ U′) with
MATLAB. Do the computed values match the
theoretical values?

6. Use MATLAB to construct a matrix A by setting

A = vander(1 : 6); A = A − diag(sum(A′))

(a) By construction, the entries in each row of A
should all add up to zero. To check this, set
x = ones(6, 1) and use MATLAB to com-
pute the product Ax. The matrix A should be
singular. Why? Explain. Use the MATLAB
functions det and inv to compute the values
of det(A) and A−1. Which MATLAB function
is a more reliable indicator of singularity?

(b) Use MATLAB to compute det(AT ). Are the
computed values of det(A) and det(AT ) equal?
Another way to check if a matrix is singular is
to compute its reduced row echelon form. Use
MATLAB to compute the reduced row echelon
forms of A and AT .

(c) To see what is going wrong, it helps to know
how MATLAB computes determinants. The
MATLAB routine for determinants first com-
putes a form of the LU factorization of the
matrix. The determinant of the matrix L is
±1, depending on whether an even or odd
number of row interchanges were used in the
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computation. The computed value of the de-
terminant of A is the product of the diagonal
entries of U and det(L) = ±1. To see what is
happening with our original matrix, use the fol-
lowing commands to compute and display the
factor U.

format short e
[L, U ] = lu(A); U

In exact arithmetic, U should be sin-
gular. Is the computed matrix U singular? If
not, what goes wrong? Use the following com-
mands to see the rest of the computation of
d = det(A):

format short
d = prod(diag(U))

CHAPTER TEST A True or False

For each statement that follows, answer true if the state-
ment is always true and false otherwise. In the case of a
true statement, explain or prove your answer. In the case
of a false statement, give an example to show that the
statement is not always true. Assume that all the given
matrices are n × n.

1. det(AB) = det(BA)

2. det(A + B) = det(A) + det(B)

3. det(cA) = c det(A)

4. det((AB)T ) = det(A) det(B)

5. det(A) = det(B) implies A = B.

6. det(Ak) = det(A)k

7. A triangular matrix is nonsingular if and only if its
diagonal entries are all nonzero.

8. If x is a nonzero vector in R
n and Ax = 0, then

det(A) = 0.

9. If A and B are row equivalent matrices, then their
determinants are equal.

10. If A �= O, but Ak = O (where O denotes the zero
matrix) for some positive integer k, then A must be
singular.

CHAPTER TEST B

1. Let A and B be 3 × 3 matrices with det(A) = 4
and det(B) = 6, and let E be an elementary mat-
rix of type I. Determine the value of each of the
following:

(a) det( 1
2 A) (b) det(B−1AT ) (c) det(E A2)

2. Let

A =
⎧⎪⎪⎪⎪⎪⎩

x 1 1
1 x −1

−1 −1 x

⎫⎪⎪⎪⎪⎪⎭
(a) Compute the value of det(A) (Your answer

should be a function of x.)
(b) For what values of x will the matrix be singular?

Explain.
3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Compute the LU factorization of A.
(b) Use the LU factorization to determine the value

of det(A).

4. If A is a nonsingular n × n matrix, show that AT A
is nonsingular and det(AT A) > 0.

5. Let A be an n × n matrix. Show that if B = S−1AS
for some nonsingular matrix S, then det(B) =
det(A).

6. Let A and B be n × n matrices and let C = AB.
Use determinants to show that if either A or B is
singular, then C must be singular.

7. Let A be an n × n matrix and let λ be a scalar. Show
that

det(A − λI) = 0

if and only if

Ax = λx for some x �= 0

8. Let x and y be vectors in R
n, n > 1. Show that if

A = xyT , then det(A) = 0.
9. Let x and y be distinct vectors in R

n (i.e., x �= y),
and let A be an n × n matrix with the property that
Ax = Ay. Show that det(A) = 0.

10. Let A be a matrix with integer entries. If
| det(A)| = 1, then what can you conclude about
the nature of the entries of A−1? Explain.
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Vector Spaces
The operations of addition and scalar multiplication are used in many diverse contexts
in mathematics. Regardless of the context, however, these operations usually obey the
same set of algebraic rules. Thus, a general theory of mathematical systems involving
addition and scalar multiplication will be applicable to many areas in mathematics.
Mathematical systems of this form are called vector spaces or linear spaces. In this
chapter, the definition of a vector space is given and some of the general theory of
vector spaces is developed.

3.1 Definition and Examples

In this section, we present the formal definition of a vector space. Before doing this,
however, it is instructive to look at a number of examples. We begin with the Euclidean
vector spaces R

n.

Euclidean Vector Spaces
Perhaps the most elementary vector spaces are the Euclidean vector spaces R

n, n =
1, 2, . . . . For simplicity, let us consider first R

2. Nonzero vectors in R
2 can be repres-

ented geometrically by directed line segments. This geometric representation will help
us to visualize how the operations of scalar multiplication and addition work in R

2.

Given a nonzero vector x =
⎧⎪⎩ x1

x2

⎫⎪⎭, we can associate it with the directed line segment

in the plane from (0, 0) to (x1, x2) (see Figure 3.1.1). If we equate line segments that
have the same length and direction (Figure 3.1.2), x can be represented by any line
segment from (a, b) to (a + x1, b + x2).

112
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x1

x2

x (x1, x2)

Figure 3.1.1.

x

x

(x1, x2)

(a + x1, b + x2)

(a, b)

(0, 0)

Figure 3.1.2.

For example, the vector x =
⎧⎪⎩ 2

1

⎫⎪⎭ in R
2 could just as well be represented by

the directed line segment from (2, 2) to (4, 3) or from (−1, −1) to (1, 0), as shown in
Figure 3.1.3.

x

x

x

Figure 3.1.3.

x1

x2 x2 + x2
1 2

Figure 3.1.4.

We can think of the Euclidean length of a vector x =
⎧⎪⎩ x1

x2

⎫⎪⎭ as the length of

any directed line segment representing x. The length of the line segment from (0, 0) to

(x1, x2) is
√

x2
1 + x2

2 (see Figure 3.1.4). For each vector x =
⎧⎪⎩ x1

x2

⎫⎪⎭ and each scalar α,

the product αx is defined by

α

⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩ αx1

αx2

⎫⎪⎭
For example, as shown in Figure 3.1.5, if x =

⎧⎪⎩ 2
1

⎫⎪⎭, then

−x =
⎧⎪⎩ −2

−1

⎫⎪⎭ , 3x =
⎧⎪⎩ 6

3

⎫⎪⎭ , −2x =
⎧⎪⎩ −4

−2

⎫⎪⎭

x

(a)

3x

(c)

–x

(b)

–2x

(d)

Figure 3.1.5.
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The vector 3x is in the same direction as x, but its length is three times that of x.
The vector −x has the same length as x, but it points in the opposite direction. The
vector −2x is twice as long as x and it points in the same direction as −x. The sum of
two vectors

u =
⎧⎪⎩ u1

u2

⎫⎪⎭ and v =
⎧⎪⎩ v1

v2

⎫⎪⎭
is defined by

u + v =
⎧⎪⎩ u1 + v1

u2 + v2

⎫⎪⎭
Note that, if v is placed at the terminal point of u, then u + v is represented by the

directed line segment from the initial point of u to the terminal point of v (Figure 3.1.6).
If both u and v are placed at the origin and a parallelogram is formed as in Figure 3.1.7,
the diagonals of the parallelogram will represent the sum u + v and the difference
v − u. In a similar manner, vectors in R

3 can be represented by directed line segments
in 3-space (see Figure 3.1.8).

u

v

u + v

(u1, u2)

(u1 + v1, u2 + v2)

(0, 0)

Figure 3.1.6.

u + w = v or w = v – uu

v

z

w z = u + v

Figure 3.1.7.

x
(x1, x2, x3)

x2

x1

x3

x

x + y y

(a) (b)

Figure 3.1.8.

In general, scalar multiplication and addition in R
n are, respectively, defined by

αx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
αx1

αx2
...

αxn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and x + y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1 + y1

x2 + y2
...

xn + yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for any x, y ∈ R

n and any scalar α.
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The Vector Space R
m×n

We can also view R
n as the set of all n × 1 matrices with real entries. The addition and

scalar multiplication of vectors in R
n is just the usual addition and scalar multiplication

of matrices. More generally, let R
m×n denote the set of all m × n matrices with real

entries. If A = (aij) and B = (bij), then the sum A + B is defined to be the m × n matrix
C = (cij), where cij = aij + bij. Given a scalar α, we can define αA to be the m × n
matrix whose (i, j ) entry is αaij. Thus, by defining operations on the set R

m×n, we have
created a mathematical system. The operations of addition and scalar multiplication of
R

m×n obey certain algebraic rules. These rules form the axioms that are used to define
the concept of a vector space.

Vector Space Axioms

Definition Let V be a set on which the operations of addition and scalar multiplication are
defined. By this we mean that, with each pair of elements x and y in V , we can
associate a unique element x + y that is also in V , and with each element x in V and
each scalar α, we can associate a unique element αx in V . The set V together with
the operations of addition and scalar multiplication is said to form a vector space
if the following axioms are satisfied:

A1. x + y = y + x for any x and y in V .
A2. (x + y) + z = x + (y + z) for any x, y, and z in V .
A3. There exists an element 0 in V such that x + 0 = x for each x ∈ V .
A4. For each x ∈ V , there exists an element −x in V such that x + (−x) = 0.
A5. α(x + y) = αx + αy for each scalar α and any x and y in V .
A6. (α + β)x = αx + βx for any scalars α and β and any x ∈ V .
A7. (αβ)x = α(βx) for any scalars α and β and any x ∈ V .
A8. 1x = x for all x ∈ V .

We will refer to the set V as the universal set for the vector space. Its elements are
called vectors and are usually denoted by boldface letters such as u, v, w, x, y, and z.
The term scalar will generally refer to a real number, although in some cases it will be
used to refer to complex numbers. Scalars will generally be represented by lowercase
italic letters such as a, b, and c or lowercase Greek letters such as α, β, and γ . In the
first five chapters of this book, the term scalars will always refer to real numbers. Often
the term real vector space is used to indicate that the set of scalars is the set of real
numbers. The boldface symbol 0 was used in Axiom 3 in order to distinguish the zero
vector from the scalar 0.

An important component of the definition is the closure properties of the two
operations. These properties can be summarized as follows:

C1. If x ∈ V and α is a scalar, then αx ∈ V .
C2. If x, y ∈ V , then x + y ∈ V .
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To illustrate the necessity of the closure properties, consider the following
example: Let

W = {(a, 1) | a real}
with addition and scalar multiplication defined in the usual way. The elements (3, 1)
and (5, 1) are in W, but the sum

(3, 1) + (5, 1) = (8, 2)

is not an element of W. The operation + is not really an operation on the set W because
property C2 fails to hold. Similarly, scalar multiplication is not defined on W, because
property C1 fails to hold. The set W, together with the operations of addition and scalar
multiplication, is not a vector space.

If, however, we are given a set U on which the operations of addition and scalar
multiplication have been defined and satisfy properties C1 and C2, then we must check
to see if the eight axioms are valid in order to determine whether U is a vector space.
We leave it to the reader to verify that R

n and R
m×n, with the usual addition and

scalar multiplication of matrices, are both vector spaces. There are a number of other
important examples of vector spaces.

The Vector Space C[a, b]
Let C[a, b] denote the set of all real-valued functions that are defined and continuous
on the closed interval [a, b]. In this case, our universal set is a set of functions. Thus,
our vectors are the functions in C[a, b]. The sum f + g of two functions in C[a, b] is
defined by

(f + g)(x) = f (x) + g(x)

for all x in [a, b]. The new function f + g is an element of C[a, b] since the sum of two
continuous functions is continuous. If f is a function in C[a, b] and α is a real number,
define αf by

(αf )(x) = αf (x)

for all x in [a, b]. Clearly, αf is in C[a, b] since a constant times a continuous function
is always continuous. Thus we have defined the operations of addition and scalar mul-
tiplication on C[a, b]. To show that the first axiom, f + g = g + f , is satisfied, we must
show that

(f + g)(x) = (g + f )(x) for every x in [a, b]

This follows because

(f + g)(x) = f (x) + g(x) = g(x) + f (x) = (g + f )(x)

for every x in [a, b]. Axiom 3 is satisfied, since the function

z(x) = 0 for all x in [a, b]

acts as the zero vector; that is,

f + z = f for all f in C[a, b]

We leave it to the reader to verify that the remaining vector space axioms are all
satisfied.
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The Vector Space Pn

Let Pn denote the set of all polynomials of degree less than n. Define p + q and αp,
respectively, by

(p + q)(x) = p(x) + q(x)

and

(αp)(x) = αp(x)

for all real numbers x. In this case, the zero vector is the zero polynomial,

z(x) = 0xn−1 + 0xn−2 + · · · + 0x + 0

It is easily verified that all the vector space axioms hold. Thus, Pn, with the standard
addition and scalar multiplication of functions, is a vector space.

Additional Properties of Vector Spaces
We close this section with a theorem that states three more fundamental properties of
vector spaces. Other important properties are given in Exercises 7, 8, and 9 at the end
of the section.

Theorem 3.1.1 If V is a vector space and x is any element of V, then

(i) 0x = 0.
(ii) x + y = 0 implies that y = −x (i.e., the additive inverse of x is unique).

(iii) (−1)x = −x.

Proof It follows from axioms A6 and A8 that

x = 1x = (1 + 0)x = 1x + 0x = x + 0x

Thus

−x + x = −x + (x + 0x) = (−x + x) + 0x (A2)

0 = 0 + 0x = 0x (A1, A3, and A4)

To prove (ii), suppose that x + y = 0. Then

−x = −x + 0 = −x + (x + y)

Therefore,

−x = (−x + x) + y = 0 + y = y (A1, A2, A3, and A4)

Finally, to prove (iii), note that

0 = 0x = (1 + (−1))x = 1x + (−1)x [(i) and A6]

Thus

x + (−1)x = 0 (A8)

and it follows from part (ii) that

(−1)x = −x
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SECTION 3.1 EXERCISES
1. Consider the vectors x1 = (8, 6)T and

x2 = (4, −1)T in R
2.

(a) Determine the length of each vector.

(b) Let x3 = x1 + x2. Determine the length of x3.
How does its length compare with the sum of
the lengths of x1 and x2?

(c) Draw a graph illustrating how x3 can be con-
structed geometrically using x1 and x2. Use
this graph to give a geometrical interpretation
of your answer to the question in part (b).

2. Repeat Exercise 1 for the vectors x1 = (2, 1)T and
x2 = (6, 3)T .

3. Let C be the set of complex numbers. Define
addition on C by

(a + bi) + (c + di) = (a + c) + (b + d)i

and define scalar multiplication by

α(a + bi) = αa + αbi

for all real numbers α. Show that C is a vector space
with these operations.

4. Show that R
m×n, together with the usual addition

and scalar multiplication of matrices, satisfies the
eight axioms of a vector space.

5. Show that C[a, b], together with the usual scalar
multiplication and addition of functions, satisfies
the eight axioms of a vector space.

6. Let P be the set of all polynomials. Show that P,
together with the usual addition and scalar multi-
plication of functions, forms a vector space.

7. Show that the element 0 in a vector space is
unique.

8. Let x, y, and z be vectors in a vector space V . Prove
that if

x + y = x + z

then y = z.

9. Let V be a vector space and let x ∈ V . Show that
(a) β0 = 0 for each scalar β.

(b) if αx = 0, then either α = 0 or x = 0.

10. Let S be the set of all ordered pairs of real numbers.
Define scalar multiplication and addition on S by

α(x1, x2) = (αx1, αx2)

(x1, x2) ⊕ (y1, y2) = (x1 + y1, 0)

We use the symbol ⊕ to denote the addition opera-
tion for this system in order to avoid confusion with
the usual addition x + y of row vectors. Show that
S, together with the ordinary scalar multiplication
and the addition operation ⊕, is not a vector space.
Which of the eight axioms fail to hold?

11. Let V be the set of all ordered pairs of real numbers
with addition defined by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2)

and scalar multiplication defined by

α ◦ (x1, x2) = (αx1, x2)

Scalar multiplication for this system is defined in
an unusual way, and consequently we use the sym-
bol ◦ to avoid confusion with the ordinary scalar
multiplication of row vectors. Is V a vector space
with these operations? Justify your answer.

12. Let R+ denote the set of positive real numbers.
Define the operation of scalar multiplication, de-
noted ◦, by

α ◦ x = xα

for each x ∈ R+ and for any real number α. Define
the operation of addition, denoted ⊕, by

x ⊕ y = x · y for all x, y ∈ R+

Thus, for this system, the scalar product of −3
times 1

2 is given by

−3 ◦ 1

2
=

(
1

2

)−3

= 8

and the sum of 2 and 5 is given by

2 ⊕ 5 = 2 · 5 = 10

Is R+ a vector space with these operations? Prove
your answer.

13. Let R denote the set of real numbers. Define scalar
multiplication by

αx = α · x (the usual multiplication of
real numbers)

and define addition, denoted ⊕, by

x ⊕ y = max(x, y) (the maximum of the two
numbers)

Is R a vector space with these operations? Prove
your answer.



3.2 Subspaces 119

14. Let Z denote the set of all integers with addi-
tion defined in the usual way and define scalar
multiplication, denoted ◦, by

α ◦ k = [[α]] · k for all k ∈ Z

where [[α]] denotes the greatest integer less than or
equal to α. For example,

2.25 ◦ 4 = [[2.25]] · 4 = 2 · 4 = 8

Show that Z, together with these operations, is not
a vector space. Which axioms fail to hold?

15. Let S denote the set of all infinite sequences of real
numbers with scalar multiplication and addition
defined by

α{an} = {αan}
{an} + {bn} = {an + bn}

Show that S is a vector space.

16. We can define a one-to-one correspondence
between the elements of Pn and R

n by

p(x) = a1 + a2x + · · · + anxn−1

↔ (a1, . . . , an)T = a

Show that if p ↔ a and q ↔ b, then
(a) αp ↔ αa for any scalar α.

(b) p + q ↔ a + b.
[In general, two vector spaces are said to be iso-
morphic if their elements can be put into a one-to-
one correspondence that is preserved under scalar
multiplication and addition as in (a) and (b).]

3.2 Subspaces

Given a vector space V , it is often possible to form another vector space by taking a
subset S of V and using the operations of V . Since V is a vector space, the operations
of addition and scalar multiplication always produce another vector in V . For a new
system using a subset S of V as its universal set to be a vector space, the set S must be
closed under the operations of addition and scalar multiplication. That is, the sum of
two elements of S must always be an element of S, and the product of a scalar and an
element of S must always be an element of S.

EXAMPLE 1 Let

S =
{⎧⎪⎩ x1

x2

⎫⎪⎭∣∣∣∣ x2 = 2x1

}
S is a subset of R

2. If

x =
⎧⎪⎩ c

2c

⎫⎪⎭
is any element of S and α is any scalar, then

αx = α

⎧⎪⎩ c
2c

⎫⎪⎭ =
⎧⎪⎩ αc

2αc

⎫⎪⎭
is also an element of S. If ⎧⎪⎩ a

2a

⎫⎪⎭ and
⎧⎪⎩ b

2b

⎫⎪⎭
are any two elements of S, then their sum⎧⎪⎩ a + b

2a + 2b

⎫⎪⎭ =
⎧⎪⎩ a + b

2(a + b)

⎫⎪⎭
is also an element of S. It is easily seen that the mathematical system consisting of the
set S (instead of R

2), together with the operations from R
2, is itself a vector space.
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Definition If S is a nonempty subset of a vector space V , and S satisfies the conditions

(i) αx ∈ S whenever x ∈ S for any scalar α

(ii) x + y ∈ S whenever x ∈ S and y ∈ S

then S is said to be a subspace of V .

Condition (i) says that S is closed under scalar multiplication. That is, whenever
an element of S is multiplied by a scalar, the result is an element of S. Condition (ii)
says that S is closed under addition. That is, the sum of two elements of S is always
an element of S. Thus, if we use the operations from V and the elements of S, to do
arithmetic, then we will always end up with elements of S. A subspace of V , then, is a
subset S that is closed under the operations of V .

Let S be a subspace of a vector space V . Using the operations of addition and
scalar multiplication as defined on V , we can form a new mathematical system with
S as the universal set. It is easily seen that all eight axioms will remain valid for this
new system. Axioms A3 and A4 follow from Theorem 3.1.1 and condition (i) of the
definition of a subspace. The remaining six axioms are valid for any elements of V , so,
in particular, they are valid for the elements of S. Thus the mathematical system with
universal set S and the two operations inherited from the vector space V satisfies all
the conditions in the definition of a vector space. Every subspace of a vector space is
a vector space in its own right.

Remarks

1. In a vector space V , it can be readily verified that {0} and V are subspaces of V .
All other subspaces are referred to as proper subspaces. We refer to {0} as the
zero subspace.

2. To show that a subset S of a vector space forms a subspace, we must show that
S is nonempty and that the closure properties (i) and (ii) in the definition are
satisfied. Since every subspace must contain the zero vector, we can verify that
S is nonempty by showing that 0 ∈ S.

EXAMPLE 2 Let S = {(x1, x2, x3)T | x1 = x2}. The set S is nonempty since 0 = (0, 0, 0)T ∈ S. To
show that S is a subspace of R

3, we need to verify that the two closure properties hold:

(i) If x = (a, a, b)T is any vector in S, then

αx = (αa, αa, αb)T ∈ S

(ii) If (a, a, b)T and (c, c, d)T are arbitrary elements of S, then

(a, a, b)T + (c, c, d)T = (a + c, a + c, b + d)T ∈ S

Since S is nonempty and satisfies the two closure conditions, it follows that S is a
subspace of R

3.

EXAMPLE 3 Let

S =
{⎧⎪⎩ x

1

⎫⎪⎭∣∣∣∣ x is a real number

}
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If either of the two conditions in the definition fails to hold, then S will not be a
subspace. In this case the first condition fails since

α

⎧⎪⎩ x
1

⎫⎪⎭ =
⎧⎪⎩ αx

α

⎫⎪⎭ �∈ S when α �= 1

Therefore, S is not a subspace. Actually, both conditions fail to hold. S is not closed
under addition, since ⎧⎪⎩ x

1

⎫⎪⎭ +
⎧⎪⎩ y

1

⎫⎪⎭ =
⎧⎪⎩ x + y

2

⎫⎪⎭ /∈ S

EXAMPLE 4 Let S = {A ∈ R
2×2 | a12 = −a21}. The set S is nonempty, since O (the zero matrix) is

in S. To show that S is a subspace, we verify that the closure properties are satisfied:

(i) If A ∈ S, then A must be of the form

A =
⎧⎪⎩ a b

−b c

⎫⎪⎭
and hence

αA =
⎧⎪⎩ αa αb

−αb αc

⎫⎪⎭
Since the (2, 1) entry of αA is the negative of the (1, 2) entry, αA ∈ S.

(ii) If A, B ∈ S, then they must be of the form

A =
⎧⎪⎩ a b

−b c

⎫⎪⎭ and B =
⎧⎪⎩ d e

−e f

⎫⎪⎭
It follows that

A + B =
⎧⎪⎩ a + d b + e

−(b + e) c + f

⎫⎪⎭
Hence A + B ∈ S.

EXAMPLE 5 Let S be the set of all polynomials of degree less than n with the property that p(0) = 0.
The set S is nonempty since it contains the zero polynomial. We claim that S is a
subspace of Pn. This follows, because

(i) if p(x) ∈ S and α is a scalar, then

αp(0) = α · 0 = 0

and hence αp ∈ S; and
(ii) if p(x) and q(x) are elements of S, then

(p + q)(0) = p(0) + q(0) = 0 + 0 = 0

and hence p + q ∈ S.

EXAMPLE 6 Let Cn[a, b] be the set of all functions f that have a continuous nth derivative on [a, b].
We leave it to the reader to verify that Cn[a, b] is a subspace of C[a, b].



122 Chapter 3 Vector Spaces

EXAMPLE 7 The function f (x) = |x| is in C[−1, 1], but it is not differentiable at x = 0 and hence
it is not in C1[−1, 1]. This shows that C1[−1, 1] is a proper subspace of C[−1, 1]. The
function g(x) = x|x| is in C1[−1, 1] since it is differentiable at every point in [−1, 1]
and g′(x) = 2|x| is continuous on [−1, 1]. However, g �∈ C2[−1, 1], since g′′(x) is not
defined when x = 0. Thus the vector space C2[−1, 1] is a proper subspace of both
C[−1, 1] and C1[−1, 1].

EXAMPLE 8 Let S be the set of all f in C2[a, b] such that

f ′′(x) + f (x) = 0

for all x in [a, b]. The set S is nonempty since the zero function is in S. If f ∈ S and α

is any scalar, then for any x in [a, b]

(αf )′′(x) + (αf )(x) = αf ′′(x) + αf (x)
= α(f ′′(x) + f (x)) = α · 0 = 0

Thus αf ∈ S. If f and g are both in S, then

(f + g)′′(x) + (f + g)(x) = f ′′(x) + g′′(x) + f (x) + g(x)
= [f ′′(x) + f (x)] + [g′′(x) + g(x)]
= 0 + 0 = 0

Thus the set of all solutions on [a, b] to the differential equation y′′ + y = 0 forms a
subspace of C2[a, b]. If we note that f (x) = sin x and g(x) = cos x are both in S, it
follows that any function of the form c1 sin x+c2 cos x must also be in S. We can easily
verify that functions of this form are solutions to y′′ + y = 0.

The Null Space of a Matrix
Let A be an m × n matrix. Let N(A) denote the set of all solutions to the homogeneous
system Ax = 0. Thus,

N(A) = {x ∈ R
n | Ax = 0}

We claim that N(A) is a subspace of R
n. Clearly, 0 ∈ N(A), so N(A) is nonempty. If

x ∈ N(A) and α is a scalar, then

A(αx) = αAx = α0 = 0

and hence αx ∈ N(A). If x and y are elements of N(A), then

A(x + y) = Ax + Ay = 0 + 0 = 0

Therefore, x + y ∈ N(A). It then follows that N(A) is a subspace of R
n. The set of all

solutions of the homogeneous system Ax = 0 forms a subspace of R
n. The subspace

N(A) is called the null space of A.

EXAMPLE 9 Determine N(A) if

A =
⎧⎪⎩ 1 1 1 0

2 1 0 1

⎫⎪⎭
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Solution
Using Gauss–Jordan reduction to solve Ax = 0, we obtain⎧⎪⎩ 1 1 1 0 0

2 1 0 1 0

⎫⎪⎭ →
⎧⎪⎩ 1 1 1 0 0

0 −1 −2 1 0

⎫⎪⎭
→

⎧⎪⎩ 1 0 −1 1 0
0 −1 −2 1 0

⎫⎪⎭ →
⎧⎪⎩ 1 0 −1 1 0

0 1 2 −1 0

⎫⎪⎭
The reduced row echelon form involves two free variables, x3 and x4.

x1 = x3 − x4

x2 = −2x3 + x4

Thus, if we set x3 = α and x4 = β, then

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
α − β

−2α + β

α

β

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ = α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−2
1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
is a solution of Ax = 0. The vector space N(A) consists of all vectors of the form

α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−2
1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
where α and β are scalars.

The Span of a Set of Vectors

Definition Let v1, v2, . . . , vn be vectors in a vector space V . A sum of the form α1v1 +
α2v2 + · · · + αnvn, where α1, . . . , αn are scalars, is called a linear combination
of v1, v2, . . . , vn. The set of all linear combinations of v1, v2, . . . , vn is called the
span of v1, . . . , vn. The span of v1, . . . , vn will be denoted by Span(v1, . . . , vn).

In Example 9, we saw that the null space of A was the span of the vectors
(1, −2, 1, 0)T and (−1, 1, 0, 1)T .

EXAMPLE 10 In R
3, the span of e1 and e2 is the set of all vectors of the form

αe1 + βe2 =
⎧⎪⎪⎪⎪⎪⎩

α

β

0

⎫⎪⎪⎪⎪⎪⎭
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The reader may verify that Span(e1, e2) is a subspace of R
3. The subspace can be

interpreted geometrically as the set of all vectors in 3-space that lie in the x1x2-plane
(see Figure 3.2.1). The span of e1, e2, e3 is the set of all vectors of the form

α1e1 + α2e2 + α3e3 =
⎧⎪⎪⎪⎪⎪⎩

α1

α2

α3

⎫⎪⎪⎪⎪⎪⎭
Thus, Span(e1, e2, e3) = R

3.

x

x2

x1

e3

e2

e1

x3

Span(e1, e2)

Figure 3.2.1.

Theorem 3.2.1 If v1, v2, . . . , vn are elements of a vector space V, then Span(v1, v2, . . . , vn) is a
subspace of V.

Proof Let β be a scalar and let v = α1v1 + α2v2 + · · · + αnvn be an arbitrary element of
Span(v1, v2, . . . , vn). Since

βv = (βα1)v1 + (βα2)v2 + · · · + (βαn)vn

it follows that βv ∈ Span(v1, . . . , vn). Next, we must show that any sum of elements
of Span(v1, . . . , vn) is in Span(v1, . . . , vn). Let v = α1v1 + · · · + αnvn and w = β1v1 +
· · · + βnvn.

v + w = (α1 + β1)v1 + · · · + (αn + βn)vn ∈ Span(v1, . . . , vn)

Therefore, Span(v1, . . . , vn) is a subspace of V .

A vector x in R
3 is in Span(e1, e2) if and only if it lies in the x1x2-plane in 3-space.

Thus, we can think of the x1x2-plane as the geometrical representation of the sub-
space Span(e1, e2) (see Figure 3.2.1). Similarly, given two vectors x and y, if (0, 0, 0),
(x1, x2, x3), and (y1, y2, y3) are not collinear, these points determine a plane. If
z = c1x + c2y, then z is a sum of vectors parallel to x and y and hence must lie
on the plane determined by the two vectors (see Figure 3.2.2). In general, if two vec-
tors x and y can be used to determine a plane in 3-space, that plane is the geometrical
representation of Span(x, y).
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x

z

c2y

c2y

y

c1x

x2

x1

x3

Figure 3.2.2.

Spanning Set for a Vector Space
Let v1, v2, . . . , vn be vectors in a vector space V . We will refer to Span(v1, . . . , vn) as the
subspace of V spanned by v1, v2, . . . , vn. It may happen that Span(v1, . . . , vn) = V , in
which case we say that the vectors v1, . . . , vn span V , or that {v1, . . . , vn} is a spanning
set for V . Thus, we have the following definition:

Definition The set {v1, . . . , vn} is a spanning set for V if and only if every vector in V can be
written as a linear combination of v1, v2, . . . , vn.

EXAMPLE 11 Which of the following are spanning sets for R
3?

(a) {e1, e2, e3, (1, 2, 3)T}
(b) {(1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T}
(c) {(1, 0, 1)T , (0, 1, 0)T}
(d) {(1, 2, 4)T , (2, 1, 3)T , (4, −1, 1)T}

Solution
To determine whether a set spans R

3, we must determine whether an arbitrary vector
(a, b, c)T in R

3 can be written as a linear combination of the vectors in the set. In part
(a), it is easily seen that (a, b, c)T can be written as

(a, b, c)T = ae1 + be2 + ce3 + 0(1, 2, 3)T

For part (b), we must determine whether it is possible to find constants α1, α2, and α3

such that ⎧⎪⎪⎪⎪⎪⎩
a
b
c

⎫⎪⎪⎪⎪⎪⎭ = α1

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ + α2

⎧⎪⎪⎪⎪⎪⎩
1
1
0

⎫⎪⎪⎪⎪⎪⎭ + α3

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭
This leads to the system of equations

α1 + α2 + α3 = a
α1 + α2 = b
α1 = c
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Since the coefficient matrix of the system is nonsingular, the system has a unique
solution. In fact, we find that ⎧⎪⎪⎪⎪⎪⎩

α1

α2

α3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

c
b − c
a − b

⎫⎪⎪⎪⎪⎪⎭
Thus, ⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ = c

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ + (b − c)

⎧⎪⎪⎪⎪⎪⎩
1
1
0

⎫⎪⎪⎪⎪⎪⎭ + (a − b)

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭
so the three vectors span R

3.
For part (c), we should note that linear combinations of (1, 0, 1)T and (0, 1, 0)T

produce vectors of the form (α, β, α)T . Thus, any vector (a, b, c)T in R
3, where a �= c,

would not be in the span of these two vectors.
Part (d) can be done in the same manner as part (b). If⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ = α1

⎧⎪⎪⎪⎪⎪⎩
1
2
4

⎫⎪⎪⎪⎪⎪⎭ + α2

⎧⎪⎪⎪⎪⎪⎩
2
1
3

⎫⎪⎪⎪⎪⎪⎭ + α3

⎧⎪⎪⎪⎪⎪⎩
4

−1
1

⎫⎪⎪⎪⎪⎪⎭
then

α1 + 2α2 + 4α3 = a
2α1 + α2 − α3 = b
4α1 + 3α2 + α3 = c

In this case, however, the coefficient matrix is singular. Gaussian elimination will yield
a system of the form

α1 + 2α2 + 4α3 = a

α2 + 3α3 = 2a − b

3
0 = 2a − 3c + 5b

If

2a − 3c + 5b �= 0

then the system is inconsistent. Hence, for most choices of a, b, and c, it is impossible
to express (a, b, c)T as a linear combination of (1, 2, 4)T , (2, 1, 3)T , and (4, −1, 1)T . The
vectors do not span R

3.

EXAMPLE 12 The vectors 1 − x2, x + 2, and x2 span P3. Thus, if ax2 + bx + c is any polynomial in
P3, it is possible to find scalars α1, α2, and α3 such that

ax2 + bx + c = α1(1 − x2) + α2(x + 2) + α3x2

Indeed,

α1(1 − x2) + α2(x + 2) + α3x2 = (α3 − α1)x2 + α2x + (α1 + 2α2)
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Setting

α3 − α1 = a
α2 = b
α1 + 2α2 = c

and solving, we see that α1 = c − 2b, α2 = b, and α3 = a + c − 2b.

In Example 11(a), we saw that the vectors e1, e2, e3, (1, 2, 3)T span R
3. Clearly,

R
3 could be spanned with only the vectors e1, e2, e3. The vector (1, 2, 3)T is really not

necessary. In the next section, we consider the problem of finding minimal spanning
sets for a vector space V (i.e., spanning sets that contain the smallest possible number
of vectors).

Linear Systems Revisited
Let S be the solution set to a consistent m × n linear system Ax = b. In the case that
b = 0 we have that S = N(A) and consequently the solution set forms a subspace
of R

n. If b �= 0, then S does not form a subspace of R
n; however, if one can find a

particular solution x0, then it is possible to represent any solution vector in terms of x0

and a vector z from the null space of A.
Let Ax = b be a consistent linear system and let x0 be a particular solution to

the system. If there is another solution x1 to the system, then the difference vector
z = x1 − x0 must be in N(A) since

Az = Ax1 − Ax0 = b − b = 0

Thus if there is a second solution, it must be of the form x1 = x0 + z where z ∈ N(A).
In general, if x0 is a particular solution to Ax = b and z is any vector in N(A), then

setting y = x0 + z, we have

Ay = Ax0 + Az = b + 0 = b

So y = x0 + z must also be a solution to the system Ax = b.
These observations are summarized in the following theorem.

Theorem 3.2.2 If the linear system Ax = b is consistent and x0 is a particular solution, then a vector
y will also be a solution if and only if y = x0 + z where z ∈ N(A).

To help understand the meaning of Theorem 3.2.2 let us consider the case of an
m × 3 matrix whose null space is spanned by two nonzero vectors z1 and z2. If z1 is
not a multiple of z2, then the set of all linear combinations of z1 and z2 corresponds to
a plane through the origin in 3-space (see Figure 3.2.3). If x0 is a vector in R

3 and b =
Ax0 is a nonzero vector, then x0 is a particular solution to the nonhomogeneous system
Ax = b. It follows from Theorem 3.2.2 that the solution set S consists of all vectors of
the form

y = x0 + c1z1 + c2z2



128 Chapter 3 Vector Spaces

where c1 and c2 are arbitrary scalars. The solution set S corresponds to a plane in
3-space that does not pass through the origin. See Figure 3.2.3.

x0

z1

z1

z2

z2

N(A)

S

Figure 3.2.3.

SECTION 3.2 EXERCISES
1. Determine whether the following sets form sub-

spaces of R
2:

(a) {(x1, x2)T | x1 + x2 = 0}
(b) {(x1, x2)T | x1x2 = 0}
(c) {(x1, x2)T | x1 = 3x2}
(d) {(x1, x2)T | |x1| = |x2|}
(e) {(x1, x2)T | x2

1 = x2
2}

2. Determine whether the following sets form sub-
spaces of R

3:
(a) {(x1, x2, x3)T | x1 + x3 = 1}
(b) {(x1, x2, x3)T | x1 = x2 = x3}
(c) {(x1, x2, x3)T | x3 = x1 + x2}
(d) {(x1, x2, x3)T | x3 = x1 or x3 = x2}

3. Determine whether the following are subspaces of
R

2×2:
(a) The set of all 2 × 2 diagonal matrices

(b) The set of all 2 × 2 triangular matrices

(c) The set of all 2 × 2 lower triangular matrices

(d) The set of all 2 × 2 matrices A such that
a12 = 1

(e) The set of all 2 × 2 matrices B such that
b11 = 0

(f) The set of all symmetric 2 × 2 matrices
(g) The set of all singular 2 × 2 matrices

4. Determine the null space of each of the following
matrices:

(a)
⎧⎪⎩ 2 1

3 2

⎫⎪⎭
(b)

⎧⎪⎩ 1 2 −3 −1
−2 −4 6 3

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1 3 −4
2 −1 −1

−1 −3 4

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
1 1 −1 2
2 2 −3 1

−1 −1 0 −5

⎫⎪⎪⎪⎪⎪⎭
5. Determine whether the following are subspaces of

P4 (be careful!):
(a) The set of polynomials in P4 of even degree

(b) The set of all polynomials of degree 3

(c) The set of all polynomials p(x) in P4 such that
p(0) = 0

(d) The set of all polynomials in P4 having at least
one real root

6. Determine whether the following are subspaces of
C[−1, 1]:
(a) The set of functions f in C[−1, 1] such that

f (−1) = f (1)

(b) The set of odd functions in C[−1, 1]

(c) The set of continuous nondecreasing functions
on [−1, 1]

(d) The set of functions f in C[−1, 1] such that
f (−1) = 0 and f (1) = 0

(e) The set of functions f in C[−1, 1] such that
f (−1) = 0 or f (1) = 0

7. Show that Cn[a, b] is a subspace of C[a, b].

8. Let A be a fixed vector in R
n×n and let S be the set

of all matrices that commute with A, that is,

S = {B | AB = BA}
Show that S is a subspace of R

n×n.
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9. In each of the following determine the subspace of
R

2×2 consisting of all matrices that commute with
the given matrix:

(a)
⎧⎪⎩ 1 0

0 −1

⎫⎪⎭ (b)
⎧⎪⎩ 0 0

1 0

⎫⎪⎭
(c)

⎧⎪⎩ 1 1
0 1

⎫⎪⎭ (d)
⎧⎪⎩ 1 1

1 1

⎫⎪⎭
10. Let A be a particular vector in R

2×2. Determine
whether the following are subspaces of R

2×2:
(a) S1 = {B ∈ R

2×2 | BA = O}
(b) S2 = {B ∈ R

2×2 | AB �= BA}
(c) S3 = {B ∈ R

2×2 | AB + B = O}
11. Determine whether the following are spanning sets

for R
2:

(a)
{⎧⎪⎩ 2

1

⎫⎪⎭ ,
⎧⎪⎩ 3

2

⎫⎪⎭}
(b)

{⎧⎪⎩ 2
3

⎫⎪⎭ ,
⎧⎪⎩ 4

6

⎫⎪⎭}

(c)
{⎧⎪⎩ −2

1

⎫⎪⎭ ,
⎧⎪⎩ 1

3

⎫⎪⎭ ,
⎧⎪⎩ 2

4

⎫⎪⎭}

(d)
{⎧⎪⎩ −1

2

⎫⎪⎭ ,
⎧⎪⎩ 1

−2

⎫⎪⎭ ,
⎧⎪⎩ 2

−4

⎫⎪⎭}

(e)
{⎧⎪⎩ 1

2

⎫⎪⎭ ,
⎧⎪⎩ −1

1

⎫⎪⎭}
12. Which of the sets that follow are spanning sets for

R
3? Justify your answers.

(a) {(1, 0, 0)T , (0, 1, 1)T , (1, 0, 1)T}
(b) {(1, 0, 0)T , (0, 1, 1)T , (1, 0, 1)T , (1, 2, 3)T}
(c) {(2, 1, −2)T , (3, 2, −2)T , (2, 2, 0)T}
(d) {(2, 1, −2)T , (−2, −1, 2)T , (4, 2, −4)T}
(e) {(1, 1, 3)T , (0, 2, 1)T}

13. Given

x1 =
⎧⎪⎪⎪⎪⎪⎩

−1
2
3

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

3
4
2

⎫⎪⎪⎪⎪⎪⎭ ,

x =
⎧⎪⎪⎪⎪⎪⎩

2
6
6

⎫⎪⎪⎪⎪⎪⎭ , y =
⎧⎪⎪⎪⎪⎪⎩

−9
−2

5

⎫⎪⎪⎪⎪⎪⎭
(a) Is x ∈ Span(x1, x2)?

(b) Is y ∈ Span(x1, x2)?
Prove your answers.

14. Let A be a 4 × 3 matrix and let b ∈ R
4. How many

possible solutions could the system Ax = b have if
N(A) = {0}? Answer the same question in the case
N(A) �= {0}. Explain your answers.

15. Let A be a 4 × 3 matrix and let

c = 2a1 + a2 + a3

(a) If N(A) = {0}, what can you conclude about
the solutions to the linear system Ax = c?

(b) If N(A) �= {0}, how many solutions will the
system Ax = c have? Explain.

16. Let x1 be a particular solution to a system Ax = b
and let {z1, z2, z3} be a spanning set for N(A). If

Z =
⎧⎩ z1 z2 z3

⎫⎭ ,

show that y will be a solution to Ax = b if and only
if y = x1 + Zc for some c ∈ R

3.

17. Let {x1, x2, . . . , xk} be a spanning set for a vector
space V .
(a) If we add another vector, xk+1, to the set, will

we still have a spanning set? Explain.

(b) If we delete one of the vectors, say, xk, from the
set, will we still have a spanning set? Explain.

18. In R
2×2, let

E11 =
⎧⎪⎩ 1 0

0 0

⎫⎪⎭ , E12 =
⎧⎪⎩ 0 1

0 0

⎫⎪⎭
E21 =

⎧⎪⎩ 0 0
1 0

⎫⎪⎭ , E22 =
⎧⎪⎩ 0 0

0 1

⎫⎪⎭
Show that E11, E12, E21, E22 span R

2×2.

19. Which of the sets that follow are spanning sets for
P3? Justify your answers.
(a) {1, x2, x2 − 2} (b) {2, x2, x, 2x + 3}
(c) {x + 2, x + 1, x2 − 1} (d) {x + 2, x2 − 1}

20. Let S be the vector space of infinite sequences
defined in Exercise 15 of Section 3.1. Let S0 be
the set of {an} with the property that an → 0 as
n → ∞. Show that S0 is a subspace of S.

21. Prove that if S is a subspace of R
1, then either

S = {0} or S = R
1.

22. Let A be an n × n matrix. Prove that the following
statements are equivalent.
(a) N(A) = {0}. (b) A is nonsingular.

(c) For each b ∈ R
n, the system Ax = b has a

unique solution.
23. Let U and V be subspaces of a vector space W.

Prove that their intersection U∩V is also a subspace
of W.

24. Let S be the subspace of R
2 spanned by e1 and let

T be the subspace of R
2 spanned by e2. Is S ∪ T a

subspace of R
2? Explain.
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25. Let U and V be subspaces of a vector space W.
Define

U + V = {z | z = u + v where u ∈ U and v ∈ V}
Show that U + V is a subspace of W.

26. Let S, T , and U be subspaces of a vector space
V . We can form new subspaces using the opera-
tions of ∩ and + defined in Exercises 23 and 25.
When we do arithmetic with numbers, we know
that the operation of multiplication distributes over
the operation of addition in the sense that

a(b + c) = ab + ac

It is natural to ask whether similar distributive laws
hold for the two operations with subspaces.
(a) Does the intersection operation for subspaces

distribute over the addition operation? That is,
does

S ∩ (T + U) = (S ∩ T) + (S ∩ U)

(b) Does the addition operation for subspaces dis-
tribute over the intersection operation? That is,
does

S + (T ∩ U) = (S + T) ∩ (S + U)

3.3 Linear Independence

In this section, we look more closely at the structure of vector spaces. To begin with, we
restrict ourselves to vector spaces that can be generated from a finite set of elements.
Each vector in the vector space can be built up from the elements in this generating
set using only the operations of addition and scalar multiplication. The generating set
is usually referred to as a spanning set. In particular, it is desirable to find a minimal
spanning set. By minimal we mean a spanning set with no unnecessary elements (i.e.,
all the elements in the set are needed in order to span the vector space). To see how to
find a minimal spanning set, it is necessary to consider how the vectors in the collection
depend on each other. Consequently, we introduce the concepts of linear dependence
and linear independence. These simple concepts provide the keys to understanding the
structure of vector spaces.

Consider the following vectors in R
3:

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
−1

2

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

−2
3
1

⎫⎪⎪⎪⎪⎪⎭ , x3 =
⎧⎪⎪⎪⎪⎪⎩

−1
3
8

⎫⎪⎪⎪⎪⎪⎭
Let S be the subspace of R

3 spanned by x1, x2, x3. Actually, S can be represented in
terms of the two vectors x1 and x2, since the vector x3 is already in the span of x1 and
x2; that is,

x3 = 3x1 + 2x2 (1)

Any linear combination of x1, x2, and x3 can be reduced to a linear combination of x1

and x2:

α1x1 + α2x2 + α3x3 = α1x1 + α2x2 + α3(3x1 + 2x2)
= (α1 + 3α3)x1 + (α2 + 2α3)x2

Thus,

S = Span(x1, x2, x3) = Span(x1, x2)

Equation (1) can be rewritten in the form

3x1 + 2x2 − 1x3 = 0 (2)
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Since the three coefficients in (2) are nonzero, we could solve for any vector in terms
of the other two:

x1 = −2

3
x2 + 1

3
x3, x2 = −3

2
x1 + 1

2
x3, x3 = 3x1 + 2x2

It follows that

Span(x1, x2, x3) = Span(x2, x3) = Span(x1, x3) = Span(x1, x2)

Because of the dependency relation (2), the subspace S can be represented as the span
of any two of the given vectors.

In contrast, no such dependency relationship exists between x1 and x2. Indeed, if
there were scalars c1 and c2, not both 0, such that

c1x1 + c2x2 = 0 (3)

then we could solve for one of the vectors in terms of the other:

x1 = −c2

c1
x2 (c1 �= 0) or x2 = −c1

c2
x1 (c2 �= 0)

However, neither of the two vectors in question is a multiple of the other. Therefore,
Span(x1) and Span(x2) are both proper subspaces of Span(x1, x2), and the only way
that (3) can hold is if c1 = c2 = 0.

We can generalize this example by making the following observations:

(I) If v1, v2, . . . , vn span a vector space V and one of these vectors can be written
as a linear combination of the other n − 1 vectors, then those n − 1 vectors
span V .

(II) Given n vectors v1, . . . , vn, it is possible to write one of the vectors as a lin-
ear combination of the other n − 1 vectors if and only if there exist scalars
c1, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · · + cnvn = 0

Proof of (I) Suppose that vn can be written as a linear combination of the vectors v1, v2, . . . , vn−1;
that is,

vn = β1v1 + β2v2 + · · · + βn−1vn−1

Let v be any element of V . Since v1, . . . , vn span V , we can write

v = α1v1 + α2v2 + · · · + αn−1vn−1 + αnvn

= α1v1 + α2v2 + · · · + αn−1vn−1 + αn(β1v1 + · · · + βn−1vn−1)
= (α1 + αnβ1)v1 + (α2 + αnβ2)v2 + · · · + (αn−1 + αnβn−1)vn−1

Thus, any vector v in V can be written as a linear combination of v1, v2, . . . , vn−1, and
hence these vectors span V .
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Proof of (II) Suppose that one of the vectors v1, v2, . . . , vn, say vn, can be written as a linear
combination of the others.

vn = α1v1 + α2v2 + · · · + αn−1vn−1

Subtracting vn from both sides of this equation, we get

α1v1 + α2v2 + · · · + αn−1vn−1 − vn = 0

If we set ci = αi for i = 1, . . . , n − 1, and set cn = −1, then it follows that

c1v1 + c2v2 + · · · + cnvn = 0

Conversely, if

c1v1 + c2v2 + · · · + cnvn = 0

and at least one of the ci’s, say, cn, is nonzero, then

vn = −c1

cn
v1 + −c2

cn
v2 + · · · + −cn−1

cn
vn−1

Definition The vectors v1, v2, . . . , vn in a vector space V are said to be linearly independent
if

c1v1 + c2v2 + · · · + cnvn = 0

implies that all the scalars c1, . . . , cn must equal 0.

It follows from (I) and (II) that, if {v1, v2, . . . , vn} is a minimal spanning set, then
v1, v2, . . . , vn are linearly independent. Conversely, if v1, . . . , vn are linearly independ-
ent and span V , then {v1, . . . , vn} is a minimal spanning set for V (see Exercise 20 at
the end of this section). A minimal spanning set is called a basis. The concept of a
basis will be studied in more detail in the next section.

EXAMPLE 1 The vectors
⎧⎪⎩ 1

1

⎫⎪⎭ and
⎧⎪⎩ 1

2

⎫⎪⎭ are linearly independent, since if

c1

⎧⎪⎩ 1
1

⎫⎪⎭ + c2

⎧⎪⎩ 1
2

⎫⎪⎭ =
⎧⎪⎩ 0

0

⎫⎪⎭
then

c1 + c2 = 0
c1 + 2c2 = 0

and the only solution to this system is c1 = 0, c2 = 0.

Definition The vectors v1, v2, . . . , vn in a vector space V are said to be linearly dependent if
there exist scalars c1, c2, . . . , cn, not all zero, such that

c1v1 + c2v2 + · · · + cnvn = 0
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EXAMPLE 2 Let x = (1, 2, 3)T . The vectors e1, e2, e3, and x are linearly dependent, since

e1 + 2e2 + 3e3 − x = 0

(In this case c1 = 1, c2 = 2, c3 = 3, c4 = −1.)

Given a set of vectors {v1, v2, . . . , vn} in a vector space V , it is trivial to find scalars
c1, c2, . . . , cn such that

c1v1 + c2v2 + · · · + cnvn = 0

Just take

c1 = c2 = · · · = cn = 0

If there are nontrivial choices of scalars for which the linear combination
c1v1 + · · · + cnvn equals the zero vector, then v1, . . . , vn are linearly dependent.
If the only way the linear combination c1v1 + · · · + cnvn can equal the zero vector
is for all the scalars c1, . . . , cn to be 0, then v1, . . . , vn are linearly independent.

Geometric Interpretation
If x and y are linearly dependent in R

2, then

c1x + c2y = 0

where c1 and c2 are not both 0. If, say, c1 �= 0, we can write

x = −c2

c1
y

If two vectors in R
2 are linearly dependent, one of the vectors can be written as a scalar

multiple of the other. Thus, if both vectors are placed at the origin, they will lie along
the same line (see Figure 3.3.1).

(x1, x2)

(x1, x2)

(y1, y2)

(y1, y2)

(a) x and y linearly dependent (b) x and y linearly independent

x
y

Figure 3.3.1.

If

x =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

y1

y2

y3

⎫⎪⎪⎪⎪⎪⎭
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are linearly independent in R
3, then the two points (x1, x2, x3) and (y1, y2, y3) will not lie

on the same line through the origin in 3-space. Since (0, 0, 0), (x1, x2, x3), and (y1, y2, y3)
are not collinear, they determine a plane. If (z1, z2, z3) lies on this plane, the vector
z = (z1, z2, z3)T can be written as a linear combination of x and y, and hence x, y, and
z are linearly dependent. If (z1, z2, z3) does not lie on the plane, the three vectors will
be linearly independent (see Figure 3.3.2).

x

zy

x

z

y

(a) (b)

Figure 3.3.2.

Theorems and Examples

EXAMPLE 3 Which of the following collections of vectors are linearly independent in R
3?

(a) (1, 1, 1)T , (1, 1, 0)T , (1, 0, 0)T

(b) (1, 0, 1)T , (0, 1, 0)T

(c) (1, 2, 4)T , (2, 1, 3)T , (4, −1, 1)T

Solution
(a) These three vectors are linearly independent. To verify this, we must show that the

only way for

c1(1, 1, 1)T + c2(1, 1, 0)T + c3(1, 0, 0)T = (0, 0, 0)T (4)

is if the scalars c1, c2, c3 are all zero. Equation (4) can be written as a linear system
with unknowns c1, c2, c3:

c1 + c2 + c3 = 0
c1 + c2 = 0
c1 = 0

The only solution of this system is c1 = 0, c2 = 0, c3 = 0.
(b) If

c1(1, 0, 1)T + c2(0, 1, 0)T = (0, 0, 0)T

then

(c1, c2, c1)T = (0, 0, 0)T

so c1 = c2 = 0. Therefore, the two vectors are linearly independent.



3.3 Linear Independence 135

(c) If

c1(1, 2, 4)T + c2(2, 1, 3)T + c3(4, −1, 1)T = (0, 0, 0)T

then

c1 + 2c2 + 4c3 = 0
2c1 + c2 − c3 = 0
4c1 + 3c2 + c3 = 0

The coefficient matrix of the system is singular and hence the system has
nontrivial solutions. Therefore, the vectors are linearly dependent.

Notice in Example 3, parts (a) and (c), that it was necessary to solve a 3 × 3
system to determine whether the three vectors were linearly independent. In part (a),
where the coefficient matrix was nonsingular, the vectors were linearly independent,
while in part (c), where the coefficient matrix was singular, the vectors were linearly
dependent. This illustrates a special case of the following theorem:

Theorem 3.3.1 Let x1, x2, . . . , xn be n vectors in R
n and let X = (x1, . . . , xn). The vectors x1, x2, . . . , xn

will be linearly dependent if and only if X is singular.

Proof The equation

c1x1 + c2x2 + · · · + cnxn = 0

can be rewritten as a matrix equation

Xc = 0

This equation will have a nontrivial solution if and only if X is singular. Thus, x1, . . . , xn

will be linearly dependent if and only if X is singular.

We can use Theorem 3.3.1 to test whether n vectors are linearly independent in
R

n. Simply form a matrix X whose columns are the vectors being tested. To determine
whether X is singular, calculate the value of det(X). If det(X) = 0, the vectors are
linearly dependent. If det(X) �= 0, the vectors are linearly independent.

EXAMPLE 4 Determine whether the vectors (4, 2, 3)T , (2, 3, 1)T , and (2, −5, 3)T are linearly depend-
ent.

Solution
Since ∣∣∣∣∣∣

4 2 2
2 3 −5
3 1 3

∣∣∣∣∣∣ = 0

the vectors are linearly dependent.

To determine whether k vectors x1, x2, . . . xk in R
n are linearly independent we can

rewrite the equation

c1x1 + c2x2 + · · · + ckxk = 0
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as a linear system Xc = 0, where X = (x1, x2, . . . xk). If k �= n, then the matrix X is not
square, so we cannot use determinants to decide whether the vectors are linearly inde-
pendent. The system is homogeneous, so it has the trivial solution c = 0. It will have
nontrivial solutions if and only if the row echelon forms of X involve free variables. If
there are nontrivial solutions, then the vectors are linearly dependent. If there are no
free variables, then c = 0 is the only solution, and hence the vectors must be linearly
independent.

EXAMPLE 5 Given

x1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

3
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
0
7
7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
To determine whether the vectors are linearly independent, we reduce the system
Xc = 0 to row echelon form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −2 1 0
−1 3 0 0

2 1 7 0
3 −2 7 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 1 0
0 1 1 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since the echelon form involves a free variable c3, there are nontrivial solutions and
hence the vectors must be linearly dependent.

Next, we consider a very important property of linearly independent vectors: Lin-
ear combinations of linearly independent vectors are unique. More precisely, we have
the following theorem.

Theorem 3.3.2 Let v1, . . . , vn be vectors in a vector space V. A vector v ∈ Span(v1, . . . , vn) can be
written uniquely as a linear combination of v1, . . . , vn if and only if v1, . . . , vn are
linearly independent.

Proof If v ∈ Span(v1, . . . , vn), then v can be written as a linear combination

v = α1v1 + α2v2 + · · · + αnvn (5)

Suppose that v can also be expressed as a linear combination

v = β1v1 + β2v2 + · · · + βnvn (6)

We will show that, if v1, . . . , vn are linearly independent, then βi = αi, i = 1, . . . , n,
and if v1, . . . , vn are linearly dependent, then it is possible to choose the βi’s different
from the αi’s.

If v1, . . . , vn are linearly independent, then subtracting (6) from (5) yields

(α1 − β1)v1 + (α2 − β2)v2 + · · · + (αn − βn)vn = 0 (7)

By the linear independence of v1, . . . , vn, the coefficients of (7) must all be 0. Hence

α1 = β1, α2 = β2, . . . , αn = βn
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Thus, the representation (5) is unique when v1, . . . , vn are linearly independent.
On the other hand, if v1, . . . , vn are linearly dependent, then there exist c1, . . . , cn,

not all 0, such that

0 = c1v1 + c2v2 + · · · + cnvn (8)

Now if we set

β1 = α1 + c1, β2 = α2 + c2, . . . , βn = αn + cn

then, adding (5) and (8), we get

v = (α1 + c1)v1 + (α2 + c2)v2 + · · · + (αn + cn)vn

= β1v1 + β2v2 + · · · + βnvn

Since the ci’s are not all 0, βi �= αi for at least one value of i. Thus, if v1, . . . , vn are
linearly dependent, the representation of a vector as a linear combination of v1, . . . , vn

is not unique.

Vector Spaces of Functions
To determine whether a set of vectors is linearly independent in R

n, we must solve
a homogeneous linear system of equations. A similar situation holds for the vector
space Pn.

The Vector Space Pn

To test whether the following polynomials p1, p2, . . . , pk are linearly independent in
Pn, we set

c1p1 + c2p2 + · · · + ckpk = z (9)

where z represents the zero polynomial; that is,

z(x) = 0xn−1 + 0xn−2 + · · · + 0x + 0

If the polynomial on the left-hand side of equation (9) is rewritten in the form a1xn−1 +
a2xn−2 + · · · + an−1x + an, then, since two polynomials are equal if and only if their
coefficients are equal, it follows that the coefficients ai must all be 0. But each of the
ai’s is a linear combination of the cj’s. This leads to a homogeneous linear system with
unknowns c1, c2, . . . , ck. If the system has only the trivial solution, the polynomials are
linearly independent; otherwise, they are linearly dependent.

EXAMPLE 6 To test whether the vectors

p1(x) = x2 − 2x + 3, p2(x) = 2x2 + x + 8, p3(x) = x2 + 8x + 7

are linearly independent, set

c1p1(x) + c2p2(x) + c3p3(x) = 0x2 + 0x + 0
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Grouping terms by powers of x, we get

(c1 + 2c2 + c3)x2 + (−2c1 + c2 + 8c3)x + (3c1 + 8c2 + 7c3) = 0x2 + 0x + 0

Equating coefficients leads to the system

c1 + 2c2 + c3 = 0
−2c1 + c2 + 8c3 = 0

3c1 + 8c2 + 7c3 = 0

The coefficient matrix for this system is singular and hence there are nontrivial
solutions. Therefore, p1, p2, and p3 are linearly dependent.

The Vector Space C(n−1)[a, b]

In Example 4, a determinant was used to test whether three vectors were linearly
independent in R

3. Determinants can also be used to help to decide whether a set
of n vectors is linearly independent in C(n−1)[a, b]. Indeed, let f1, f2, . . . , fn be ele-
ments of C(n−1)[a, b]. If these vectors are linearly dependent, then there exist scalars
c1, c2, . . . , cn, not all zero, such that

c1f1(x) + c2f2(x) + · · · + cnfn(x) = 0 (10)

for each x in [a, b]. Taking the derivative with respect to x of both sides of (10) yields

c1f ′
1(x) + c2f ′

2(x) + · · · + cnf ′
n(x) = 0

If we continue taking derivatives of both sides, we end up with the system

c1f1(x) + c2f2(x) + · · · + cnfn(x) = 0

c1f ′
1(x) + c2f ′

2(x) + · · · + cnf ′
n(x) = 0

...
c1f (n−1)

1 (x) + c2f (n−1)
2 (x) + · · · + cnf (n−1)

n (x) = 0

For each fixed x in [a, b], the matrix equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2
...

αn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
0
...
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (11)

will have the same nontrivial solution (c1, c2, . . . , cn)T . Thus, if f1, . . . , fn are linearly
dependent in C(n−1)[a, b], then, for each fixed x in [a, b], the coefficient matrix of
system (11) is singular. If the matrix is singular, its determinant is zero.
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Definition Let f1, f2, . . . , fn be functions in C(n−1)[a, b], and define the function
W[f1, f2, . . . , fn](x) on [a, b] by

W[f1, f2, . . . , fn](x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

∣∣∣∣∣∣∣∣∣
The function W[f1, f2, . . . , fn] is called the Wronskian of f1, f2, . . . , fn.

Theorem 3.3.3 Let f1, f2, . . . , fn be elements of C(n−1)[a, b]. If there exists a point x0 in [a, b] such that
W[f1, f2, . . . , fn](x0) �= 0, then f1, f2, . . . , fn are linearly independent.

Proof If f1, f2, . . . , fn were linearly dependent, then by the preceding discussion the coefficient
matrix in (11) would be singular for each x in [a, b] and hence W[f1, f2, . . . , fn](x) would
be identically zero on [a, b].

If f1, f2, . . . , fn are linearly independent in C(n−1)[a, b], they will also be linearly
independent in C[a, b].

EXAMPLE 7 Show that ex and e−x are linearly independent in C(−∞, ∞).

Solution

W[ex, e−x] =
∣∣∣∣ ex e−x

ex −e−x

∣∣∣∣ = −2

Since W[ex, e−x] is not identically zero, ex and e−x are linearly independent.

EXAMPLE 8 Consider the functions x2 and x|x| in C[−1, 1]. Both functions are in the subspace
C1[−1, 1] (see Example 7 of Section 3.2), so we can compute the Wronskian

W[x2, x|x|] =
∣∣∣∣∣ x2 x|x|

2x 2|x|

∣∣∣∣∣ ≡ 0

Since the Wronskian is identically zero, it gives no information as to whether the
functions are linearly independent. To answer the question, suppose that

c1x2 + c2x|x| = 0

for all x in [−1, 1]. Then, in particular for x = 1 and x = −1, we have

c1 + c2 = 0
c1 − c2 = 0

and the only solution of this system is c1 = c2 = 0. Thus, the functions x2 and x|x| are
linearly independent in C[−1, 1] even though W[x2, x|x|] ≡ 0.

This example shows that the converse of Theorem 3.3.3 is not valid.
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EXAMPLE 9 Show that the vectors 1, x, x2, and x3 are linearly independent in C((−∞, ∞)).

Solution

W[1, x, x2, x3] =

∣∣∣∣∣∣∣
1 x x2 x3

0 1 2x 3x2

0 0 2 6x
0 0 0 6

∣∣∣∣∣∣∣ = 12

Since W[1, x, x2, x3] �≡ 0, the vectors are linearly independent.

SECTION 3.3 EXERCISES
1. Determine whether the following vectors are lin-

early independent in R
2:

(a)
⎧⎪⎩ 2

1

⎫⎪⎭ ,
⎧⎪⎩ 3

2

⎫⎪⎭ (b)
⎧⎪⎩ 2

3

⎫⎪⎭ ,
⎧⎪⎩ 4

6

⎫⎪⎭
(c)

⎧⎪⎩ −2
1

⎫⎪⎭ ,
⎧⎪⎩ 1

3

⎫⎪⎭ ,
⎧⎪⎩ 2

4

⎫⎪⎭
(d)

⎧⎪⎩ −1
2

⎫⎪⎭ ,
⎧⎪⎩ 1

−2

⎫⎪⎭ ,
⎧⎪⎩ 2

−4

⎫⎪⎭
(e)

⎧⎪⎩ 1
2

⎫⎪⎭ ,
⎧⎪⎩ −1

1

⎫⎪⎭
2. Determine whether the following vectors are lin-

early independent in R
3:

(a)

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
1
0
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
2
3

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2
1

−2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
3
2

−2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2
2
0

⎫⎪⎪⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎪⎪⎩
2
1

−2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−2
−1

2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
4
2

−4

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1
1
3

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
2
1

⎫⎪⎪⎪⎪⎪⎭
3. For each of the sets of vectors in Exercise 2, de-

scribe geometrically the span of the given vectors.

4. Determine whether the following vectors are lin-
early independent in R

2×2:

(a)
⎧⎪⎩ 1 0

1 1

⎫⎪⎭ ,
⎧⎪⎩ 0 1

0 0

⎫⎪⎭

(b)
⎧⎪⎩ 1 0

0 1

⎫⎪⎭ ,
⎧⎪⎩ 0 1

0 0

⎫⎪⎭ ,
⎧⎪⎩ 0 0

1 0

⎫⎪⎭
(c)

⎧⎪⎩ 1 0
0 1

⎫⎪⎭ ,
⎧⎪⎩ 0 1

0 0

⎫⎪⎭ ,
⎧⎪⎩ 2 3

0 2

⎫⎪⎭
5. Let x1, x2, . . . , xk be linearly independent vectors in

a vector space V .
(a) If we add a vector xk+1 to the collection, will

we still have a linearly independent collection
of vectors? Explain.

(b) If we delete a vector, say, xk, from the collec-
tion, will we still have a linearly independent
collection of vectors? Explain.

6. Let x1, x2, and x3 be linearly independent vectors
in R

n and let

y1 = x1 + x2, y2 = x2 + x3, y3 = x3 + x1

Are y1, y2, and y3 linearly independent? Prove your
answer.

7. Let x1, x2, and x3 be linearly independent vectors
in R

n and let

y1 = x2 − x1, y2 = x3 − x2, y3 = x3 − x1

Are y1, y2, and y3 linearly independent? Prove your
answer.

8. Determine whether the following vectors are lin-
early independent in P3:
(a) 1, x2, x2 − 2 (b) 2, x2, x, 2x + 3

(c) x + 2, x + 1, x2 − 1 (d) x + 2, x2 − 1
9. For each of the following, show that the given

vectors are linearly independent in C[0, 1]:
(a) cos πx, sin πx (b) x3/2, x5/2

(c) 1, ex + e−x, ex − e−x (d) ex, e−x, e2x

10. Determine whether the vectors cos x, 1, and
sin2(x/2) are linearly independent in C[−π , π ].
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11. Consider the vectors cos(x + α) and sin x in
C[−π , π ]. For what values of α will the two vectors
be linearly dependent? Give a graphical interpreta-
tion of your answer.

12. Given the functions 2x and |x|, show that
(a) these two vectors are linearly independent in

C[−1, 1].
(b) the vectors are linearly dependent in C[0, 1].

13. Prove that any finite set of vectors that contains the
zero vector must be linearly dependent.

14. Let v1, and v2 be two vectors in a vector space V .
Show that v1 and v2 are linearly dependent if and
only if one of the vectors is a scalar multiple of the
other.

15. Prove that any nonempty subset of a linearly inde-
pendent set of vectors {v1, . . . , vn} is also linearly
independent.

16. Let A be an m×n matrix. Show that if A has linearly
independent column vectors, then N(A) = {0}.

[Hint: For any x ∈ R
n,

Ax = x1a1 + x2a2 + · · · + xnan].

17. Let x1, . . . , xk be linearly independent vectors in
R

n, and let A be a nonsingular n × n matrix. Define
yi = Axi for i = 1, . . . , k. Show that y1, . . . , yk are
linearly independent.

18. Let A be a 3 × 3 matrix and let x1, x2, x3 be vectors
in R

3. Show that if the vectors

y1 = Ax1, y2 = Ax2, y3 = Ax3

are linearly independent, then the matrix A must be
nonsingular and the vectors x1, x2, and x3 must be
linearly independent.

19. Let {v1, . . . , vn} be a spanning set for the vector
space V , and let v be any other vector in V . Show
that v, v1, . . . , vn are linearly dependent.

20. Let v1, v2, . . . , vn be linearly independent vectors
in a vector space V . Show that v2, . . . , vn cannot
span V .

3.4 Basis and Dimension

In Section 3.3, we showed that a spanning set for a vector space is minimal if its
elements are linearly independent. The elements of a minimal spanning set form the
basic building blocks for the whole vector space, and consequently, we say that they
form a basis for the vector space.

Definition The vectors v1, v2, . . . , vn form a basis for a vector space V if and only if

(i) v1, . . . , vn are linearly independent.
(ii) v1, . . . , vn span V .

EXAMPLE 1 The standard basis for R
3 is {e1, e2, e3}; however, there are many bases that we could

choose for R
3. For example,

⎧⎨
⎩

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
0
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2
0
1

⎫⎪⎪⎪⎪⎪⎭
⎫⎬
⎭ and

⎧⎨
⎩

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
1
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭
⎫⎬
⎭

are both bases for R
3. We will see shortly that any basis for R

3 must have exactly three
elements.
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EXAMPLE 2 In R
2×2, consider the set {E11, E12, E21, E22}, where

E11 =
⎧⎪⎩ 1 0

0 0

⎫⎪⎭ , E12 =
⎧⎪⎩ 0 1

0 0

⎫⎪⎭ ,

E21 =
⎧⎪⎩ 0 0

1 0

⎫⎪⎭ , E22 =
⎧⎪⎩ 0 0

0 1

⎫⎪⎭
If

c1E11 + c2E12 + c3E21 + c4E22 = O

then ⎧⎪⎩ c1 c2

c3 c4

⎫⎪⎭ =
⎧⎪⎩ 0 0

0 0

⎫⎪⎭
so c1 = c2 = c3 = c4 = 0. Therefore, E11, E12, E21, and E22 are linearly independent.
If A is in R

2×2, then

A = a11E11 + a12E12 + a21E21 + a22E22

Thus, E11, E12, E21, E22 span R
2×2 and hence form a basis for R

2×2.

In many applications, it is necessary to find a particular subspace of a vector space
V . This can be done by finding a set of basis elements of the subspace. For example, to
find all solutions of the system

x1 + x2 + x3 = 0
2x1 + x2 + x4 = 0

we must find the null space of the matrix

A =
⎧⎪⎩ 1 1 1 0

2 1 0 1

⎫⎪⎭
In Example 9 of Section 3.2, we saw that N(A) is the subspace of R

4 spanned by the
vectors ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
−2

1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since these two vectors are linearly independent, they form a basis for N(A).

Theorem 3.4.1 If {v1, v2, . . . , vn} is a spanning set for a vector space V, then any collection of m
vectors in V, where m > n, is linearly dependent.

Proof Let u1, u2, . . . , um be m vectors in V where m > n. Then, since v1, v2, . . . , vn span V ,
we have

ui = ai1v1 + ai2v2 + · · · + ainvn for i = 1, 2, . . . , m
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A linear combination c1u1 + c2u2 + · · · + cmum can be written in the form

c1

n∑
j=1

a1jvj + c2

n∑
j=1

a2jvj + · · · + cm

n∑
j=1

amjvj

Rearranging the terms, we see that

c1u1 + c2u2 + · · · + cmum =
m∑

i=1

⎡
⎣ci

⎛
⎝ n∑

j=1

aijvj

⎞
⎠

⎤
⎦ =

n∑
j=1

(
m∑

i=1

aijci

)
vj

Now consider the system of equations

m∑
i=1

aijci = 0 j = 1, 2, . . . , n

This is a homogeneous system with more unknowns than equations. Therefore, by
Theorem 1.2.1, the system must have a nontrivial solution (ĉ1, ĉ2, . . . , ĉm)T . But then

ĉ1u1 + ĉ2u2 + · · · + ĉmum =
n∑

j=1

0vj = 0

Hence, u1, u2, . . . , um are linearly dependent.

Corollary 3.4.2 If both {v1, . . . , vn} and {u1, . . . , um} are bases for a vector space V, then n = m.

Proof Let v1, v2, . . . , vn and u1, u2, . . . , um both be bases for V . Since v1, v2, . . . , vn span
V and u1, u2, . . . , um are linearly independent, it follows from Theorem 3.4.1 that
m ≤ n. By the same reasoning u1, u2, . . . , um span V , and v1, v2, . . . , vn are linearly
independent, so n ≤ m.

In view of Corollary 3.4.2, we can now refer to the number of elements in any
basis for a given vector space. This leads to the following definition.

Definition Let V be a vector space. If V has a basis consisting of n vectors, we say that V has
dimension n. The subspace {0} of V is said to have dimension 0. V is said to be
finite dimensional if there is a finite set of vectors that spans V; otherwise, we say
that V is infinite dimensional.

If x is a nonzero vector in R
3, then x spans a one-dimensional subspace Span(x) =

{αx | α is a scalar}. A vector (a, b, c)T will be in Span(x) if and only if the point (a, b, c)
is on the line determined by (0, 0, 0) and (x1, x2, x3). Thus, a one-dimensional subspace
of R

3 can be represented geometrically by a line through the origin.
If x and y are linearly independent in R

3, then

Span(x, y) = {αx + βy | α and β are scalars}
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is a two-dimensional subspace of R
3. A vector (a, b, c)T will be in Span(x, y) if and only

if (a, b, c) lies on the plane determined by (0, 0, 0), (x1, x2, x3), and (y1, y2, y3). Thus, we
can think of a two-dimensional subspace of R

3 as a plane through the origin. If x, y,
and z are linearly independent in R

3, they form a basis for R
3 and Span(x, y, z) = R

3.
Hence, any fourth point (a, b, c)T must lie in Span(x, y, z) (see Figure 3.4.1).

x

y

z

x

y

(a) (b) (c)

Span(x, y, z) = R3

Span(x)
(x1, x2, x3)

Span(x, y)

Figure 3.4.1.

EXAMPLE 3 Let P be the vector space of all polynomials. We claim that P is infinite dimen-
sional. If P were finite dimensional, say of dimension n, any set of n + 1 vectors
would be linearly dependent. However, 1, x, x2, . . . , xn are linearly independent, since
W[1, x, x2, . . . , xn] > 0. Therefore, P cannot be of dimension n. Since n was arbit-
rary, P must be infinite dimensional. The same argument shows that C[a, b] is infinite
dimensional.

Theorem 3.4.3 If V is a vector space of dimension n > 0, then

(I) any set of n linearly independent vectors spans V.
(II) any n vectors that span V are linearly independent.

Proof To prove (I), suppose that v1, . . . , vn are linearly independent and v is any other vector
in V . Since V has dimension n, it has a basis consisting of n vectors and these vec-
tors span V . It follows from Theorem 3.4.1 that v1, v2, . . . , vn, and v must be linearly
dependent. Thus there exist scalars c1, c2, . . . , cn, cn+1 not all zero such that

c1v1 + c2v2 + · · · + cnvn + cn+1v = 0 (1)

The scalar cn+1 cannot be zero, for then (1) would imply that v1, . . . , vn are linearly
dependent. Hence, (1) can be solved for v.

v = α1v1 + α2v2 + · · · + αnvn

Here, αi = −ci/cn+1 for i = 1, 2, . . . , n. Since v was an arbitrary vector in V , it follows
that v1, v2, . . . , vn span V .

To prove (II), suppose that v1, . . . , vn span V . If v1, . . . , vn are linearly dependent,
then one of the vi’s, say vn, can be written as a linear combination of the others. It
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follows that v1, . . . , vn−1 will still span V . If v1, . . . , vn−1 are linearly dependent, we
can eliminate another vector and still have a spanning set. We can continue elimin-
ating vectors in this way until we arrive at a linearly independent spanning set with
k < n elements. But this contradicts dim V = n. Therefore, v1, . . . , vn must be linearly
independent.

EXAMPLE 4 Show that

⎧⎨
⎩

⎧⎪⎪⎪⎪⎪⎩
1
2
3

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−2

1
0

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
0
1

⎫⎪⎪⎪⎪⎪⎭
⎫⎬
⎭ is a basis for R

3.

Solution
Since dim R

3 = 3, we need only show that these three vectors are linearly independent.
This follows, since ∣∣∣∣∣∣

1 −2 1
2 1 0
3 0 1

∣∣∣∣∣∣ = 2

Theorem 3.4.4 If V is a vector space of dimension n > 0, then

(i) no set of fewer than n vectors can span V.
(ii) any subset of fewer than n linearly independent vectors can be extended to

form a basis for V.
(iii) any spanning set containing more than n vectors can be pared down to form

a basis for V.

Proof Statement (i) follows by the same reasoning that was used to prove part (I) of The-
orem 3.4.3. To prove (ii), suppose that v1, . . . , vk are linearly independent and k < n.
It follows from (i) that Span(v1, . . . , vk) is a proper subspace of V and hence there
exists a vector vk+1 that is in V but not in Span(v1, . . . , vk). It then follows that
v1, v2, . . . , vk, vk+1 must be linearly independent. If k + 1 < n, then, in the same man-
ner, {v1, . . . , vk, vk+1} can be extended to a set of k + 2 linearly independent vectors.
This extension process may be continued until a set {v1, v2, . . . , vk, vk+1, . . . , vn} of n
linearly independent vectors is obtained.

To prove (iii), suppose that v1, . . . , vm span V and m > n. Then, by Theorem 3.4.1,
v1, . . . , vm must be linearly dependent. It follows that one of the vectors, say vm, can
be written as a linear combination of the others. Hence, if vm is eliminated from the
set, the remaining m − 1 vectors will still span V . If m − 1 > n, we can continue
to eliminate vectors in this manner until we arrive at a spanning set containing n
vectors.

Standard Bases
In Example 1, we referred to the set {e1, e2, e3} as the standard basis for R

3. We refer to
this basis as the standard basis because it is the most natural one to use for representing
vectors in R

3. More generally, the standard basis for R
n is the set {e1, e2, . . . , en}.

The most natural way to represent matrices in R
2×2 is in terms of the basis

{E11, E12, E21, E22} given in Example 2. This, then, is the standard basis for R
2×2.
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The standard way to represent a polynomial in Pn is in terms of the functions
1, x, x2, . . . , xn−1, and consequently, the standard basis for Pn is {1, x, x2, . . . , xn−1}.

Although these standard bases appear to be the simplest and most natural to use,
they are not the most appropriate bases for many applied problems. (See, for example,
the least squares problems in Chapter 5 or the eigenvalue applications in Chapter 6.)
Indeed, the key to solving many applied problems is to switch from one of the standard
bases to a basis that is in some sense natural for the particular application. Once the
application is solved in terms of the new basis, it is a simple matter to switch back and
represent the solution in terms of the standard basis. In the next section, we will learn
how to switch from one basis to another.

SECTION 3.4 EXERCISES
1. In Exercise 1 of Section 3.3, indicate whether the

given vectors form a basis for R
2.

2. In Exercise 2 of Section 3.3, indicate whether the
given vectors form a basis for R

3.

3. Consider the vectors

x1 =
⎧⎪⎩ 2

1

⎫⎪⎭ , x2 =
⎧⎪⎩ 4

3

⎫⎪⎭ , x3 =
⎧⎪⎩ 7

−3

⎫⎪⎭
(a) Show that x1 and x2 form a basis for R

2.

(b) Why must x1, x2, x3 be linearly dependent?

(c) What is the dimension of Span(x1, x2, x3)?
4. Given the vectors

x1 =
⎧⎪⎪⎪⎪⎪⎩

3
−2

4

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

−3
2

−4

⎫⎪⎪⎪⎪⎪⎭ , x3 =
⎧⎪⎪⎪⎪⎪⎩

−6
4

−8

⎫⎪⎪⎪⎪⎪⎭
what is the dimension of Span(x1, x2, x3)?

5. Let

x1 =
⎧⎪⎪⎪⎪⎪⎩

2
1
3

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

3
−1

4

⎫⎪⎪⎪⎪⎪⎭ , x3 =
⎧⎪⎪⎪⎪⎪⎩

2
6
4

⎫⎪⎪⎪⎪⎪⎭
(a) Show that x1, x2, and x3 are linearly dependent.

(b) Show that x1 and x2 are linearly independent.

(c) What is the dimension of Span(x1, x2, x3)?

(d) Give a geometric description of
Span(x1, x2, x3).

6. In Exercise 2 of Section 3.2, some of the sets
formed subspaces of R

3. In each of these cases,
find a basis for the subspace and determine its
dimension.

7. Find a basis for the subspace S of R
4 consisting of

all vectors of the form (a + b, a − b + 2c, b, c)T ,
where a, b, and c are all real numbers. What is the
dimension of S?

8. Given x1 = (1, 1, 1)T and x2 = (3, −1, 4)T :
(a) Do x1 and x2 span R

3? Explain.
(b) Let x3 be a third vector in R

3 and set X =
( x1 x2 x3 ). What condition(s) would X have
to satisfy in order for x1, x2, and x3 to form a
basis for R

3?
(c) Find a third vector x3 that will extend the set

{x1, x2} to a basis for R
3.

9. Let a1 and a2 be linearly independent vectors in R
3,

and let x be a vector in R
2.

(a) Describe geometrically Span(a1, a2).
(b) If A = (a1, a2) and b = Ax, then what is the

dimension of Span(a1, a2, b)? Explain.
10. The vectors

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
2
2

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

2
5
4

⎫⎪⎪⎪⎪⎪⎭ ,

x3 =
⎧⎪⎪⎪⎪⎪⎩

1
3
2

⎫⎪⎪⎪⎪⎪⎭ , x4 =
⎧⎪⎪⎪⎪⎪⎩

2
7
4

⎫⎪⎪⎪⎪⎪⎭ , x5 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭
span R

3. Pare down the set {x1, x2, x3, x4, x5} to
form a basis for R

3.
11. Let S be the subspace of P3 consisting of all polyno-

mials of the form ax2 + bx + 2a + 3b. Find a basis
for S.

12. In Exercise 3 of Section 3.2, some of the sets
formed subspaces of R

2×2. In each of these cases,
find a basis for the subspace and determine its
dimension.

13. In C[−π , π ], find the dimension of the subspace
spanned by 1, cos 2x, cos2 x.

14. In each of the following, find the dimension of the
subspace of P3 spanned by the given vectors:
(a) x, x − 1, x2 + 1
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(b) x, x − 1, x2 + 1, x2 − 1

(c) x2, x2 − x − 1, x + 1 (d) 2x, x − 2
15. Let S be the subspace of P3 consisting of all poly-

nomials p(x) such that p(0) = 0, and let T be the
subspace of all polynomials q(x) such that q(1) =
0. Find bases for

(a) S (b) T (c) S ∩ T

16. In R
4, let U be the subspace of all vectors of the

form (u1, u2, 0, 0)T , and let V be the subspace of
all vectors of the form (0, v2, v3, 0)T . What are the
dimensions of U, V , U ∩ V , U + V? Find a basis

for each of these four subspaces. (See Exercises 23
and 25 of Section 3.2.)

17. Is it possible to find a pair of two-dimensional
subspaces U and V of R

3 whose intersection
is {0}? Prove your answer. Give a geomet-
rical interpretation of your conclusion. Hint: Let
{u1, u2} and {v1, v2} be bases for U and V , re-
spectively. Show that u1, u2, v1, v2 are linearly
dependent.

18. Show that if U and V are subspaces of R
n and

U ∩ V = {0}, then

dim (U + V) = dim U + dim V

3.5 Change of Basis

Many applied problems can be simplified by changing from one coordinate system
to another. Changing coordinate systems in a vector space is essentially the same as
changing from one basis to another. For example, in describing the motion of a particle
in the plane at a particular time, it is often convenient to use a basis for R

2 consisting of
a unit tangent vector t and a unit normal vector n instead of the standard basis {e1, e2}.

In this section, we discuss the problem of switching from one coordinate system to
another. We will show that this can be accomplished by multiplying a given coordinate
vector x by a nonsingular matrix S. The product y = Sx will be the coordinate vector
for the new coordinate system.

Changing Coordinates in R2

The standard basis for R
2 is {e1, e2}. Any vector x in R

2 can be expressed as a linear
combination

x = x1e1 + x2e2

The scalars x1 and x2 can be thought of as the coordinates of x with respect to the
standard basis. Actually, for any basis {y, z} for R

2, it follows from Theorem 3.3.2 that
a given vector x can be represented uniquely as a linear combination

x = αy + βz

The scalars α and β are the coordinates of x with respect to the basis {y, z}. Let us order
the basis elements so that y is considered the first basis vector and z is considered the
second, and denote the ordered basis by [y, z]. We can then refer to the vector (α, β)T

as the coordinate vector of x with respect to [y, z]. Note that, if we reverse the order
of the basis vectors and take [z, y], then we must also reorder the coordinate vector.
The coordinate vector of x with respect to [z, y] will be (β, α)T . When we refer to a
basis using subscripts, such as {u1, u2}, the subscripts assign an ordering to the basis
vectors.
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EXAMPLE 1 Let y = (2, 1)T and z = (1, 4)T . The vectors y and z are linearly independent and hence
form a basis for R

2. The vector x = (7, 7)T can be written as a linear combination

x = 3y + z

Thus, the coordinate vector of x with respect to [y, z] is (3, 1)T . Geometrically, the
coordinate vector specifies how to get from the origin to the point (7, 7) by moving
first in the direction of y and then in the direction of z. If, instead, we treat z as our first
basis vector and y as the second basis vector, then

x = z + 3y

The coordinate vector of x with respect to the ordered basis [z, y] is (1, 3)T . Geomet-
rically, this vector tells us how to get from the origin to (7, 7) by moving first in the
direction of z and then in the direction of y (see Figure 3.5.1).

2 4 6 7

4

7

y

3y

z

x

3y

z

Figure 3.5.1.

As an example of a problem for which it is helpful to change coordinates, consider
the following application.

APPLICATION 1 Population Migration

Suppose that the total population of a large metropolitan area remains relatively fixed;
however, each year 6 percent of the people living in the city move to the suburbs and
2 percent of the people living in the suburbs move to the city. If, initially, 30 percent
of the population lives in the city and 70 percent lives in the suburbs, what will these
percentages be in 10 years? 30 years? 50 years? What are the long-term implications?

The changes in population can be determined by matrix multiplications. If we set

A =
⎧⎪⎩ 0.94 0.02

0.06 0.98

⎫⎪⎭ and x0 =
⎧⎪⎩ 0.30

0.70

⎫⎪⎭
then the percentages of people living in the city and suburbs after one year can be
calculated by setting x1 = Ax0. The percentages after two years can be calculated by
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setting x2 = Ax1 = A2x0. In general, the percentages after n years will be given by
xn = Anx. If we calculate these percentages for n = 10, 30, and 50 years and round to
the nearest percent, we get

x10 =
⎧⎪⎩ 0.27

0.73

⎫⎪⎭ x30 =
⎧⎪⎩ 0.25

0.75

⎫⎪⎭ x50 =
⎧⎪⎩ 0.25

0.75

⎫⎪⎭
In fact, as n increases, the sequence of vectors xn = Anx0 converges to a limit x =
(0.25, 0.75)T . The limit vector x is called a steady-state vector for the process.

To understand why the process approaches a steady state, it is helpful to switch
to a different coordinate system. For the new coordinate system, we will pick vectors
u1 and u2, for which it is easy to see the effect of multiplication by the matrix A. In
particular, if we pick u1 to be any multiple of the steady-state vector x, then Au1 will
equal u1. Let us choose u1 = (1 3)T and u2 = (−1 1)T . The second vector was chosen
because the effect of multiplying by A is just to scale the vector by a factor of 0.92.
Thus, our new basis vectors satisfy

Au1 =
⎧⎪⎩ 0.94 0.02

0.06 0.98

⎫⎪⎭⎧⎪⎩ 1
3

⎫⎪⎭ =
⎧⎪⎩ 1

3

⎫⎪⎭ = u1

Au2 =
⎧⎪⎩ 0.94 0.02

0.06 0.98

⎫⎪⎭⎧⎪⎩ −1
1

⎫⎪⎭ =
⎧⎪⎩ −0.92

0.92

⎫⎪⎭ = 0.92u2

The initial vector x0 can be written as a linear combination of the new basis vectors:

x0 =
⎧⎪⎩ 0.30

0.70

⎫⎪⎭ = 0.25
⎧⎪⎩ 1

3

⎫⎪⎭ − 0.05
⎧⎪⎩ −1

1

⎫⎪⎭ = 0.25u1 − 0.05u2

It follows that

xn = Anx0 = 0.25u1 − 0.05(0.92)nu2

The entries of the second component approach 0 as n gets large. In fact, for n > 27,
the entries will be small enough so that the rounded values of xn are all equal to

0.25u1 =
⎧⎪⎩ 0.25

0.75

⎫⎪⎭
This application is an example of a type of mathematical model called a Markov

process. The sequence of vectors x1, x2, . . . is called a Markov chain. The matrix A has
a special structure in that its entries are nonnegative and its columns all add up to 1.
Such matrices are called stochastic matrices. More precise definitions will be given
later when we study these types of applications in Chapter 6. What we want to stress
here is that the key to understanding such processes is to switch to a basis for which
the effect of the matrix is quite simple. In particular, if A is n × n, then we will want to
choose basis vectors so that the effect of the matrix A on each basis vector uj is simply
to scale it by some factor λj, that is,

Auj = λjuj j = 1, 2, . . . , n (1)

In many applied problems involving an n × n matrix A, the key to solving the problem
often is to find basis vectors u1, . . . , un and scalars λ1, . . . , λn such that (1) is satisfied.
The new basis vectors can be thought of as a natural coordinate system to use with the
matrix A, and the scalars can be thought of as natural frequencies for the basis vectors.
We will study these types of applications in more detail in Chapter 6.
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Changing Coordinates
Once we have decided to work with a new basis, we have the problem of finding the
coordinates with respect to that basis. Suppose, for example, that instead of using the
standard basis {e1, e2} for R

2, we wish to use a different basis, say

u1 =
⎧⎪⎩ 3

2

⎫⎪⎭ , u2 =
⎧⎪⎩ 1

1

⎫⎪⎭
Indeed, we may want to switch back and forth between the two coordinate systems.
Let us consider the following two problems.

I. Given a vector x = (x1, x2)T , find its coordinates with respect to u1 and u2.
II. Given a vector c1u1 + c2u2, find its coordinates with respect to e1 and e2.

We will solve II first, since it turns out to be the easier problem. To switch bases from
{u1, u2} to {e1, e2}, we must express the old basis elements u1 and u2 in terms of the
new basis elements e1 and e2.

u1 = 3e1 + 2e2

u2 = e1 + e2

It follows then that

c1u1 + c2u2 = (3c1e1 + 2c1e2) + (c2e1 + c2e2)
= (3c1 + c2)e1 + (2c1 + c2)e2

Thus the coordinate vector of c1u1 + c2u2 with respect to {e1, e2} is

x =
⎧⎪⎩ 3c1 + c2

2c1 + c2

⎫⎪⎭ =
⎧⎪⎩ 3 1

2 1

⎫⎪⎭ ⎧⎪⎩ c1

c2

⎫⎪⎭
If we set

U = (u1, u2) =
⎧⎪⎩ 3 1

2 1

⎫⎪⎭
then, given any coordinate vector c with respect to {u1, u2}, to find the corresponding
coordinate vector x with respect to {e1, e2}, we simply multiply U times c:

x = Uc (2)

The matrix U is called the transition matrix from the ordered basis {u1, u2} to the
standard basis {e1, e2}.

To solve problem I, we must find the transition matrix from {e1, e2} to {u1, u2}.
The matrix U in (2) is nonsingular, since its column vectors, u1 and u2, are linearly
independent. It follows from (2) that

c = U−1x

Thus, given a vector

x = (x1, x2)T = x1e1 + x2e2

we need only multiply by U−1 to find its coordinate vector with respect to {u1, u2}.
U−1 is the transition matrix from {e1, e2} to {u1, u2}.
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EXAMPLE 2 Let u1 = (3, 2)T , u2 = (1, 1)T , and x = (7, 4)T . Find the coordinates of x with respect
to u1 and u2.

Solution
By the preceding discussion, the transition matrix from {e1, e2} to {u1, u2} is the
inverse of

U = (u1, u2) =
⎧⎪⎩ 3 1

2 1

⎫⎪⎭
Thus

c = U−1x =
⎧⎪⎩ 1 −1

−2 3

⎫⎪⎭ ⎧⎪⎩ 7
4

⎫⎪⎭ =
⎧⎪⎩ 3

−2

⎫⎪⎭
is the desired coordinate vector and

x = 3u1 − 2u2

EXAMPLE 3 Let b1 = (1, −1)T and b2 = (−2, 3)T . Find the transition matrix from {e1, e2} to
{b1, b2} and determine the coordinates of x = (1, 2)T with respect to {b1, b2}.
Solution
The transition matrix from {b1, b2} to {e1, e2} is

B = (b1, b2) =
⎧⎪⎩ 1 −2

−1 3

⎫⎪⎭
and hence the transition matrix from {e1, e2} to {b1, b2} is

B−1 =
⎧⎪⎩ 3 2

1 1

⎫⎪⎭
The coordinate vector of x with respect to {b1, b2} is

c = B−1x =
⎧⎪⎩ 3 2

1 1

⎫⎪⎭⎧⎪⎩ 1
2

⎫⎪⎭ =
⎧⎪⎩ 7

3

⎫⎪⎭
and hence

x = 7b1 + 3b2

Now let us consider the general problem of changing from one ordered basis
{v1, v2} of R

2 to another ordered basis {u1, u2}. In this case, we assume that, for a
given vector x, its coordinates with respect to {v1, v2} are known:

x = c1v1 + c2v2

Now we wish to represent x as a sum d1u1 + d2u2. Thus, we must find scalars d1 and
d2 so that

c1v1 + c2v2 = d1u1 + d2u2 (3)

If we set V = (v1, v2) and U = (u1, u2), then equation (3) can be written in matrix
form

Vc = Ud
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It follows that

d = U−1Vc

Thus, given a vector x in R
2 and its coordinate vector c with respect to the ordered

basis {v1, v2}, to find the coordinate vector of x with respect to the new basis {u1, u2},
we simply multiply c by the transition matrix S = U−1V .

EXAMPLE 4 Find the transition matrix corresponding to the change of basis from {v1, v2} to {u1, u2},
where

v1 =
⎧⎪⎩ 5

2

⎫⎪⎭ , v2 =
⎧⎪⎩ 7

3

⎫⎪⎭ and u1 =
⎧⎪⎩ 3

2

⎫⎪⎭ , u2 =
⎧⎪⎩ 1

1

⎫⎪⎭
Solution
The transition matrix from {v1, v2} to {u1, u2} is given by

S = U−1V =
⎧⎪⎩ 1 −1

−2 3

⎫⎪⎭ ⎧⎪⎩ 5 7
2 3

⎫⎪⎭ =
⎧⎪⎩ 3 4

−4 −5

⎫⎪⎭
The change of basis from {v1, v2} to {u1, u2} can also be viewed as a two-step pro-

cess. First we change from {v1, v2} to the standard basis, {e1, e2}, and then we change
from the standard basis to {u1, u2}. Given a vector x in R

2, if c is the coordinate vector
of x with respect to {v1, v2} and d is the coordinate vector of x with respect to {u1, u2},
then

c1v1 + c2v2 = x1e1 + x2e2 = d1u1 + d2u2

Since V is the transition matrix from {v1, v2} to {e1, e2} and U−1 is the transition matrix
from {e1, e2} to {u1, u2}, it follows that

Vc = x and U−1x = d

and hence

U−1Vc = U−1x = d

As before, we see that the transition matrix from {v1, v2} to {u1, u2} is U−1V (see
Figure 3.5.2).

[v1, v2] [e1, e2]

[u1, u2]

U–1V
U–1

V

Figure 3.5.2.
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Change of Basis for a General Vector Space
Everything we have done so far can easily be generalized to apply to any finite-
dimensional vector space. We begin by defining coordinate vectors for an n-dimen-
sional vector space.

Definition Let V be a vector space and let E = {v1, v2, . . . , vn} be an ordered basis for V . If v
is any element of V , then v can be written in the form

v = c1v1 + c2v2 + · · · + cnvn

where c1, c2, . . . , cn are scalars. Thus, we can associate with each vector v a unique
vector c = (c1, c2, . . . , cn)T in R

n. The vector c defined in this way is called the
coordinate vector of v with respect to the ordered basis E and is denoted [v]E. The
ci’s are called the coordinates of v relative to E.

The examples considered so far have all dealt with changing coordinates in R
2.

Similar techniques could be used for R
n. In the case of R

n the transition matrices will
be n × n.

EXAMPLE 5 If

v1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭ , v2 =
⎧⎪⎪⎪⎪⎪⎩

2
3
2

⎫⎪⎪⎪⎪⎪⎭ , v3 =
⎧⎪⎪⎪⎪⎪⎩

1
5
4

⎫⎪⎪⎪⎪⎪⎭
and

u1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭ , u2 =
⎧⎪⎪⎪⎪⎪⎩

1
2
0

⎫⎪⎪⎪⎪⎪⎭ , u3 =
⎧⎪⎪⎪⎪⎪⎩

1
2
1

⎫⎪⎪⎪⎪⎪⎭
then E = {v1, v2, v3} and F = {u1, u2, u3} are ordered bases for R

3. Let

x = 3v1 + 2v2 − v3 and y = v1 − 3v2 + 2v3

Find the transition matrix from E to F and use it to find the coordinates of x and y with
respect to the ordered basis F.

Solution
As in Example 4, the transition matrix is given by

U−1V =
⎧⎪⎪⎪⎪⎪⎩

2 −1 0
−1 1 −1

0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 2 1
1 3 5
1 2 4

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
−1 −1 0

1 2 4

⎫⎪⎪⎪⎪⎪⎭
The coordinate vectors of x and y with respect to the ordered basis F are given by

[x]F =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
−1 −1 0

1 2 4

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3
2

−1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

8
−5

3

⎫⎪⎪⎪⎪⎪⎭
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and

[y]F =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
−1 −1 0

1 2 4

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1
−3

2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

−8
2
3

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that

8u1 − 5u2 + 3u3 = 3v1 + 2v2 − v3

−8u1 + 2u2 + 3u3 = v1 − 3v2 + 2v3

If V is any n-dimensional vector space, it is possible to change from one basis to
another by means of an n × n transition matrix. We will show that such a transition
matrix is necessarily nonsingular. To see how this is done, let E = {w1, . . . , wn} and
F = {v1, . . . , vn} be two ordered bases for V . The key step is to express each basis
vector wj as a linear combination of the vi’s.

w1 = s11v1 + s21v2 + · · · + sn1vn

w2 = s12v1 + s22v2 + · · · + sn2vn

... (4)
wn = s1nv1 + s2nv2 + · · · + snnvn

Let v ∈ V . If x = [v]E, it follows from (4) that

v = x1w1 + x2w2 + · · · + xnwn

=
⎛
⎝ n∑

j=1

s1jxj

⎞
⎠ v1 +

⎛
⎝ n∑

j=1

s2jxj

⎞
⎠ v2 + · · · +

⎛
⎝ n∑

j=1

snjxj

⎞
⎠ vn

Thus, if y = [v]F, then

yi =
n∑

j=1

sijxj i = 1, . . . , n

and hence

y = Sx

The matrix S defined by (4) is referred to as the transition matrix. Once S has been
determined, it is a simple matter to change coordinate systems. To find the coordinates
of v = x1w1 + · · · + xnwn with respect to {v1, . . . , vn}, we need only calculate y = Sx.

The transition matrix S corresponding to the change of basis from {w1, . . . , wn} to
{v1, . . . , vn} can be characterized by the condition

Sx = y if and only if x1w1 + · · · + xnwn = y1v1 + · · · + ynvn (5)

Taking y = 0 in (5), we see that Sx = 0 implies that

x1w1 + · · · + xnwn = 0
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Since the wi’s are linearly independent, it follows that x = 0. Thus the equation
Sx = 0 has only the trivial solution and hence the matrix S is nonsingular. The inverse
matrix is characterized by the condition

S−1y = x if and only if y1v1 + · · · + ynvn = x1w1 + · · · + xnwn

Thus S−1 is the transition matrix used to change basis from {v1, . . . , vn} to
{w1, . . . , wn}.

EXAMPLE 6 Suppose that in P3 we want to change from the ordered basis [1, x, x2] to the ordered
basis [1, 2x, 4x2 − 2]. Because [1, x, x2] is the standard basis for P3, it is easier to find
the transition matrix from [1, 2x, 4x2 − 2] to [1, x, x2]. Since

1 = 1 · 1 + 0x + 0x2

2x = 0 · 1 + 2x + 0x2

4x2 − 2 = −2 · 1 + 0x + 4x2

the transition matrix is

S =
⎧⎪⎪⎪⎪⎪⎩

1 0 −2
0 2 0
0 0 4

⎫⎪⎪⎪⎪⎪⎭
The inverse of S will be the transition matrix from [1, x, x2] to [1, 2x, 4x2 − 2]:

S−1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Given any p(x) = a + bx + cx2 in P3, to find the coordinates of p(x) with respect to
[1, 2x, 4x2 − 2], we simply multiply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

a + 1
2 c

1
2 b
1
4 c

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Thus,

p(x) = (a + 1
2 c) · 1 + ( 1

2 b) · 2x + 1
4 c · (4x2 − 2)

We have seen that each transition matrix is nonsingular. Actually, any nonsingular
matrix can be thought of as a transition matrix. If S is an n × n nonsingular matrix and
{v1, . . . , vn} is an ordered basis for V , then define {w1, w2, . . . , wn} by (4). To see that
the wj’s are linearly independent, suppose that

n∑
j=1

xjwj = 0
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It follows from (4) that

n∑
i=1

⎛
⎝ n∑

j=1

sijxj

⎞
⎠ vj = 0

By the linear independence of the vi’s, it follows that

n∑
j=1

sijxj = 0 i = 1, . . . , n

or, equivalently,

Sx = 0

Since S is nonsingular, x must equal 0. Therefore, w1, . . . , wn are linearly independent
and hence they form a basis for V . The matrix S is the transition matrix corresponding
to the change from the ordered basis {w1, . . . , wn} to {v1, . . . , vn}.

In many applied problems, it is important to use the right type of basis for the
particular application. In Chapter 5, we will see that the key to solving least squares
problems is to switch to a special type of basis called an orthonormal basis. In
Chapter 6, we will consider a number of applications involving the eigenvalues and
eigenvectors associated with an n × n matrix A. The key to solving these types of
problems is to switch to a basis for R

n consisting of eigenvectors of A.

SECTION 3.5 EXERCISES
1. For each of the following, find the transition matrix

corresponding to the change of basis from {u1, u2}
to {e1, e2}.
(a) u1 = (1, 1)T , u2 = (−1, 1)T

(b) u1 = (1, 2)T , u2 = (2, 5)T

(c) u1 = (0, 1)T , u2 = (1, 0)T

2. For each of the ordered bases {u1, u2} in Exer-
cise 1, find the transition matrix corresponding to
the change of basis from {e1, e2} to {u1, u2}.

3. Let v1 = (3, 2)T and v2 = (4, 3)T . For each ordered
basis {u1, u2} given in Exercise 1, find the transition
matrix from {v1, v2} to {u1, u2}.

4. Let E = [(5, 3)T , (3, 2)T ] and let x = (1, 1)T ,
y = (1, −1)T , and z = (10, 7)T . Determine the
values of [x]E, [y]E, and [z]E.

5. Let u1 = (1, 1, 1)T , u2 = (1, 2, 2)T , and u3 =
(2, 3, 4)T .
(a) Find the transition matrix corresponding to the

change of basis from {e1, e2, e3} to {u1, u2, u3}.

(b) Find the coordinates of each of the follow-
ing vectors with respect to the ordered basis
{u1, u2, u3}.
(i) (3, 2, 5)T (ii) (1, 1, 2)T (iii) (2, 3, 2)T

6. Let v1 = (4, 6, 7)T , v2 = (0, 1, 1)T , and v3 =
(0, 1, 2)T , and let u1, u2, and u3 be the vectors given
in Exercise 5.
(a) Find the transition matrix from {v1, v2, v3} to

{u1, u2, u3}.
(b) If x = 2v1 + 3v2 − 4v3, determine the coordin-

ates of x with respect to {u1, u2, u3}.
7. Given

v1 =
⎧⎪⎩ 1

2

⎫⎪⎭ , v2 =
⎧⎪⎩ 2

3

⎫⎪⎭ , S =
⎧⎪⎩ 3 5

1 −2

⎫⎪⎭
find vectors w1 and w2 so that S will be the
transition matrix from {w1, w2} to {v1, v2}.

8. Given

v1 =
⎧⎪⎩ 2

6

⎫⎪⎭ , v2 =
⎧⎪⎩ 1

4

⎫⎪⎭ , S =
⎧⎪⎩ 4 1

2 1

⎫⎪⎭
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find vectors u1 and u2 so that S will be the transition
matrix from {v1, v2} to {u1, u2}.

9. Let [x, 1] and [2x − 1, 2x + 1] be ordered bases for
P2.
(a) Find the transition matrix representing the

change in coordinates from [2x − 1, 2x + 1]
to [x, 1].

(b) Find the transition matrix representing
the change in coordinates from [x, 1] to
[2x − 1, 2x + 1].

10. Find the transition matrix representing the change
of coordinates on P3 from the ordered basis
[1, x, x2] to the ordered basis

[1, 1 + x, 1 + x + x2]

11. Let E = {u1, . . . , un} and F = {v1, . . . , vn} be two
ordered bases for R

n, and set

U = (u1, . . . , un), V = (v1, . . . , vn)

Show that the transition matrix from E to F can be
determined by calculating the reduced row echelon
form of (V|U).

3.6 Row Space and Column Space

If A is an m × n matrix, each row of A is an n-tuple of real numbers and hence can be
considered as a vector in R

1×n. The m vectors corresponding to the rows of A will be
referred to as the row vectors of A. Similarly, each column of A can be considered as a
vector in R

m, and we can associate n column vectors with the matrix A.

Definition If A is an m × n matrix, the subspace of R
1×n spanned by the row vectors of A is

called the row space of A. The subspace of R
m spanned by the column vectors of

A is called the column space of A.

EXAMPLE 1 Let

A =
⎧⎪⎩ 1 0 0

0 1 0

⎫⎪⎭
The row space of A is the set of all 3-tuples of the form

α(1, 0, 0) + β(0, 1, 0) = (α, β, 0)

The column space of A is the set of all vectors of the form

α

⎧⎪⎩ 1
0

⎫⎪⎭ + β

⎧⎪⎩ 0
1

⎫⎪⎭ + γ

⎧⎪⎩ 0
0

⎫⎪⎭ =
⎧⎪⎩ α

β

⎫⎪⎭
Thus the row space of A is a two-dimensional subspace of R

1×3, and the column space
of A is R

2.

Theorem 3.6.1 Two row equivalent matrices have the same row space.

Proof If B is row equivalent to A, then B can be formed from A by a finite sequence of row
operations. Thus the row vectors of B must be linear combinations of the row vectors
of A. Consequently, the row space of B must be a subspace of the row space of A. Since
A is row equivalent to B, by the same reasoning, the row space of A is a subspace of
the row space of B.
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Definition The rank of a matrix A, denoted rank(A), is the dimension of the row space of A.

To determine the rank of a matrix, we can reduce the matrix to row echelon form.
The nonzero rows of the row echelon matrix will form a basis for the row space.

EXAMPLE 2 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 −2 3
2 −5 1
1 −4 −7

⎫⎪⎪⎪⎪⎪⎭
Reducing A to row echelon form, we obtain the matrix

U =
⎧⎪⎪⎪⎪⎪⎩

1 −2 3
0 1 5
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Clearly, (1, −2, 3) and (0, 1, 5) form a basis for the row space of U. Since U and A are
row equivalent, they have the same row space, and hence the rank of A is 2.

Linear Systems
The concepts of row space and column space are useful in the study of linear systems.
A system Ax = b can be written in the form

x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11

a21
...

am1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + x2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a12

a22
...

am2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + · · · + xn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1n

a2n
...

amn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1

b2
...

bm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)

In Chapter 1 we used this representation to characterize when a linear system will be
consistent. The result, Theorem 1.3.1, can now be restated in terms of the column space
of the matrix.

Theorem 3.6.2 Consistency Theorem for Linear Systems
A linear system Ax = b is consistent if and only if b is in the column space of A.

If b is replaced by the zero vector, then (1) becomes

x1a1 + x2a2 · · · + xnan = 0 (2)

It follows from (2) that the system Ax = 0 will have only the trivial solution x = 0 if
and only if the column vectors of A are linearly independent.

Theorem 3.6.3 Let A be an m×n matrix. The linear system Ax = b is consistent for every b ∈ R
m if and

only if the column vectors of A span R
m. The system Ax = b has at most one solution

for every b ∈ R
m if and only if the column vectors of A are linearly independent.
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Proof We have seen that the system Ax = b is consistent if and only if b is in the column
space of A. It follows that Ax = b will be consistent for every b ∈ R

m if and only if the
column vectors of A span R

m. To prove the second statement, note that, if Ax = b has
at most one solution for every b, then in particular the system Ax = 0 can have only
the trivial solution, and hence the column vectors of A must be linearly independent.
Conversely, if the column vectors of A are linearly independent, Ax = 0 has only the
trivial solution. Now, if x1 and x2 were both solutions of Ax = b, then x1 − x2 would
be a solution of Ax = 0,

A(x1 − x2) = Ax1 − Ax2 = b − b = 0

It follows that x1 − x2 = 0, and hence x1 must equal x2.

Let A be an m × n matrix. If the column vectors of A span R
m, then n must be

greater than or equal to m, since no set of fewer than m vectors could span R
m. If the

columns of A are linearly independent, then n must be less than or equal to m, since
every set of more than m vectors in R

m is linearly dependent. Thus, if the column
vectors of A form a basis for R

m, then n must equal m.

Corollary 3.6.4 An n × n matrix A is nonsingular if and only if the column vectors of A form a basis
for R

n.

In general, the rank and the dimension of the null space always add up to the
number of columns of the matrix. The dimension of the null space of a matrix is called
the nullity of the matrix.

Theorem 3.6.5 The Rank–Nullity Theorem
If A is an m × n matrix, then the rank of A plus the nullity of A equals n.

Proof Let U be the reduced row echelon form of A. The system Ax = 0 is equivalent to the
system Ux = 0. If A has rank r, then U will have r nonzero rows, and consequently the
system Ux = 0 will involve r lead variables and n − r free variables. The dimension
of N(A) will equal the number of free variables.

EXAMPLE 3 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 −1 1
2 4 −3 0
1 2 1 5

⎫⎪⎪⎪⎪⎪⎭
Find a basis for the row space of A and a basis for N(A). Verify that dim N(A) = n − r.

Solution
The reduced row echelon form of A is given by

U =
⎧⎪⎪⎪⎪⎪⎩

1 2 0 3
0 0 1 2
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
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Thus, {(1, 2, 0, 3), (0, 0, 1, 2)} is a basis for the row space of A, and A has rank 2. Since
the systems Ax = 0 and Ux = 0 are equivalent, it follows that x is in N(A) if and
only if

x1 + 2x2 + 3x4 = 0
x3 + 2x4 = 0

The lead variables x1 and x3 can be solved for in terms of the free variables x2 and x4:

x1 = −2x2 − 3x4

x3 = −2x4

Let x2 = α and x4 = β. It follows that N(A) consists of all vectors of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2

x3

x4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2α − 3β

α

−2β

β

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ = α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3

0
−2

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The vectors (−2, 1, 0, 0)T and (−3, 0, −2, 1)T form a basis for N(A). Note that

n − r = 4 − 2 = 2 = dim N(A)

The Column Space
The matrices A and U in Example 3 have different column spaces; however, their
column vectors satisfy the same dependency relations. For the matrix U, the column
vectors u1 and u3 are linearly independent, while

u2 = 2u1

u4 = 3u1 + 2u3

The same relations hold for the columns of A: The vectors a1 and a3 are linearly
independent, while

a2 = 2a1

a4 = 3a1 + 2a3

In general, if A is an m × n matrix and U is the row echelon form of A, then,
since Ax = 0 if and only if Ux = 0, their column vectors satisfy the same dependency
relations. We will use this property to prove that the dimension of the column space of
A is equal to the dimension of the row space of A.

Theorem 3.6.6 If A is an m × n matrix, the dimension of the row space of A equals the dimension of
the column space of A.

Proof If A is an m × n matrix of rank r, the row echelon form U of A will have r leading 1’s.
The columns of U corresponding to the leading 1’s will be linearly independent. They
do not, however, form a basis for the column space of A, since, in general, A and U will
have different column spaces. Let UL denote the matrix obtained from U by deleting
all the columns corresponding to the free variables. Delete the same columns from A
and denote the new matrix by AL. The matrices AL and UL are row equivalent. Thus,
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if x is a solution of ALx = 0, then x must also be a solution of ULx = 0. Since the
columns of UL are linearly independent, x must equal 0. It follows from the remarks
preceding Theorem 3.6.3 that the columns of AL are linearly independent. Since AL has
r columns, the dimension of the column space of A is at least r.

We have proved that, for any matrix, the dimension of the column space is greater
than or equal to the dimension of the row space. Applying this result to the matrix AT ,
we see that

dim(row space of A) = dim(column space of AT )
≥ dim(row space of AT )
= dim(column space of A)

Thus, for any matrix A, the dimension of the row space must equal the dimension of
the column space.

We can use the row echelon form U of A to find a basis for the column space of
A. We need only determine the columns of U that correspond to the leading 1’s. These
same columns of A will be linearly independent and form a basis for the column space
of A.

Note

The row echelon form U tells us only which columns of A to use to form a basis.
We cannot use the column vectors from U, since, in general, U and A have different
column spaces.

EXAMPLE 4 Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 1 1 2

−1 3 0 2 −2
0 1 1 3 4
1 2 5 13 5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The row echelon form of A is given by

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 1 1 2
0 1 1 3 0
0 0 0 0 1
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The leading 1’s occur in the first, second, and fifth columns. Thus

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

3
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , a5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2

−2
4
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
form a basis for the column space of A.
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EXAMPLE 5 Find the dimension of the subspace of R
4 spanned by

x1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2

−1
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
5

−3
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
4

−2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , x4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
8

−5
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solution
The subspace Span(x1, x2, x3, x4) is the same as the column space of the matrix

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 2 3
2 5 4 8

−1 −3 −2 −5
0 2 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The row echelon form of X is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 2 2 3
0 1 0 2
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The first two columns x1, x2 of X will form a basis for the column space of X. Thus,
dim Span(x1, x2, x3, x4) = 2.

SECTION 3.6 EXERCISES
1. For each of the following matrices, find a basis for

the row space, a basis for the column space, and a
basis for the null space.

(a)

⎧⎪⎪⎪⎪⎪⎩
1 3 2
2 1 4
4 7 8

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
−3 1 3 4

1 2 −1 −2
−3 8 4 2

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 3 −2 1
2 1 3 2
3 4 5 6

⎫⎪⎪⎪⎪⎪⎭
2. In each of the following, determine the dimension

of the subspace of R
3 spanned by the given vectors.

(a)

⎧⎪⎪⎪⎪⎪⎩
1

−2
2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2

−2
4

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−3

3
6

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
1
2
3

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2
3
1

⎫⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎩
1

−1
2

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
−2

2
−4

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
3

−2
5

⎫⎪⎪⎪⎪⎪⎭ ,

⎧⎪⎪⎪⎪⎪⎩
2

−1
3

⎫⎪⎪⎪⎪⎪⎭
3. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 2 3 1 4
2 4 5 5 4 9
3 6 7 8 5 9

⎫⎪⎪⎪⎪⎪⎭
(a) Compute the reduced row echelon form U of

A. Which column vectors of U correspond to
the free variables? Write each of these vectors
as a linear combination of the column vectors
corresponding to the lead variables.

(b) Which column vectors of A correspond to the
lead variables of U? These column vectors
form a basis for the column space of A. Write
each of the remaining column vectors of A as a
linear combination of these basis vectors.

4. For each of the following choices of A and b, de-
termine whether b is in the column space of A and
state whether the system Ax = b is consistent:
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(a) A =
⎧⎪⎩ 1 2

2 4

⎫⎪⎭ , b =
⎧⎪⎩ 4

8

⎫⎪⎭
(b) A =

⎧⎪⎩ 3 6
1 2

⎫⎪⎭ , b =
⎧⎪⎩ 1

1

⎫⎪⎭
(c) A =

⎧⎪⎩ 2 1
3 4

⎫⎪⎭ , b =
⎧⎪⎩ 4

6

⎫⎪⎭
(d) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 2
1 1 2
1 1 2

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

1
2
3

⎫⎪⎪⎪⎪⎪⎭
(e) A =

⎧⎪⎪⎪⎪⎪⎩
0 1
1 0
0 1

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

2
5
2

⎫⎪⎪⎪⎪⎪⎭
(f) A =

⎧⎪⎪⎪⎪⎪⎩
1 2
2 4
1 2

⎫⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎩

5
10

5

⎫⎪⎪⎪⎪⎪⎭
5. For each consistent system in Exercise 4, determ-

ine whether there will be one or infinitely many
solutions by examining the column vectors of the
coefficient matrix A.

6. How many solutions will the linear system Ax = b
have if b is in the column space of A and the column
vectors of A are linearly dependent? Explain.

7. Let A be a 6 × n matrix of rank r and let b be a vec-
tor in R

6. For each choice of r and n that follows,
indicate the possibilities as to the number of solu-
tions one could have for the linear system Ax = b.
Explain your answers.
(a) n = 7, r = 5 (b) n = 7, r = 6

(c) n = 5, r = 5 (d) n = 5, r = 4
8. Let A be an m × n matrix with m > n. Let b ∈ R

m

and suppose that N(A) = {0}.
(a) What can you conclude about the column vec-

tors of A? Are they linearly independent? Do
they span R

m? Explain.

(b) How many solutions will the system Ax = b
have if b is not in the column space of A?
How many solutions will there be if b is in the
column space of A? Explain.

9. Let A and B be 6 × 5 matrices. If dim N(A) = 2,
what is the rank of A? If the rank of B is 4, what is
the dimension of N(B)?

10. Let A be an m × n matrix whose rank is equal to n.
If Ac = Ad, does this imply that c must be equal
to d? What if the rank of A is less than n? Explain
your answers.

11. Let A be an m × n matrix. Prove that

rank(A) ≤ min(m, n)

12. Let A and B be row equivalent matrices.
(a) Show that the dimension of the column space

of A equals the dimension of the column space
of B.

(b) Are the column spaces of the two matrices
necessarily the same? Justify your answer.

13. Let A be a 4 × 3 matrix and suppose that the vectors

z1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
2

⎫⎪⎪⎪⎪⎪⎭ , z2 =
⎧⎪⎪⎪⎪⎪⎩

1
0

−1

⎫⎪⎪⎪⎪⎪⎭
form a basis for N(A). If b = a1 + 2a2 + a3, find all
solutions of the system Ax = b.

14. Let A be a 4 × 4 matrix with reduced row echelon
form given by

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 2 1
0 1 1 4
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
If

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3

5
2
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4

−3
7

−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
find a3 and a4.

15. Let A be a 4 × 5 matrix and let U be the reduced
row echelon form of A. If

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
1

−3
−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ , a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

2
3
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 2 0 −1
0 1 3 0 −2
0 0 0 1 5
0 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) find a basis for N(A).
(b) given that x0 is a solution to Ax = b, where

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0
5
3
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and x0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
2
0
2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(i) find all solutions to the system.

(ii) determine the remaining column vectors
of A.

16. Let A be a 5 × 8 matrix with rank equal to 5 and
let b be any vector in R

5. Explain why the system
Ax = b must have infinitely many solutions.
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17. Let A be a 4 × 5 matrix. If a1, a2, and a4 are linearly
independent and

a3 = a1 + 2a2, a5 = 2a1 − a2 + 3a4

determine the reduced row echelon form of A.

18. Let A be a 5 × 3 matrix of rank 3 and let {x1, x2, x3}
be a basis for R

3.

(a) Show that N(A) = {0}.
(b) Show that if y1 = Ax1, y2 = Ax2, and

y3 = Ax3 then y1, y2, and y3 are linearly
independent.

(c) Do the vectors y1, y2, y3 from part (b) form a
basis for R

5? Explain.

19. Let A be an m×n matrix with rank equal to n. Show
that if x �= 0 and y = Ax, then y �= 0.

20. Prove that a linear system Ax = b is consistent if
and only if the rank of (A | b) equals the rank of A.

21. Let A and B be m × n matrices. Show that

rank(A + B) ≤ rank(A) + rank(B)

22. Let A be an m × n matrix.

(a) Show that if B is a nonsingular m × m matrix,
then BA and A have the same null space and
hence the same rank.

(b) Show that if C is a nonsingular n × n matrix,
then AC and A have the same rank.

23. Prove Corollary 3.6.4.

24. Show that if A and B are n × n matrices and
N(A − B) = R

n then A = B.

25. Let A and B be n × n matrices.
(a) Show that AB = O if and only if the column

space of B is a subspace of the null space of A.
(b) Show that if AB = O, then the sum of the ranks

of A and B cannot exceed n.
26. Let A ∈ R

m×n and b ∈ R
m, and let x0 be a partic-

ular solution of the system Ax = b. Prove that if
N(A) = {0}, then the solution x0 must be unique.

27. Let x and y be nonzero vectors in R
m and R

n,
respectively, and let A = xyT .
(a) Show that {x} is a basis for the column space

of A and that {yT} is a basis for the row space
of A.

(b) What is the dimension of N(A)?

28. Let A ∈ R
m×n, B ∈ R

n×r, and C = AB. Show that
(a) the column space of C is a subspace of the

column space of A.
(b) the row space of C is a subspace of the row

space of B.
(c) rank(C) ≤ min{rank(A), rank(B)}.

29. Let A ∈ R
m×n, B ∈ R

n×r, and C = AB. Show that
(a) if A and B both have linearly independent

column vectors, then the column vectors of C
will also be linearly independent.

(b) if A and B both have linearly independent row
vectors, then the row vectors of C will also be
linearly independent.

[Hint: Apply part (a) to CT ].
30. Let A ∈ R

m×n, B ∈ R
n×r, and C = AB. Show that

(a) if the column vectors of B are linearly de-
pendent, then the column vectors of C must be
linearly dependent.

(b) if the row vectors of A are linearly depend-
ent, then the row vectors of C are linearly
dependent.

[Hint: Apply part (a) to CT ].
31. An m × n matrix A is said to have a right inverse if

there exists an n × m matrix C such that AC = Im.
The matrix A is said to have a left inverse if there
exists an n × m matrix D such that DA = In.
(a) Show that if A has a right inverse, then the

column vectors of A span R
m.

(b) Is it possible for an m×n matrix to have a right
inverse if n < m? n ≥ m? Explain.

32. Prove: If A is an m × n matrix and the column vec-
tors of A span R

m, then A has a right inverse. Hint:
Let ej denote the jth column of Im and solve Ax = ej

for j = 1, . . . , m.
33. Show that a matrix B has a left inverse if and only

if BT has a right inverse.
34. Let B be an n × m matrix whose columns are

linearly independent. Show that B has a left
inverse.

35. Prove that if a matrix B has a left inverse then the
columns of B are linearly independent.

36. Show that if a matrix U is in row echelon form, then
the nonzero row vectors of U form a basis for the
row space of U.
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Chapter Three Exercises

MATLAB EXERCISES

1. (Change of Basis) Set

U = round(20 ∗ rand(4)) − 10,

V = round(10 ∗ rand(4))

and set b = ones(4, 1).
(a) We can use the MATLAB function rank to de-

termine whether the column vectors of a matrix
are linearly independent. What should the rank
be if the column vectors of U are linearly inde-
pendent? Compute the rank of U, and verify that
its column vectors are linearly independent and
hence form a basis for R

4. Compute the rank of
V , and verify that its column vectors also form
a basis for R

4.

(b) Use MATLAB to compute the transition mat-
rix from the standard basis for R

4 to the ordered
basis E = {u1, u2, u3, u4}. [Note that in MAT-
LAB the notation for the jth column vector uj

is U(: , j).] Use this transition matrix to compute
the coordinate vector c of b with respect to E.
Verify that

b = c1u1 + c2u2 + c3u3 + c4u4 = Uc

(c) Use MATLAB to compute the transition mat-
rix from the standard basis to the ordered basis
F = {v1, v2, v3, v4}, and use this transition mat-
rix to find the coordinate vector d of b with
respect to F. Verify that

b = d1v1 + d2v2 + d3v3 + d4v4 = Vd

(d) Use MATLAB to compute the transition matrix
S from E to F and the transition matrix T from
F to E. How are S and T related? Verify that
Sc = d and Td = c.

2. (Rank-Deficient Matrices) In this exercise we con-
sider how to use MATLAB to generate matrices with
specified ranks.
(a) In general, if A is an m × n matrix with rank

r, then r ≤ min(m, n). Why? Explain. If the
entries of A are random numbers, we would ex-
pect that r = min(m, n). Why? Explain. Check
this out by generating random 6 × 6, 8 × 6, and
5 × 8 matrices and using the MATLAB com-
mand rank to compute their ranks. Whenever
the rank of an m×n matrix equals min(m, n), we
say that the matrix has full rank. Otherwise, we
say that the matrix is rank deficient.

(b) MATLAB’s rand and round commands can
be used to generate random m × n matrices with
integer entries in a given range [a, b]. This can
be done with a command of the form

A = round((b − a) ∗ rand(m, n)) + a

For example, the command

A = round(4 ∗ rand(6, 8)) + 3

will generate a 6 × 8 matrix whose entries are
random integers in the range from 3 to 7. Using
the range [1, 10], create random integer 10 × 7,
8 × 12, and 10 × 15 matrices and in each case
check the rank of the matrix. Do these integer
matrices all have full rank?

(c) Suppose that we want to use MATLAB to gen-
erate matrices with less than full rank. It is easy
to generate matrices of rank 1. If x and y are
nonzero vectors in R

m and R
n, respectively, then

A = xyT will be an m × n matrix with rank
1. Why? Explain. Verify this in MATLAB by
setting

x = round(9 ∗ rand(8, 1)) + 1,

y = round(9 ∗ rand(6, 1)) + 1

and using these vectors to construct an 8×6 mat-
rix A. Check the rank of A with the MATLAB
command rank.

(d) In general,

rank(AB) ≤ min(rank(A), rank(B)) (1)

(See Exercise 28 in Section 3.6.) If A and B
are noninteger random matrices, the relation (1)
should be an equality. Generate an 8 × 6 matrix
A by setting

X = rand(8, 2), Y = rand(6, 2),

A = X ∗ Y ′

What would you expect the rank of A to be?
Explain. Test the rank of A with MATLAB.

(e) Use MATLAB to generate matrices A, B, and C
such that

(i) A is 8 × 8 with rank 3.
(ii) B is 6 × 9 with rank 4.

(iii) C is 10 × 7 with rank 5.
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3. (Column Space and Reduced Row Echelon Form)
Set

B = round(10 ∗ rand(8, 4))

X = round(10 ∗ rand(4, 3))

C = B ∗ X

A = [ B C ]

(a) How are the column spaces of B and C related?
(See Exercise 28 in Section 3.6.) What would
you expect the rank of A to be? Explain. Use
MATLAB to check your answer.

(b) Which column vectors of A should form a basis
for its column space? Explain. If U is the re-
duced row echelon form of A, what would you
expect its first four columns to be? Explain.
What would you expect its last four rows to be?
Explain. Use MATLAB to verify your answers
by computing U.

(c) Use MATLAB to construct another matrix
D = ( E EY ), where E is a random 6 × 4 mat-
rix and Y is a random 4 × 2 matrix. What would
you expect the reduced row echelon form of D
to be? Compute it with MATLAB. Show that, in
general, if B is an m × n matrix of rank n and X
is an n×k matrix, the reduced row echelon form
of ( B BX ) will have block structure

( I X ) if m = n or
⎧⎪⎩ I X

O O

⎫⎪⎭ if m > n

4. (Rank-1 Updates of Linear Systems)
(a) Set

A = round(10 ∗ rand(8))

b = round(10 ∗ rand(8, 1))

M = inv(A)

Use the matrix M to solve the system Ay = b
for y.

(b) Consider now a new system Cx = b, where C is
constructed as follows:

u = round(10 ∗ rand(8, 1))
v = round(10 ∗ rand(8, 1))
E = u ∗ v ′
C = A + E

The matrices C and A differ by the rank-1 mat-
rix E. Use MATLAB to verify that the rank of E
is 1. Use MATLAB’s “\” operation to solve the
system Cx = b and then compute the residual
vector r = b − Ax.

(c) Let us now solve Cx = b by a new method that
takes advantage of the fact that A and C differ by
a rank-1 matrix. This new procedure is called a
rank-1 update method. Set

z = M ∗ u, c = v ′ ∗ y,

d = v ′ ∗ z, e = c/(1 + d)

and then compute the solution x by

x = y − e ∗ z

Compute the residual vector b − Cx and com-
pare it with the residual vector in part (b). This
new method may seem more complicated, but it
actually is much more computationally efficient.

(d) To see why the rank-1 update method works, use
MATLAB to compute and compare

Cy and b + cu

Prove that if all computations had been carried
out in exact arithmetic, these two vectors would
be equal. Also, compute

Cz and (1 + d)u

Prove that if all computations had been car-
ried out in exact arithmetic, these two vectors
would be equal. Use these identities to prove
that Cx = b. Assuming that A is nonsingu-
lar, will the rank-1 update method always work?
Under what conditions could it fail? Explain.

CHAPTER TEST A True or False

Answer each of the statements that follows as true or
false. In each case, explain or prove your answer.

1. If S is a subspace of a vector space V , then S is a
vector space.

2. R
2 is a subspace of R

3.
3. It is possible to find a pair of two-dimensional

subspaces S and T of R
3 such that S ∩ T = {0}.

4. If S and T are subspaces of a vector space V , then
S ∪ T is a subspace of V .

5. If S and T are subspaces of a vector space V , then
S ∩ T is a subspace of V .

6. If x1, x2, . . . , xn span R
n, then they are linearly

independent.
7. If x1, x2, . . . , xn span a vector space V , then they are

linearly independent.
8. If x1, x2, . . . , xk are vectors in a vector space V and

Span(x1, x2, . . . , xk) = Span(x1, x2, . . . , xk−1)

then x1, x2, . . . , xk are linearly dependent.
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9. If A is an m × n matrix, then A and AT have the
same rank.

10. If A is an m × n matrix, then A and AT have the
same nullity.

11. If U is the reduced row echelon form of A, then A
and U have the same row space.

12. If U is the reduced row echelon form of A, then A
and U have the same column space.

13. Let x1, x2,. . . , xk be linearly independent vectors
in R

n. If k < n and xk+1 is a vector that is not in

Span(x1, x2, . . . , xk), then the vectors x1, x2,. . . , xk,
xk+1 are linearly independent.

14. Let {u1, u2}, {v1, v2}, and {w1, w2}, be bases for
R

2. If X is the transition matrix corresponding to
a change of basis from {u1, u2} to {v1, v2} and Y
is the transition matrix corresponding to a change
of basis from {v1, v2} to {w1, w2}, then Z = XY is
the transition matrix corresponding to the change
of basis from {u1, u2} to {w1, w2}.

15. If A and B are n × n matrices that have the same
rank, then the rank of A2 must equal the rank of B2.

CHAPTER TEST B

1. In R
3, let x1 and x2 be linearly independent vectors

and let x3 = 0 (the zero vector). Are x1, x2, and x3

linearly independent? Prove your answer.
2. For each set that follows determine whether it is a

subspace of R
2. Prove your answers.

(a) S1 =
{

x =
⎧⎪⎩ x1

x2

⎫⎪⎭∣∣∣∣ x1 + x2 = 0

}

(b) S2 =
{

x =
⎧⎪⎩ x1

x2

⎫⎪⎭∣∣∣∣ x1x2 = 0

}
3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 3 1 3 4
0 0 1 1 1
0 0 2 2 2
0 0 3 3 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Find a basis for N(A) (the null space of A).

What is the dimension of N(A)?
(b) Find a basis for the column space of A. What

is the rank of A?
4. How do the dimensions of the null space and

column space of a matrix relate to the number of
lead and free variables in the reduced row echelon
form of the matrix? Explain.

5. Answer the following questions and, in each case,
give geometric explanations of your answers:
(a) Is it possible to have a pair of one-dimensional

subspaces U1 and U2 of R
3 such that U1∩U2 =

{0}?
(b) Is it possible to have a pair of two-dimensional

subspaces V1 and V2 of R
3 such that V1 ∩ V2 =

{0}?
6. Let S be the set of all symmetric 2 × 2 matrices

with real entries.
(a) Show that S is a subspace of R

2×2.
(b) Find a basis for S.

7. Let A be a 6 × 4 matrix of rank 4.
(a) What is the dimension of N(A)? What is the

dimension of the column space of A?

(b) Do the column vectors of A span R
6? Are

the column vectors of A linearly independent?
Explain your answers.

(c) How many solutions will the linear system
Ax = b have if b is in the column space of
A? Explain.

8. Given the vectors

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
2
2

⎫⎪⎪⎪⎪⎪⎭ , x2 =
⎧⎪⎪⎪⎪⎪⎩

1
3
3

⎫⎪⎪⎪⎪⎪⎭ ,

x3 =
⎧⎪⎪⎪⎪⎪⎩

1
5
5

⎫⎪⎪⎪⎪⎪⎭ , x4 =
⎧⎪⎪⎪⎪⎪⎩

1
2
3

⎫⎪⎪⎪⎪⎪⎭
(a) Are x1, x2, x3, and x4 linearly independent in

R
3? Explain.

(b) Do x1, x2 span R
3? Explain.

(c) Do x1, x2, x3 span R
3? Are they linearly inde-

pendent? Do they form a basis for R
3? Explain.

(d) Do x1, x2, x4 span R
3? Are they linearly inde-

pendent? Do they form a basis for R
3? Explain

or prove your answers.
9. Let x1, x2, and x3 be linearly independent vectors in

R
4 and let A be a nonsingular 4 × 4 matrix. Prove

that if

y1 = Ax1, y2 = Ax2, y3 = Ax3

then y1, y2, and y3 are linearly independent.

10. Let A be a 6 × 5 matrix with linearly independ-
ent column vectors a1, a2, a3 and whose remaining
column vectors satisfy

a4 = a1 + 3a2 + a3, a5 = 2a1 − a3
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(a) What is the dimension of N(A)? Explain.
(b) Determine the reduced row echelon form of A.

11. Let {u1, u2} and {v1, v2} be ordered bases for R
2,

where

u1 =
⎧⎪⎩ 1

3

⎫⎪⎭ , u2 =
⎧⎪⎩ 2

7

⎫⎪⎭
and

v1 =
⎧⎪⎩ 5

2

⎫⎪⎭ , v2 =
⎧⎪⎩ 4

9

⎫⎪⎭

(a) Determine the transition matrix correspond-
ing to a change of basis from the standard
basis {e1, e2} to the ordered basis {u1, u2}. Use
this transition matrix to find the coordinates of
x = (1, 1)T with respect to {u1, u2}.

(b) Determine the transition matrix corresponding
to a change of basis from the ordered basis
{v1, v2} to the ordered basis {u1, u2}. Use this
transition matrix to find the coordinates of
z = 2v1 + 3v2 with respect to {u1, u2}.
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Linear Transformations
Linear mappings from one vector space to another play an important role in mathe-
matics. This chapter provides an introduction to the theory of such mappings. In
Section 4.1, the definition of a linear transformation is given and a number of examples
are presented. In Section 4.2, it is shown that each linear transformation L mapping an
n-dimensional vector space V into an m-dimensional vector space W can be represen-
ted by an m×n matrix A. Thus, we can work with the matrix A in place of the mapping
L. In the case that the linear transformation L maps V into itself, the matrix repres-
enting L will depend on the ordered basis chosen for V . Hence, L may be represented
by a matrix A with respect to one ordered basis and by another matrix B with respect
to another ordered basis. In Section 4.3 we consider the relationship between different
matrices that represent the same linear transformation. In many applications it is desir-
able to choose the basis for V so that the matrix representing the linear transformation
is either diagonal or in some other simple form.

4.1 Definition and Examples

In the study of vector spaces, the most important types of mappings are linear
transformations.

Definition A mapping L from a vector space V into a vector space W is said to be a linear
transformation if

L (αv1 + βv2) = αL (v1) + βL (v2) (1)

for all v1, v2 ∈ V and for all scalars α and β.

169
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If L is a linear transformation mapping a vector space V into a vector space W,
then it follows from (1) that

L (v1 + v2) = L (v1) + L (v2) (α = β = 1) (2)

and

L (αv) = αL (v) (v = v1, β = 0) (3)

Conversely, if L satisfies (2) and (3), then

L (αv1 + βv2) = L (αv1) + L (βv2)
= αL (v1) + βL (v2)

Thus, L is a linear transformation if and only if L satisfies (2) and (3).

Notation

A mapping L from a vector space V into a vector space W will be denoted

L : V → W

When the arrow notation is used, it will be assumed that V and W represent vector
spaces.

In the case that the vector spaces V and W are the same, we will refer to a linear
transformation L : V → V as a linear operator on V . Thus, a linear operator is a linear
transformation that maps a vector space V into itself.

Let us now consider some examples of linear transformations. We begin with linear
operators on R

2. In this case it is easier to see the geometric effect of the operator.

Linear Operators on R
2

EXAMPLE 1 Let L be the operator defined by

L (x) = 3x

for each x ∈ R
2. Since

L (αx) = 3(αx) = α(3x) = αL (x)

and

L (x + y) = 3(x + y) = 3x + 3y = L (x) + L (y)

it follows that L is a linear operator. We can think of L as a stretching by a factor of 3
(see Figure 4.1.1). In general, if α is a positive scalar, the linear operator F(x) = αx
can be thought of as a stretching or shrinking by a factor of α.
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L(x) = 3x

x

Figure 4.1.1.

EXAMPLE 2 Consider the mapping L defined by

L (x) = x1e1

for each x ∈ R
2. Thus, if x = (x1, x2)T , then L (x) = (x1, 0)T . If y = (y1, y2)T , then

αx + βy =
⎧⎪⎩ αx1 + βy1

αx2 + βy2

⎫⎪⎭
and it follows that

L (αx + βy) = (αx1 + βy1)e1 = α(x1e1) + β(y1e1) = αL (x) + βL (y)

Hence, L is a linear operator. We can think of L as a projection onto the x1-axis (see
Figure 4.1.2).

x

x1 axis
x1

x2 axis

L(x) = x1e1

Figure 4.1.2.

EXAMPLE 3 Let L be the operator defined by

L (x) = (x1, −x2)T

for each x = (x1, x2)T in R
2. Since

L (αx + βy) =
⎧⎪⎪⎪⎩ αx1 + βy1

−(αx2 + βy2)

⎫⎪⎪⎪⎭
= α

⎧⎪⎪⎪⎩ x1

−x2

⎫⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎩ y1

−y2

⎫⎪⎪⎪⎭
= αL (x) + βL (y)

it follows that L is a linear operator. The operator L has the effect of reflecting vectors
about the x1-axis (see Figure 4.1.3).
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x1 axis

x = (x1, x2)T

L(x) = (x1, –x2)T

Figure 4.1.3.

EXAMPLE 4 The operator L defined by

L (x) = (−x2, x1)T

is linear, since

L (αx + βy) =
⎧⎪⎪⎪⎩ −(αx2 + βy2)

αx1 + βy1

⎫⎪⎪⎪⎭
= α

⎧⎪⎪⎪⎩ −x2

x1

⎫⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎩ −y2

y1

⎫⎪⎪⎪⎭
= αL (x) + βL (y)

The operator L has the effect of rotating each vector in R
2 by 90◦ in the counterclock-

wise direction (see Figure 4.1.4).

x = (x1, x2)T

L(x) = (–x2, x1)T

90�

Figure 4.1.4.
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Linear Transformations from R
n to R

m

EXAMPLE 5 The mapping L : R
2 → R

1 defined by

L (x) = x1 + x2

is a linear transformation, since

L (αx + βy) = (αx1 + βy1) + (αx2 + βy2)
= α(x1 + x2) + β(y1 + y2)
= αL (x) + βL (y)

EXAMPLE 6 Consider the mapping M defined by

M(x) = (x2
1 + x2

2)1/2

Since

M(αx) = (α2x2
1 + α2x2

2)1/2 = |α|M(x)

it follows that

αM(x) �= M(αx)

whenever α < 0 and x �= 0. Therefore, M is not a linear operator.

EXAMPLE 7 The mapping L from R
2 to R

3 defined by

L (x) = (x2, x1, x1 + x2)T

is linear, since

L (αx) = (αx2, αx1, αx1 + αx2)T = αL (x)

and

L (x + y) = (x2 + y2, x1 + y1, x1 + y1 + x2 + y2)T

= (x2, x1, x1 + x2)T + (y2, y1, y1 + y2)T

= L (x) + L (y)

Note that if we define the matrix A by

A =
⎧⎪⎪⎪⎪⎪⎩

0 1
1 0
1 1

⎫⎪⎪⎪⎪⎪⎭
then

L (x) =
⎧⎪⎪⎪⎪⎪⎩

x2

x1

x1 + x2

⎫⎪⎪⎪⎪⎪⎭ = Ax

for each x ∈ R
2.
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In general, if A is any m × n matrix, we can define a linear transformation LA from
R

n to R
m by

LA(x) = Ax

for each x ∈ R
n. The transformation LA is linear, since

LA(αx + βy) = A(αx + βy)

= αAx + βAy
= αLA(x) + βLA(y)

Thus, we can think of each m × n matrix A as defining a linear transformation from
R

n to R
m.

In Example 7, we saw that the linear transformation L could have been defined
in terms of a matrix A. In the next section, we will see that this is true for all linear
transformations from R

n to R
m.

Linear Transformations from V to W

If L is a linear transformation mapping a vector space V into a vector space W, then

(i) L (0V ) = 0W (where 0V and 0W are the zero vectors in V and W, respectively).
(ii) if v1, . . . , vn are elements of V and α1, . . . , αn are scalars, then

L (α1v1 + α2v2 + · · · + αnvn) = α1L (v1) + α2L (v2) + · · · + αnL (vn)

(iii) L (−v) = −L (v) for all v ∈ V .

Statement (i) follows from the condition L (αv) = αL (v) with α = 0. Statement (ii)
can easily be proved by mathematical induction. We leave this to the reader as an
exercise. To prove (iii), note that

0W = L (0V ) = L (v + (−v)) = L (v) + L (−v)

Therefore, L (−v) is the additive inverse of L (v); that is,

L (−v) = −L (v)

EXAMPLE 8 If V is any vector space, then the identity operator I is defined by

I(v) = v

for all v ∈ V . Clearly, I is a linear transformation that maps V into itself:

I(αv1 + βv2) = αv1 + βv2 = αI(v1) + βI(v2)

EXAMPLE 9 Let L be the mapping from C[a, b] to R
1 defined by

L (f ) =
∫ b

a
f (x) dx
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If f and g are any vectors in C[a, b], then

L (αf + βg) =
∫ b

a
(αf + βg)(x) dx

= α

∫ b

a
f (x) dx + β

∫ b

a
g(x) dx

= αL (f ) + βL (g)

Therefore, L is a linear transformation.

EXAMPLE 10 Let D be the linear transformation mapping C1[a, b] into C[a, b] defined by

D(f ) = f ′ (the derivative of f )

D is a linear transformation, since

D(αf + βg) = αf ′ + βg′ = αD(f ) + βD(g)

The Image and Kernel
Let L: V → W be a linear transformation. We close this section by considering the
effect that L has on subspaces of V . Of particular importance is the set of vectors in V
that get mapped into the zero vector of W.

Definition Let L : V → W be a linear transformation. The kernel of L, denoted ker(L), is
defined by

ker(L) = {v ∈ V | L (v) = 0W}

Definition Let L: V → W be a linear transformation and let S be a subspace of V . The image
of S, denoted L (S), is defined by

L (S) = {w ∈ W | w = L (v) for some v ∈ S}
The image of the entire vector space, L (V), is called the range of L.

Let L: V → W be a linear transformation. It is easily seen that ker(L) is a subspace
of V , and if S is any subspace of V , then L (S) is a subspace of W. In particular, L (V)
is a subspace of W. Indeed, we have the following theorem:

Theorem 4.1.1 If L: V → W is a linear transformation and S is a subspace of V, then

(i) ker(L) is a subspace of V.
(ii) L (S) is a subspace of W.

Proof It is obvious that ker(L) is nonempty since 0V , the zero vector of V , is in ker(L). To
prove (i), we must show that ker(L) is closed under scalar multiplication and addition
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of vectors. For closure under scalar multiplication let v ∈ ker(L) and α be a scalar.
Then

L (αv) = αL (v) = α0W = 0W

Therefore, αv ∈ ker(L).
For closure under addition let v1, v2 ∈ ker(L). Then

L (v1 + v2) = L (v1) + L (v2) = 0W + 0W = 0W

Therefore, v1 + v2 ∈ ker(L) and hence ker(L) is a subspace of V .
The proof of (ii) is similar. L (S) is nonempty, since 0W = L (0V ) ∈ L (S). If w ∈

L (S), then w = L (v) for some v ∈ S. For any scalar α,

αw = αL (v) = L (αv)

Since αv ∈ S, it follows that αw ∈ L (S), and hence L (S) is closed under scalar mul-
tiplication. If w1, w2 ∈ L (S), then there exist v1, v2 ∈ S such that L (v1) = w1 and
L (v2) = w2. Thus,

w1 + w2 = L (v1) + L (v2) = L (v1 + v2)

and hence L (S) is closed under addition. It follows that L (S) is a subspace of W.

EXAMPLE 11 Let L be the linear operator on R
2 defined by

L (x) =
⎧⎪⎩ x1

0

⎫⎪⎭
A vector x is in ker(L) if and only if x1 = 0. Thus, ker(L) is the one-dimensional
subspace of R

2 spanned by e2. A vector y is in the range of L if and only if y is a
multiple of e1. Hence, L (R2) is the one-dimensional subspace of R

2 spanned by e1.

EXAMPLE 12 Let L : R
3 → R

2 be the linear transformation defined by

L (x) = (x1 + x2, x2 + x3)T

and let S be the subspace of R
3 spanned by e1 and e3.

If x ∈ ker(L), then

x1 + x2 = 0 and x2 + x3 = 0

Setting the free variable x3 = a, we get

x2 = −a, x1 = a

and hence ker(L) is the one-dimensional subspace of R
3 consisting of all vectors of the

form a(1, −1, 1)T .
If x ∈ S, then x must be of the form (a, 0, b)T , and hence L (x) = (a, b)T . Clearly,

L (S) = R
2. Since the image of the subspace S is all of R

2, it follows that the entire
range of L must be R

2 [i.e., L (R3) = R
2].
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EXAMPLE 13 Let D : P3 → P3 be the differentiation operator, defined by

D(p(x)) = p′(x)

The kernel of D consists of all polynomials of degree 0. Thus, ker(D) = P1. The
derivative of any polynomial in P3 will be a polynomial of degree 1 or less. Conversely,
any polynomial in P2 will have antiderivatives in P3, so each polynomial in P2 will be
the image of polynomials in P3 under the operator D. It then follows that D(P3) = P2.

SECTION 4.1 EXERCISES
1. Show that each of the following are linear operat-

ors on R
2. Describe geometrically what each linear

transformation accomplishes.
(a) L (x) = (−x1, x2)T (b) L (x) = −x
(c) L (x) = (x2, x1)T (d) L (x) = 1

2 x
(e) L (x) = x2e2

2. Let L be the linear operator on R
2 defined by

L (x) = (x1 cos α − x2 sin α, x1 sin α + x2 cos α)T

Express x1, x2, and L (x) in terms of polar coordin-
ates. Describe geometrically the effect of the linear
transformation.

3. Let a be a fixed nonzero vector in R
2. A mapping

of the form

L (x) = x + a

is called a translation. Show that a translation is not
a linear operator. Illustrate geometrically the effect
of a translation.

4. Let L : R
2 → R

2 be a linear operator. If

L ((1, 2)T ) = (−2, 3)T

and

L ((1, −1)T ) = (5, 2)T

find the value of L ((7, 5)T ).
5. Determine whether the following are linear trans-

formations from R
3 into R

2.

(a) L (x) = (x2, x3)T (b) L (x) = (0, 0)T

(c) L (x) = (1 + x1, x2)T

(d) L (x) = (x3, x1 + x2)T

6. Determine whether the following are linear trans-
formations from R

2 into R
3.

(a) L (x) = (x1, x2, 1)T

(b) L (x) = (x1, x2, x1 + 2x2)T

(c) L (x) = (x1, 0, 0)T

(d) L (x) = (x1, x2, x2
1 + x2

2)T

7. Determine whether the following are linear operat-
ors on R

n×n.

(a) L (A) = 2A (b) L (A) = AT

(c) L (A) = A + I (d) L (A) = A − AT

8. Let C be a fixed n × n matrix. Determine whether
the following are linear operators on R

n×n:

(a) L (A) = CA + AC (b) L (A) = C2A

(c) L (A) = A2C

9. Determine whether the following are linear trans-
formations from P2 to P3.

(a) L (p(x)) = xp(x)

(b) L (p(x)) = x2 + p(x)

(c) L (p(x)) = p(x) + xp(x) + x2p′(x)

10. For each f ∈ C [0, 1], define L (f ) = F, where

F(x) =
∫ x

0
f (t) dt 0 ≤ x ≤ 1

Show that L is a linear operator on C[0, 1] and then
find L (ex) and L (x2).

11. Determine whether the following are linear trans-
formations from C [0, 1] into R

1:

(a) L (f ) = f (0) (b) L (f ) = |f (0)|
(c) L (f ) = [ f (0) + f (1)]/2

(d) L (f ) =
{∫ 1

0 [f (x)]2 dx
}1/2

12. Use mathematical induction to prove that if L is a
linear transformation from V to W, then

L (α1v1 + α2v2 + · · · + αnvn)

= α1L (v1) + α2L (v2) + · · · + αnL (vn)



178 Chapter 4 Linear Transformations

13. Let {v1, . . . , vn} be a basis for a vector space V , and
let L1 and L2 be two linear transformations mapping
V into a vector space W. Show that if

L1(vi) = L2(vi)

for each i = 1, . . . , n, then L1 = L2 [i.e., show that
L1(v) = L2(v) for all v ∈ V].

14. Let L be a linear operator on R
1 and let a = L (1).

Show that L (x) = ax for all x ∈ R
1.

15. Let L be a linear operator on a vector space V .
Define Ln, n ≥ 1, recursively by

L1 = L

Lk+1(v) = L (Lk(v)) for all v ∈ V

Show that Ln is a linear operator on V for each
n ≥ 1.

16. Let L1: U → V and L2 : V → W be linear trans-
formations, and let L = L2 ◦ L1 be the mapping
defined by

L (u) = L2(L1(u))

for each u ∈ U. Show that L is a linear transforma-
tion mapping U into W.

17. Determine the kernel and range of each of the
following linear operators on R

3:

(a) L (x) = (x3, x2, x1)T (b) L (x) = (x1, x2, 0)T

(c) L (x) = (x1, x1, x1)T

18. Let S be the subspace of R
3 spanned by e1 and e2.

For each linear operator L in Exercise 17, find L (S).

19. Find the kernel and range of each of the following
linear operators on P3:
(a) L (p(x)) = xp′(x) (b) L (p(x)) = p(x)−p′(x)
(c) L (p(x)) = p(0)x + p(1)

20. Let L: V → W be a linear transformation, and
let T be a subspace of W. The inverse image of T ,
denoted L−1(T), is defined by

L−1(T) = {v ∈ V|L (v) ∈ T}
Show that L−1(T) is a subspace of V .

21. A linear transformation L : V → W is said to be
one-to-one if L (v1) = L (v2) implies that v1 = v2

(i.e., no two distinct vectors v1, v2 in V get mapped
into the same vector w ∈ W). Show that L is
one-to-one if and only if ker(L) = {0V}.

22. A linear transformation L : V → W is said to
map V onto W if L (V) = W. Show that the linear
transformation L defined by

L (x) = (x1, x1 + x2, x1 + x2 + x3)T

maps R
3 onto R

3.

23. Which of the operators defined in Exercise 17 are
one-to-one? Which map R

3 onto R
3?

24. Let A be a 2 × 2 matrix, and let LA be the linear
operator defined by

LA(x) = Ax

Show that
(a) LA maps R

2 onto the column space of A.

(b) if A is nonsingular, then LA maps R
2 onto R

2.
25. Let D be the differentiation operator on P3, and let

S = {p ∈ P3 | p(0) = 0}
Show that
(a) D maps P3 onto the subspace P2, but

D : P3 → P2 is not one-to-one.

(b) D : S → P3 is one-to-one but not onto.

4.2 Matrix Representations of Linear Transformations

In Section 4.1, it was shown that each m × n matrix A defines a linear transformation
LA from R

n to R
m, where

LA(x) = Ax

for each x ∈ R
n. In this section, we will see that, for each linear transformation L

mapping R
n into R

m, there is an m × n matrix A such that

L (x) = Ax
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We will also see how any linear transformation between finite-dimensional spaces can
be represented by a matrix.

Theorem 4.2.1 If L is a linear transformation mapping R
n into R

m, there is an m × n matrix A such
that

L (x) = Ax

for each x ∈ R
n. In fact, the jth column vector of A is given by

aj = L (ej) j = 1, 2, . . . , n

Proof For j = 1, . . . , n, define

aj = L (ej)

and let

A = (aij) = (a1, a2, . . . , an)

If

x = x1e1 + x2e2 + · · · + xnen

is an arbitrary element of R
n, then

L (x) = x1L (e1) + x2L (e2) + · · · + xnL (en)
= x1a1 + x2a2 + · · · + xnan

= (a1, a2, . . . , an)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2
...

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= Ax

We have established that each linear transformation from R
n into R

m can be rep-
resented in terms of an m×n matrix. Theorem 4.2.1 tells us how to construct the matrix
A corresponding to a particular linear transformation L. To get the first column of A,
see what L does to the first basis element e1 of R

n. Set a1 = L (e1). To get the second
column of A, determine the effect of L on e2 and set a2 = L (e2), and so on. Since the
standard basis elements e1, e2, . . . , en (the column vectors of the n × n identity matrix)
are used for R

n, and the column vectors of the m × m identity matrix are being used
as a basis for R

m, we refer to A as the standard matrix representation of L. Later (The-
orem 4.2.3) we will see how to represent linear transformations with respect to other
bases.

EXAMPLE 1 Define the linear transformation L : R
3 → R

2 by

L (x) = (x1 + x2, x2 + x3)T
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for each x = (x1, x2, x3)T in R
3. It is easily verified that L is a linear operator. We wish

to find a matrix A such that L (x) = Ax for each x ∈ R
3. To do this, we must calculate

L (e1), L (e2), and L (e3):

L (e1) = L ((1, 0, 0)T ) =
⎧⎪⎪⎪⎩ 1

0

⎫⎪⎪⎪⎭
L (e2) = L ((0, 1, 0)T ) =

⎧⎪⎪⎪⎩ 1
1

⎫⎪⎪⎪⎭
L (e3) = L ((0, 0, 1)T ) =

⎧⎪⎪⎪⎩ 0
1

⎫⎪⎪⎪⎭
We choose these vectors to be the columns of the matrix

A =
⎧⎪⎩ 1 1 0

0 1 1

⎫⎪⎭
To check the result, we compute Ax:

Ax =
⎧⎪⎩ 1 1 0

0 1 1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ x1 + x2

x2 + x3

⎫⎪⎭
EXAMPLE 2 Let L be the linear transformation operator R

2 that rotates each vector by an angle θ

in the counterclockwise direction. We can see from Figure 4.2.1(a) that e1 is mapped
into (cos θ , sin θ)T and the image of e2 is (− sin θ , cos θ)T . The matrix A representing
the transformation will have (cos θ , sin θ)T as its first column and (− sin θ , cos θ)T as
its second column.

A =
⎧⎪⎩ cos θ − sin θ

sin θ cos θ

⎫⎪⎭
If x is any vector in R

2, then, to rotate x counterclockwise by an angle θ , we simply
multiply by A [see Figure 4.2.1(b)].

(–sin   , cos   )θ θ

(cos   , sin   )θ θ

θ
θ

θ

(0, 1)

(1, 0)

Ax

x

(a) (b)

Figure 4.2.1.
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Now that we have seen how matrices are used to represent linear transformations
from R

n to R
m, we may ask whether it is possible to find a similar representation for

linear transformations from V into W, where V and W are vector spaces of dimension
n and m, respectively. To see how this is done, let E = {v1, v2, . . . , vn} be an ordered
basis for V and F = {w1, w2, . . . , wm} be an ordered basis for W. Let L be a linear
transformation mapping V into W. If v is any vector in V , then we can express v in
terms of the basis E:

v = x1v1 + x2v2 + · · · + xnvn

We will show that there exists an m×n matrix A representing the linear transformation
L, in the sense that

Ax = y if and only if L (v) = y1w1 + y2w2 + · · · + ymwm

The matrix A characterizes the effect of the linear transformation L. If x is the coordin-
ate vector of v with respect to E, then the coordinate vector of L (v) with respect to F
is given by

[L (v)]F = Ax

The procedure for determining the matrix representation A is essentially the same as
before. For j = 1, . . . , n, let aj = (a1j, a2j, . . . , amj)T be the coordinate vector of L (vj)
with respect to {w1, w2, . . . , wm}; that is,

L (vj) = a1jw1 + a2jw2 + · · · + amjwm 1 ≤ j ≤ n

Let A = (aij) = (a1, . . . , an). If

v = x1v1 + x2v2 + · · · + xnvn

then

L (v) = L

⎛
⎝ n∑

j=1

xjvj

⎞
⎠

=
n∑

j=1

xjL (vj)

=
n∑

j=1

xj

(
m∑

i=1

aijwi

)

=
m∑

i=1

⎛
⎝ n∑

j=1

aijxj

⎞
⎠ wi

For i = 1, . . . , m, let

yi =
n∑

j=1

aijxj

Thus,

y = (y1, y2, . . . , ym)T = Ax

is the coordinate vector of L (v) with respect to {w1, w2, . . . , wm}. We have established
the following theorem:
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Theorem 4.2.2 Matrix Representation Theorem
If E = {v1, v2, . . . , vn} and F = {w1, w2, . . . , wm} are ordered bases for vector spaces
V and W, respectively, then, corresponding to each linear transformation L : V → W,
there is an m × n matrix A such that

[L (v)]F = A[v]E for each v ∈ V

A is the matrix representing L relative to the ordered bases E and F. In fact,

aj = [
L (vj)

]
F j = 1, 2, . . . , n

Theorem 4.2.2 is illustrated in Figure 4.2.2. If A is the matrix representing L with
respect to the bases E and F, and if

x = [v]E (the coordinate vector of v with respect to E)

y = [w]F (the coordinate vector of w with respect to F)

then L maps v into w if and only if A maps x into y.

v ∈ V

x = [v]E ∈ Rn

w = L(v) ∈ W

Ax = [w]F ∈ Rm

L = LA

A

Figure 4.2.2.

EXAMPLE 3 Let L be the linear transformation mapping R
3 into R

2 defined by

L (x) = x1b1 + (x2 + x3)b2

for each x ∈ R
3, where

b1 =
⎧⎪⎩ 1

1

⎫⎪⎭ and b2 =
⎧⎪⎩ −1

1

⎫⎪⎭
Find the matrix A representing L with respect to the ordered bases {e1, e2, e3}
and {b1, b2}.
Solution

L (e1) = 1b1 + 0b2

L (e2) = 0b1 + 1b2

L (e3) = 0b1 + 1b2

The ith column of A is determined by the coordinates of L (ei) with respect to {b1, b2}
for i = 1, 2, 3. Thus

A =
⎧⎪⎩ 1 0 0

0 1 1

⎫⎪⎭
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EXAMPLE 4 Let L be a linear transformation mapping R
2 into itself defined by

L (αb1 + βb2) = (α + β)b1 + 2βb2

where {b1, b2} is the ordered basis defined in Example 3. Find the matrix A representing
L with respect to {b1, b2}.
Solution

L (b1) = 1b1 + 0b2

L (b2) = 1b1 + 2b2

Thus

A =
⎧⎪⎩ 1 1

0 2

⎫⎪⎭
EXAMPLE 5 The linear transformation D defined by D(p) = p′ maps P3 into P2. Given the ordered

bases [x2, x, 1] and [x, 1] for P3 and P2, respectively, we wish to determine a matrix
representation for D. To do this, we apply D to each of the basis elements of P3.

D(x2) = 2x + 0 · 1
D(x) = 0x + 1 · 1
D(1) = 0x + 0 · 1

In P2, the coordinate vectors for D(x2), D(x), and D(1) are (2, 0)T , (0, 1)T , and (0, 0)T ,
respectively. The matrix A is formed with these vectors as its columns.

A =
⎧⎪⎩ 2 0 0

0 1 0

⎫⎪⎭
If p(x) = ax2 + bx + c, then the coordinate vector of p with respect to the ordered basis
of P3 is (a, b, c)T . To find the coordinate vector of D(p) with respect to the ordered
basis of P2, we simply multiply

⎧⎪⎩ 2 0 0
0 1 0

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ 2a

b

⎫⎪⎭
Thus,

D(ax2 + bx + c) = 2ax + b

To find the matrix representation A for a linear transformation L : R
n → R

m with
respect to the ordered bases E = {u1, . . . , un} and F = {b1, . . . , bm}, we must represent
each vector L (uj) as a linear combination of b1, . . . , bm. The following theorem shows
that determining this representation of L (uj) is equivalent to solving the linear system
Bx = L (uj).
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Theorem 4.2.3 Let E = {u1, . . . , un} and F = {b1, . . . , bm} be ordered bases for R
n and R

m, respect-
ively. If L: R

n → R
m is a linear transformation and A is the matrix representing L with

respect to E and F, then

aj = B−1L (uj) for j = 1, . . . , n

where B = (b1, . . . , bm).

Proof If A is representing L with respect to E and F, then, for j = 1, . . . , n,

L (uj) = a1jb1 + a2jb2 + · · · + amjbm

= Baj

The matrix B is nonsingular since its column vectors form a basis for R
m. Hence

aj = B−1L (uj) j = 1, . . . , n

One consequence of this theorem is that we can determine the matrix representa-
tion of the transformation by computing the reduced row echelon form of an augmented
matrix. The following corollary shows how this is done:

Corollary 4.2.4 If A is the matrix representing the linear transformation L : R
n → R

m with respect to
the bases

E = {u1, . . . , un} and F = {b1, . . . , bm}
then the reduced row echelon form of (b1, . . . , bm | L (u1), . . . , L (un)) is (I | A).

Proof Let B = (b1, . . . , bm). The matrix (B | L (u1), . . . , L (un)) is row equivalent to

B−1(B | L (u1), . . . , L (un)) = (I | B−1L (u1), . . . , B−1L (un))
= (I | a1, . . . , an)
= (I | A)

EXAMPLE 6 Let L : R
2 → R

3 be the linear transformation defined by

L (x) = (x2, x1 + x2, x1 − x2)T

Find the matrix representations of L with respect to the ordered bases {u1, u2} and
{b1, b2, b3}, where

u1 = (1, 2)T , u2 = (3, 1)T

and

b1 = (1, 0, 0)T , b2 = (1, 1, 0)T , b3 = (1, 1, 1)T

Solution
We must compute L (u1) and L (u2) and then transform the augmented matrix
(b1, b2, b3 | L (u1), L (u2)) to reduced row echelon form:

L (u1) = (2, 3, −1)T and L (u2) = (1, 4, 2)T⎧⎪⎪⎪⎪⎪⎩
1 1 1 2 1
0 1 1 3 4
0 0 1 −1 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 0 −1 −3
0 1 0 4 2
0 0 1 −1 2

⎫⎪⎪⎪⎪⎪⎭
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The matrix representing L with respect to the given ordered bases is

A =
⎧⎪⎪⎪⎪⎪⎩

−1 −3
4 2

−1 2

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that

L (u1) = −b1 + 4b2 − b3

L (u2) = −3b1 + 2b2 + 2b3

APPLICATION 1 Computer Graphics and Animation

A picture in the plane can be stored in the computer as a set of vertices. The vertices
can then be plotted and connected by lines to produce the picture. If there are n vertices,
they are stored in a 2 × n matrix. The x-coordinates of the vertices are stored in the first
row and the y-coordinates in the second. Each successive pair of points is connected
by a straight line.

For example, to generate a triangle with vertices (0, 0), (1, 1), and (1, −1), we store
the pairs as columns of a matrix:

T =
⎧⎪⎩ 0 1 1 0

0 1 −1 0

⎫⎪⎭
An additional copy of the vertex (0, 0) is stored in the last column of T so that the
previous point (1, −1) will be connected back to (0, 0) [see Figure 4.2.3(a)].

We can transform a figure by changing the positions of the vertices and then
redrawing the figure. If the transformation is linear, it can be carried out as a mat-
rix multiplication. Viewing a succession of such drawings will produce the effect of
animation.

The four primary geometric transformations that are used in computer graphics are
as follows:

1. Dilations and contractions. A linear operator of the form

L (x) = cx

is a dilation if c > 1 and a contraction if 0 < c < 1. The operator L is
represented by the matrix cI, where I is the 2 × 2 identity matrix. A dilation
increases the size of the figure by a factor c > 1, and a contraction shrinks the
figure by a factor c < 1. Figure 4.2.3(b) shows a dilation by a factor of 1.5 of
the triangle stored in the matrix T .

2. Reflections about an axis. If Lx is a transformation that reflects a vector x
about the x-axis, then Lx is a linear operator and hence it can be represented by
a 2 × 2 matrix A. Since

Lx(e1) = e1 and Lx(e2) = −e2

it follows that

A =
⎧⎪⎩ 1 0

0 −1

⎫⎪⎭
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Figure 4.2.3.

Similarly, if Ly is the linear operator that reflects a vector about the y-axis, then
Ly is represented by the matrix ⎧⎪⎩ −1 0

0 1

⎫⎪⎭
Figure 4.2.3(c) shows the image of the triangle T after a reflection about the
y-axis. In Chapter 7, we will learn a simple method for constructing reflection
matrices that have the effect of reflecting a vector about any line through the
origin.

3. Rotations. Let L be a transformation that rotates a vector about the origin by
an angle θ in the counterclockwise direction. We saw in Example 2 that L is a
linear operator and that L (x) = Ax, where

A =
⎧⎪⎩ cos θ − sin θ

sin θ cos θ

⎫⎪⎭
Figure 4.2.3(d) shows the result of rotating the triangle T by 60◦ in the
counterclockwise direction.

4. Translations. A translation by a vector a is a transformation of the form

L (x) = x + a

If a �= 0, then L is not a linear transformation and hence L cannot be repres-
ented by a 2 × 2 matrix. However, in computer graphics it is desirable to do
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all transformations as matrix multiplications. The way around the problem is to
introduce a new system of coordinates called homogeneous coordinates. This
new system will allow us to perform translations as linear transformations.

Homogeneous Coordinates

The homogeneous coordinate system is formed by equating each vector in R
2 with a

vector in R
3 having the same first two coordinates and having 1 as its third coordinate.

⎧⎪⎩ x1

x2

⎫⎪⎭ ↔
⎧⎪⎪⎪⎪⎪⎩

x1

x2

1

⎫⎪⎪⎪⎪⎪⎭
When we want to plot a point represented by the homogeneous coordinate vector
(x1, x2, 1)T , we simply ignore the third coordinate and plot the ordered pair (x1, x2).

The linear transformations discussed earlier must now be represented by 3 × 3
matrices. To do this, we take the 2 × 2 matrix representation and augment it by attach-
ing the third row and third column of the 3 × 3 identity matrix. For example, in place
of the 2 × 2 dilation matrix ⎧⎪⎩ 3 0

0 3

⎫⎪⎭
we have the 3 × 3 matrix ⎧⎪⎪⎪⎪⎪⎩

3 0 0
0 3 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
Note that ⎧⎪⎪⎪⎪⎪⎩

3 0 0
0 3 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x 1

x 2

1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

3x 1

3x 2

1

⎫⎪⎪⎪⎪⎪⎭
If L is a translation by a vector a in R

2, we can find a matrix representation for L
with respect to the homogeneous coordinate system. We simply take the 3 × 3 identity
matrix and replace the first two entries of its third column with the entries of a. To
see that this works, consider, for example, a translation corresponding to the vector
a = (6, 2)T . In homogeneous coordinates, this transformation is accomplished by the
matrix multiplication

Ax =
⎧⎪⎪⎪⎪⎪⎩

1 0 6
0 1 2
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

x1 + 6
x2 + 2

1

⎫⎪⎪⎪⎪⎪⎭
Figure 4.2.4(a) shows a stick figure generated from a 3 × 81 matrix S. If we mul-

tiply S by the translation matrix A, the graph of AS is the translated image given in
Figure 4.2.4(b).
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Figure 4.2.4.

APPLICATION 2 The Yaw, Pitch, and Roll of an Airplane

The terms yaw, pitch, and roll are commonly used in the aerospace industry to describe
the maneuvering of an aircraft. Figure 4.2.5(a) shows the initial position of a model
airplane. In describing yaw, pitch, and roll, the current coordinate system is given in
terms of the position of the vehicle. It is always assumed that the craft is situated on the
xy-plane with its nose pointing in the direction of the positive x-axis and the left wing
pointing in the direction of the positive y-axis. Furthermore, when the plane moves, the
three coordinate axes move with the vehicle (see Figure 4.2.5).

A yaw is a rotation in the xy-plane. Figure 4.2.5(b) illustrates a yaw of 45◦. In
this case, the craft has been rotated 45◦ to the right (clockwise). Viewed as a linear
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Figure 4.2.5.
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transformation in 3-space, a yaw is simply a rotation about the z-axis. Note that if the
initial coordinates of the nose of the model plane are represented by the vector (1, 0, 0),
then its xyz coordinates after the yaw transformation will still be (1, 0, 0), since the
coordinate axis rotated with the craft. In the initial position of the airplane, the x, y,
and z axes are in the same directions as the front-back, left-right, and top-bottom axes
shown in the figure. We will refer to this initial front, left, top axis system as the FLT
axis system. After the 45◦ yaw, the position of the nose of the craft with respect to the

FLT axis system is
(

1√
2
, − 1√

2
, 0

)
.

If we view a yaw transformation L in terms of the FLT axis system, it is easy to
find a matrix representation. If L corresponds to yaw by an angle u, then L will rotate
the points (1, 0, 0) and (0, 1, 0) to the positions (cos u, − sin u, 0) and (sin u, cos u, 0),
respectively. The point (0, 0, 1) will remained unchanged by the yaw since it is on the
axis of rotation. In terms of column vectors, if y1, y2, and y3 are the images of the
standard basis vectors for R

3 under L, then

y1 = L (e1) =
⎧⎪⎪⎪⎪⎪⎩

cos u
− sin u

0

⎫⎪⎪⎪⎪⎪⎭ , y2 = L (e2) =
⎧⎪⎪⎪⎪⎪⎩

sin u
cos u

0

⎫⎪⎪⎪⎪⎪⎭ , y3 = L (e3) =
⎧⎪⎪⎪⎪⎪⎩

0
0
1

⎫⎪⎪⎪⎪⎪⎭
Therefore, the matrix representation of the yaw transformation is

Y =
⎧⎪⎪⎪⎪⎪⎩

cos u sin u 0
− sin u cos u 0

0 0 1

⎫⎪⎪⎪⎪⎪⎭ (1)

A pitch is a rotation of the aircraft in the xz plane. Figure 4.2.5(c) illustrates a pitch
of −30◦. Since the angle is negative, the nose of the craft is rotated 30◦ downward,
toward the bottom axis of the figure. Viewed as a linear transformation in 3-space, a
pitch is simply a rotation about the y-axis. As with the yaw, we can find the matrix for a
pitch transformation with respect to the FLT axis system. If L is a pitch transformation
with angle of rotation v, the matrix representation of L is given by

P =
⎧⎪⎪⎪⎪⎪⎩

cos v 0 − sin v
0 1 0

sin v 0 cos v

⎫⎪⎪⎪⎪⎪⎭ (2)

A roll is a rotation of the aircraft in the yz plane. Figure 4.2.5(d) illustrates a roll
of 30◦. In this case the left wing is rotated up 30◦ toward the top axis in the figure
and the right wing is rotated 30◦ downward toward the bottom axis. Viewed as a linear
transformation in 3-space, a roll is simply a rotation about the x-axis. As with the yaw
and pitch, we can find the matrix representation for a roll transformation with respect
to the FLT axis system. If L is a roll transformation with angle of rotation w, the matrix
representation of L is given by

R =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 cos w − sin w
0 sin w cos w

⎫⎪⎪⎪⎪⎪⎭ (3)

If we perform a yaw by an angle u and then a pitch by an angle v, the composite
transformation is linear; however, its matrix representation is not equal to the product
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PY . The effect of the yaw on the standard basis vectors e1, e2, and e3 is to rotate them to
the new directions y1, y2, and y3. So the vectors y1, y2, and y3 will define the directions
of the x, y, and z axes when we do the pitch. The desired pitch transformation is then
a rotation about the new y-axis (i.e., the axis in the direction of the vector y2). The
vectors y1 and y3 form a plane, and when the pitch is applied, they are both rotated by
an angle v in that plane. The vector y2 will remain unaffected by the pitch, since it lies
on the axis of rotation. Thus, the composite transformation L has the following effect
on the standard basis vectors.

e1
yaw→ y1

pitch→ cos v y1 + sin v y3

e2
yaw→ y2

pitch→ y2

e3
yaw→ y3

pitch→ − sin v y1 + cos v y3

The images of the standard basis vectors form the columns of the matrix representing
the composite transformation:

(cos v y1 + sin v y3, y2, − sin v y1 + cos v y3) = (y1, y2, y3)

⎧⎪⎪⎪⎪⎪⎩
cos v 0 − sin v

0 1 0
sin v 0 cos v

⎫⎪⎪⎪⎪⎪⎭
= YP

It follows that matrix representation of the composite is a product of the two individual
matrices representing the yaw and the pitch, but the product must be taken in the reverse
order, with the yaw matrix Y on the left and the pitch matrix P on the right. Similarly,
for a composite transformation of a yaw with angle u, followed by a pitch with angle v,
and then a roll with angle w, the matrix representation of the composite transformation
would be the product YPR.

SECTION 4.2 EXERCISES
1. Refer to Exercise 1 of Section 4.1. For each linear

transformation L, find the standard matrix repres-
entation of L.

2. For each of the following linear transformations
L mapping R

3 into R
2, find a matrix A such that

L (x) = Ax for every x in R
3:

(a) L ((x1, x2, x3)T ) = (x1 + x2, 0)T

(b) L ((x1, x2, x3)T ) = (x1, x2)T

(c) L ((x1, x2, x3)T ) = (x2 − x1, x3 − x2)T

3. For each of the following linear operators L on R
3,

find a matrix A such that L (x) = Ax for every x in
R

3:
(a) L ((x1, x2, x3)T ) = (x3, x2, x1)T

(b) L ((x1, x2, x3)T ) = (x1, x1 + x2, x1 + x2 + x3)T

(c) L ((x1, x2, x3)T ) = (2x3, x2 + 3x1, 2x1 − x3)T

4. Let L be the linear operator on R
3 defined by

L (x) =
⎧⎪⎪⎪⎪⎪⎩

2x1 − x2 − x3

2x2 − x1 − x3

2x3 − x1 − x2

⎫⎪⎪⎪⎪⎪⎭
Determine the standard matrix representation A of
L, and use A to find L (x) for each of the following
vectors x:
(a) x = (1, 1, 1)T (b) x = (2, 1, 1)T

(c) x = (−5, 3, 2)T

5. Find the standard matrix representation for each of
the following linear operators:
(a) L is the linear operator that rotates each x in

R
2 by 45◦ in the clockwise direction.
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(b) L is the linear operator that reflects each vector
x in R

2 about the x1 axis and then rotates it 90◦
in the counterclockwise direction.

(c) L doubles the length of x and then rotates it 30◦
in the counterclockwise direction.

(d) L reflects each vector x about the line x2 = x1

and then projects it onto the x1-axis.
6. Let

b1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭ , b2 =
⎧⎪⎪⎪⎪⎪⎩

1
0
1

⎫⎪⎪⎪⎪⎪⎭, b3 =
⎧⎪⎪⎪⎪⎪⎩

0
1
1

⎫⎪⎪⎪⎪⎪⎭
and let L be the linear transformation from R

2 into
R

3 defined by

L (x) = x1b1 + x2b2 + (x1 + x2)b3

Find the matrix A representing L with respect to the
ordered bases {e1, e2} and {b1, b2, b3}.

7. Let

y1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭, y2 =
⎧⎪⎪⎪⎪⎪⎩

1
1
0

⎫⎪⎪⎪⎪⎪⎭, y3 =
⎧⎪⎪⎪⎪⎪⎩

1
0
0

⎫⎪⎪⎪⎪⎪⎭
and let I be the identity operator on R

3.
(a) Find the coordinates of I(e1), I(e2), and I(e3)

with respect to {y1, y2, y3}.
(b) Find a matrix A such that Ax is the coordinate

vector of x with respect to {y1, y2, y3}.
8. Let y1, y2, and y3 be defined as in Exercise 7, and

let L be the linear operator on R
3 defined by

L (c1y1 + c2y2 + c3y3)

= (c1 + c2 + c3)y1 + (2c1 + c3)y2 − (2c2 + c3)y3

(a) Find a matrix representing L with respect to the
ordered basis {y1, y2, y3}.

(b) For each of the following, write the vector x as
a linear combination of y1, y2, and y3 and use
the matrix from part (a) to determine L (x):
(i) x = (7, 5, 2)T (ii) x = (3, 2, 1)T

(iii) x = (1, 2, 3)T

9. Let

R =
⎧⎪⎪⎪⎪⎪⎩

0 0 1 1 0
0 1 1 0 0
1 1 1 1 1

⎫⎪⎪⎪⎪⎪⎭
The column vectors of R represent the homogen-
eous coordinates of points in the plane.
(a) Draw the figure whose vertices correspond to

the column vectors of R. What type of figure
is it?

(b) For each of the following choices of A, sketch
the graph of the figure represented by AR and
describe geometrically the effect of the linear
transformation:

(i) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2 0 0

0 1
2 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ii) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(iii) A =

⎧⎪⎪⎪⎪⎪⎩
1 0 2
0 1 −3
0 0 1

⎫⎪⎪⎪⎪⎪⎭
10. For each of the following linear operators on R

2,
find the matrix representation of the transforma-
tion with respect to the homogeneous coordinate
system:
(a) The transformation L that rotates each vector

by 120◦ in the counterclockwise direction

(b) The transformation L that translates each point
3 units to the left and 5 units up

(c) The transformation L that contracts each vector
by a factor of one-third

(d) The transformation that reflects a vector about
the y-axis and then translates it up 2 units

11. Determine the matrix representation of each of the
following composite transformations.
(a) A yaw of 90◦, followed by a pitch of 90◦

(b) A pitch of 90◦, followed by a yaw of 90◦

(c) A pitch of 45◦, followed by a roll of −90◦

(d) A roll of −90◦, followed by a pitch of 45◦

(e) A yaw of 45◦, followed by a pitch of −90◦ and
then a roll of −45◦

(f) A roll of −45◦, followed by a pitch of −90◦
and then a yaw of 45◦

12. Let Y , P, and R be the yaw, pitch, and roll matrices
given in equations (1), (2), and (3), respectively,
and let Q = YPR.
(a) Show that Y , P, and R all have determinants

equal to 1.

(b) The matrix Y represents a yaw with angle u.
The inverse transformation should be a yaw
with angle −u. Show that the matrix represent-
ation of the inverse transformation is YT and
that YT = Y−1.

(c) Show that Q is nonsingular and express Q−1 in
terms of the transposes of Y , P, and R.
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13. Let L be the linear transformation mapping P2 into
R

2 defined by

L (p(x)) =
⎧⎪⎪⎪⎪⎪⎩

∫ 1

0
p(x) dx

p(0)

⎫⎪⎪⎪⎪⎪⎭
Find a matrix A such that

L (α + βx) = A
⎧⎪⎩ α

β

⎫⎪⎭
14. The linear transformation L defined by

L (p(x)) = p′(x) + p(0)

maps P3 into P2. Find the matrix representation of
L with respect to the ordered bases [x2, x, 1] and
[2, 1 − x]. For each of the following vectors p(x)
in P3, find the coordinates of L (p(x)) with respect
to the ordered basis [2, 1 − x]:
(a) x2 + 2x − 3 (b) x2 + 1

(c) 3x (d) 4x2 + 2x

15. Let S be the subspace of C[a, b] spanned by ex, xex,
and x2ex. Let D be the differentiation operator of
S. Find the matrix representing D with respect to
[ex, xex, x2ex].

16. Let L be a linear operator on R
n. Suppose that

L (x) = 0 for some x �= 0. Let A be the matrix
representing L with respect to the standard basis
{e1, e2, . . . , en}. Show that A is singular.

17. Let L be a linear operator on a vector space
V . Let A be the matrix representing L with re-
spect to an ordered basis {v1, . . . , vn} of V [i.e.,

L (vj) =
n∑

i=1

aijvi, j = 1, . . . , n]. Show that Am is the

matrix representing Lm with respect to {v1, . . . , vn}.

18. Let E = {u1, u2, u3} and F = {b1, b2}, where

u1 =
⎧⎪⎪⎪⎪⎪⎩

1
0

−1

⎫⎪⎪⎪⎪⎪⎭ , u2 =
⎧⎪⎪⎪⎪⎪⎩

1
2
1

⎫⎪⎪⎪⎪⎪⎭ , u3 =
⎧⎪⎪⎪⎪⎪⎩

−1
1
1

⎫⎪⎪⎪⎪⎪⎭
and

b1 = (1, −1)T , b2 = (2, −1)T

For each of the following linear transformations L
from R

3 into R
2, find the matrix representing L with

respect to the ordered bases E and F:
(a) L (x) = (x3, x1)T

(b) L (x) = (x1 + x2, x1 − x3)T

(c) L (x) = (2x2, −x1)T

19. Suppose that L1 : V → W and L2 : W → Z are
linear transformations and E, F, and G are ordered
bases for V , W, and Z, respectively. Show that, if A
represents L1 relative to E and F and B represents
L2 relative to F and G, then the matrix C = BA rep-
resents L2 ◦ L1: V → Z relative to E and G. Hint:
Show that BA[v]E = [(L2 ◦ L1)(v)]G for all v ∈ V .

20. Let V and W be vector spaces with ordered bases
E and F, respectively. If L : V → W is a linear
transformation and A is the matrix representing L
relative to E and F, show that
(a) v ∈ ker(L) if and only if [v]E ∈ N(A).
(b) w ∈ L (V) if and only if [w]F is in the column

space of A.

4.3 Similarity

If L is a linear operator on an n-dimensional vector space V , the matrix representation
of L will depend on the ordered basis chosen for V . By using different bases, it is
possible to represent L by different n×n matrices. In this section, we consider different
matrix representations of linear operators and characterize the relationship between
matrices representing the same linear operator.

Let us begin by considering an example in R
2. Let L be the linear transformation

mapping R
2 into itself defined by

L (x) = (2x1, x1 + x2)T

Since

L (e1) =
⎧⎪⎩ 2

1

⎫⎪⎭ and L (e2) =
⎧⎪⎩ 0

1

⎫⎪⎭
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it follows that the matrix representing L with respect to {e1, e2} is

A =
⎧⎪⎩ 2 0

1 1

⎫⎪⎭
If we use a different basis for R

2, the matrix representation of L will change. If, for
example, we use

u1 =
⎧⎪⎩ 1

1

⎫⎪⎭ and u2 =
⎧⎪⎩ −1

1

⎫⎪⎭
for a basis, then to determine the matrix representation of L with respect to {u1, u2} we
must determine L (u1) and L (u2) and express these vectors as linear combinations of
u1 and u2. We can use the matrix A to determine L (u1) and L (u2):

L (u1) = Au1 =
⎧⎪⎪⎪⎩ 2 0

1 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 1

1

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ 2

2

⎫⎪⎪⎪⎭
L (u2) = Au2 =

⎧⎪⎪⎪⎩ 2 0
1 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ −1

1

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ −2

0

⎫⎪⎪⎪⎭
To express these vectors in terms of u1 and u2, we use a transition matrix to change

from the ordered basis {e1, e2} to {u1, u2}. Let us first compute the transition matrix
from {u1, u2} to {e1, e2}. This is simply

U = (u1, u2) =
⎧⎪⎩ 1 −1

1 1

⎫⎪⎭
The transition matrix from {e1, e2} to {u1, u2} will then be

U−1 =
⎧⎪⎪⎪⎪⎪⎩

1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
To determine the coordinates of L (u1) and L (u2) with respect to {u1, u2}, we multiply
the vectors by U−1:

U−1L (u1) = U−1Au1 =
⎧⎪⎪⎪⎪⎪⎩

1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 2

2

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ 2

0

⎫⎪⎪⎪⎭
U−1L (u2) = U−1Au2 =

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎩ −2

0

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ −1

1

⎫⎪⎪⎪⎭
Thus,

L (u1) = 2u1 + 0u2

L (u2) = −1u1 + 1u2

and the matrix representing L with respect to {u1, u2} is

B =
⎧⎪⎩ 2 −1

0 1

⎫⎪⎭
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How are A and B related? Note that the columns of B are⎧⎪⎩ 2
0

⎫⎪⎭ = U−1Au1 and
⎧⎪⎩ −1

1

⎫⎪⎭ = U−1Au2

Hence,

B = (U−1Au1, U−1Au2) = U−1A(u1, u2) = U−1AU

Thus, if

(i) B is the matrix representing L with respect to {u1, u2}
(ii) A is the matrix representing L with respect to {e1, e2}

(iii) U is the transition matrix corresponding to the change of basis from {u1, u2}
to {e1, e2}

then

B = U−1AU (1)

The results that we have established for this particular linear operator on R
2

are typical of what happens in a much more general setting. We will show next
that the same sort of relationship as that given in (1) will hold for any two matrix
representations of a linear operator that maps an n-dimensional vector space into itself.

Theorem 4.3.1 Let E = {v1, . . . , vn} and F = {w1, . . . , wn} be two ordered bases for a vector space
V, and let L be a linear operator on V. Let S be the transition matrix representing the
change from F to E. If A is the matrix representing L with respect to E, and B is the
matrix representing L with respect to F, then B = S−1AS.

Proof Let x be any vector in R
n and let

v = x1w1 + x2w2 + · · · + xnwn

Let

y = Sx, t = Ay, z = Bx (2)

It follows from the definition of S that y = [v]E and hence

v = y1v1 + · · · + ynvn

Since A represents L with respect to E, and B represents L with respect to F, we have

t = [L (v)]E and z = [L (v)]F

The transition matrix from E to F is S−1. Therefore,
y

x

t

z

A

B

S S–1

Figure 4.3.1.

S−1t = z (3)

It follows from (2) and (3) that

S−1ASx = S−1Ay = S−1t = z = Bx

(see Figure 4.3.1). Thus,

S−1ASx = Bx

for every x ∈ R
n, and hence S−1AS = B.
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Another way of viewing Theorem 4.3.1 is to consider S as the matrix representing
the identity transformation I with respect to the ordered bases

F = {w1, . . . , wn} and E = {v1, . . . , vn}
If

S represents I relative to F and E,
A represents L relative to E,
S−1 represents I relative to E and F

then L can be expressed as a composite operator I ◦L◦I , and the matrix representation
of the composite will be the product of the matrix representations of the components.
Thus, the matrix representation of I ◦ L ◦ I relative to F is S−1AS. If B is the matrix
representing L relative to F, then B must equal S−1AS (see Figure 4.3.2).

Basis E: V

Basis F: V

V

V

L

A

B

L

I IS S–1

Figure 4.3.2.

Definition Let A and B be n×n matrices. B is said to be similar to A if there exists a nonsingular
matrix S such that B = S−1AS.

Note that if B is similar to A, then A = (S−1)−1BS−1 is similar to B. Thus, we may
simply say that A and B are similar matrices.

It follows from Theorem 4.3.1 that, if A and B are n × n matrices representing the
same operator L, then A and B are similar. Conversely, suppose that A represents L with
respect to the ordered basis {v1, . . . , vn} and B = S−1AS for some nonsingular matrix
S. If w1, . . . , wn are defined by

w1 = s11v1 + s21v2 + · · · + sn1vn

w2 = s12v1 + s22v2 + · · · + sn2vn
...

wn = s1nv1 + s2nv2 + · · · + snnvn

then {w1, . . . , wn} is an ordered basis for V , and B is the matrix representing L with
respect to {w1, . . . , wn}.

EXAMPLE 1 Let D be the differentiation operator on P3. Find the matrix B representing D with
respect to [1, x, x2] and the matrix A representing D with respect to [1, 2x, 4x2 − 2].
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Solution

D(1) = 0 · 1 + 0 · x + 0 · x2

D(x) = 1 · 1 + 0 · x + 0 · x2

D(x2) = 0 · 1 + 2 · x + 0 · x2

The matrix B is then given by

B =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
0 0 2
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Applying D to 1, 2x, and 4x2 − 2, we obtain

D(1) = 0 · 1 + 0 · 2x + 0 · (4x2 − 2)
D(2x) = 2 · 1 + 0 · 2x + 0 · (4x2 − 2)

D(4x2 − 2) = 0 · 1 + 4 · 2x + 0 · (4x2 − 2)

Thus

A =
⎧⎪⎪⎪⎪⎪⎩

0 2 0
0 0 4
0 0 0

⎫⎪⎪⎪⎪⎪⎭
The transition matrix S corresponding to the change of basis from [1, 2x, 4x2 − 2] to
[1, x, x2] and its inverse are given by

S =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 −2

0 2 0

0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎭ and S−1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(See Example 6 from Chapter 3, Section 3.5.) The reader may verify that A = S−1BS.

EXAMPLE 2 Let L be the linear operator mapping R
3 into R

3 defined by L (x) = Ax, where

A =
⎧⎪⎪⎪⎪⎪⎩

2 2 0
1 1 2
1 1 2

⎫⎪⎪⎪⎪⎪⎭
Thus the matrix A represents L with respect to {e1, e2, e3}. Find the matrix representing
L with respect to {y1, y2, y3}, where

y1 =
⎧⎪⎪⎪⎪⎪⎩

1
−1

0

⎫⎪⎪⎪⎪⎪⎭, y2 =
⎧⎪⎪⎪⎪⎪⎩

−2
1
1

⎫⎪⎪⎪⎪⎪⎭, y3 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭
Solution

L (y1) = Ay1 = 0 = 0y1 + 0y2 + 0y3

L (y2) = Ay2 = y2 = 0y1 + 1y2 + 0y3

L (y3) = Ay3 = 4y3 = 0y1 + 0y2 + 4y3
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Thus, the matrix representing L with respect to {y1, y2, y3} is

D =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 1 0
0 0 4

⎫⎪⎪⎪⎪⎪⎭
We could have found D by using the transition matrix Y = (y1, y2, y3) and computing

D = Y−1AY

This was unnecessary due to the simplicity of the action of L on the basis {y1, y2, y3}.

In Example 2, the linear operator L is represented by a diagonal matrix D with
respect to the basis {y1, y2, y3}. It is much simpler to work with D than with A. For
example, it is easier to compute Dx and Dnx than Ax and Anx. Generally, it is desirable
to find as simple a representation as possible for a linear operator. In particular, if the
operator can be represented by a diagonal matrix, this is usually the preferred repres-
entation. The problem of finding a diagonal representation for a linear operator will be
studied in Chapter 6.

SECTION 4.3 EXERCISES
1. For each of the following linear operators L on

R
2, determine the matrix A representing L with

respect to {e1, e2} (see Exercise 1 of Section 1.2)
and the matrix B representing L with respect to
{u1 = (1, 1)T , u2 = (−1, 1)T}:
(a) L (x) = (−x1, x2)T (b) L (x) = −x

(c) L (x) = (x2, x1)T (d) L (x) = 1
2 x

(e) L (x) = x2e2

2. Let {u1, u2} and {v1, v2} be ordered bases for R
2,

where

u1 =
⎧⎪⎩ 1

1

⎫⎪⎭ , u2 =
⎧⎪⎩ −1

1

⎫⎪⎭
and

v1 =
⎧⎪⎩ 2

1

⎫⎪⎭ , v2 =
⎧⎪⎩ 1

0

⎫⎪⎭
Let L be the linear transformation defined by

L (x) = (−x1, x2)T

and let B be the matrix representing L with respect
to {u1, u2} [from Exercise 1(a)].
(a) Find the transition matrix S corresponding to

the change of basis from {u1, u2} to {v1, v2}.

(b) Find the matrix A representing L with respect
to {v1, v2} by computing SBS−1.

(c) Verify that

L (v1) = a11v1 + a21v2

L (v2) = a12v1 + a22v2

3. Let L be the linear transformation on R
3 defined by

L (x) =
⎧⎪⎪⎪⎪⎪⎩

2x1 − x2 − x3

2x2 − x1 − x3

2x3 − x1 − x2

⎫⎪⎪⎪⎪⎪⎭
and let A be the standard matrix representation of L
(see Exercise 4 of Section 4.2). If u1 = (1, 1, 0)T ,
u2 = (1, 0, 1)T , and u3 = (0, 1, 1)T , then {u1, u2, u3}
is an ordered basis for R

3 and U = (u1, u2, u3)
is the transition matrix corresponding to a change
of basis from {u1, u2, u3} to the standard basis
{e1, e2, e3}. Determine the matrix B representing L
with respect to the basis {u1, u2, u3} by calculating
U−1AU.

4. Let L be the linear operator mapping R
3 into R

3

defined by L (x) = Ax, where

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
2 0 −2
2 −1 −1

⎫⎪⎪⎪⎪⎪⎭
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and let

v1 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭, v2 =
⎧⎪⎪⎪⎪⎪⎩

1
2
0

⎫⎪⎪⎪⎪⎪⎭, v3 =
⎧⎪⎪⎪⎪⎪⎩

0
−2

1

⎫⎪⎪⎪⎪⎪⎭
Find the transition matrix V corresponding to a
change of basis from {v1, v2, v3} to {e1, e2, e3}, and
use it to determine the matrix B representing L with
respect to {v1, v2, v3}.

5. Let L be the operator on P3 defined by

L (p(x)) = xp′(x) + p′′(x)

(a) Find the matrix A representing L with respect
to [1, x, x2].

(b) Find the matrix B representing L with respect
to [1, x, 1 + x2].

(c) Find the matrix S such that B = S−1AS.

(d) If p(x) = a0 + a1x + a2(1 + x2), calculate
Ln(p(x)).

6. Let V be the subspace of C[a, b] spanned by
1, ex, e−x, and let D be the differentiation operator
on V .
(a) Find the transition matrix S represent-

ing the change of coordinates from the
ordered basis [1, ex, e−x] to the ordered basis
[1, cosh x, sinh x]. [cosh x = 1

2 (ex + e−x),
sinh x = 1

2 (ex − e−x).]

(b) Find the matrix A representing D with respect
to the ordered basis [1, cosh x, sinh x].

(c) Find the matrix B representing D with respect
to [1, ex, e−x].

(d) Verify that B = S−1AS.

7. Prove that if A is similar to B and B is similar to C,
then A is similar to C.

8. Suppose that A = S�S−1, where � is a diagonal
matrix with diagonal elements λ1, λ2, . . . , λn.
(a) Show that Asi = λisi, i = 1, . . . , n.
(b) Show that if x = α1s1 +α2s2 +· · ·+αnsn, then

Akx = α1λ
k
1s1 + α2λ

k
2s2 + · · · + αnλ

k
nsn

(c) Suppose that |λi| < 1 for i = 1, . . . , n. What
happens to Akx as k → ∞? Explain.

9. Suppose that A = ST , where S is nonsingular. Let
B = TS. Show that B is similar to A.

10. Let A and B be n × n matrices. Show that if A is
similar to B then there exist n×n matrices S and T ,
with S nonsingular, such that

A = ST and B = TS

11. Show that if A and B are similar matrices, then
det(A) = det(B).

12. Let A and B be similar matrices. Show that
(a) AT and BT are similar.
(b) Ak and Bk are similar for each positive integer

k.
13. Show that if A is similar to B and A is nonsingular,

then B must also be nonsingular and A−1 and B−1

are similar.
14. Let A and B be similar matrices and let λ be any

scalar. Show that
(a) A − λI and B − λI are similar.
(b) det(A − λI) = det(B − λI).

15. The trace of an n×n matrix A, denoted tr(A), is the
sum of its diagonal entries; that is,

tr(A) = a11 + a22 + · · · + ann

Show that
(a) tr(AB) = tr(BA)
(b) if A is similar to B, then tr(A) = tr(B).

Chapter Four Exercises

MATLAB EXERCISES

1. Use MATLAB to generate a matrix W and a vector
x by setting

W = triu(ones(5)) and x = [1 : 5]′

The columns of W can be used to form an ordered
basis

F = {w1, w2, w3, w4, w5}
Let L : R

5 → R
5 be a linear operator such that

L (w1) = w2, L (w2) = w3, L (w3) = w4

and

L (w4) = 4w1 + 3w2 + 2w3 + w4

L (w5) = w1 + w2 + w3 + 3w4 + w5

(a) Determine the matrix A representing L with
respect to F, and enter it in MATLAB.

(b) Use MATLAB to compute the coordinate vector
y = W−1x of x with respect to F.
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(c) Use A to compute the coordinate vector z of
L (x) with respect to F.

(d) W is the transition matrix from F to the standard
basis for R

5. Use W to compute the coordinate
vector of L (x) with respect to the standard basis.

2. Set A = triu(ones(5))∗tril(ones(5)). If L de-
notes the linear operator defined by L (x) = Ax for
all x in R

n, then A is the matrix representing L with
respect to the standard basis for R

5. Construct a 5×5
matrix U by setting

U = hankel(ones(5, 1), 1 : 5)

Use the MATLAB function rank to verify that the
column vectors of U are linearly independent. Thus,
E = {u1, u2, u3, u4, u5} is an ordered basis for R

5.
The matrix U is the transition matrix from E to the
standard basis.
(a) Use MATLAB to compute the matrix B repres-

enting L with respect to E. (The matrix B should
be computed in terms of A, U, and U−1.)

(b) Generate another matrix by setting

V = toeplitz([1, 0, 1, 1, 1])

Use MATLAB to check that V is nonsingular. It
follows that the column vectors of V are linearly
independent and hence form an ordered basis F
for R

5. Use MATLAB to compute the matrix
C, which represents L with respect to F. (The

matrix C should be computed in terms of A, V ,
and V−1.)

(c) The matrices B and C from parts (a) and (b)
should be similar. Why? Explain. Use MAT-
LAB to compute the transition matrix S from
F to E. Compute the matrix C in terms of B,
S, and S−1. Compare your result with the result
from part (b).

3. Let

A = toeplitz(1 : 7),
S = compan(ones(8, 1))

and set B = S−1 ∗ A ∗ S. The matrices A and B are
similar. Use MATLAB to verify that the following
properties hold for these two matrices:

(a) det(B) = det(A)

(b) BT = ST AT (ST )−1

(c) B−1 = S−1A−1S

(d) B9 = S−1A9S

(e) B − 3I = S−1(A − 3I)S
(f) det(B − 3I) = det(A − 3I)
(g) tr(B) = tr(A) (Note that the trace of a matrix A

can be computed with the MATLAB command
trace.)

These properties will hold in general for any pair
of similar matrices. (see Exercises 11-15 of Sec-
tion 4.3).

CHAPTER TEST A True or False

For each statement that follows, answer true if the state-
ment is always true and false otherwise. In the case of
a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

1. Let L : R
n → R

n be a linear transformation. If
L (x1) = L (x2), then the vectors x1 and x2 must
be equal.

2. If L1 and L2 are both linear operators on a vector
space V , then L1 +L2 is also a linear operator on V ,
where L1 + L2 is the mapping defined by

(L1 + L2)(v) = L1(v) + L2(v) for all v ∈ V

3. If L : V → V is a linear transformation and x ∈
ker(L), then L (v + x) = L (v) for all v ∈ V .

4. If L1 rotates each vector x in R
2 by 60◦ and then

reflects the resulting vector about the x-axis, and if
L2 is a transformation that does the same two op-
erations, but in the reverse order, then L1 = L2.

5. The set of all vectors x used in the homogeneous
coordinate system (see the application on computer
graphics and animation in Section 4.2 ) forms a
subspace of R

3.

6. Let L : R
2 → R

2 be a linear transformation, and let
A be the standard matrix representation of L. If L2

is defined by

L2(x) = L (L (x)) for all x ∈ R
2

then L2 is a linear transformation and its standard
matrix representation is A2.
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7. Let E = {x1, x2, . . . , xn} be an ordered basis for R
n.

If L1 : R
n → R

n and L2 : R
n → R

n have the
same matrix representation with respect to E, then
L1 = L2.

8. Let L : R
n → R

n be a linear transformation. If A
is the standard matrix representation of L, then an

n × n matrix B will also be a matrix representation
of L if and only if B is similar to A.

9. Let A, B, and C be n × n matrices. If A is similar to
B and B is similar to C, then A is similar to C.

10. Any two matrices with the same trace are sim-
ilar. [This statement is the converse of part (b) of
Exercise 15 in Section 4.3.]

CHAPTER TEST B

1. Determine whether the following are linear operat-
ors on R

2:
(a) L is the operator defined by

L (x) = (x1 + x2, x1)T .

(b) L is the operator defined by L (x) = (x1x2, x1)T .
2. Let L be a linear operator on R

2 and let

v1 =
⎧⎪⎩ 1

1

⎫⎪⎭ , v2 =
⎧⎪⎩ −1

2

⎫⎪⎭ , v3 =
⎧⎪⎩ 1

7

⎫⎪⎭
If

L (v1) =
⎧⎪⎩ 2

5

⎫⎪⎭ and L (v2) =
⎧⎪⎩ −3

1

⎫⎪⎭
find the value of L (v3).

3. Let L be the linear operator on R
3 defined by

L (x) =
⎧⎪⎪⎪⎪⎪⎩

x2 − x1

x3 − x2

x3 − x1

⎫⎪⎪⎪⎪⎪⎭
and let S = Span((1, 0, 1)T ).
(a) Find the kernel of L.

(b) Determine L (S).
4. Let L be the linear operator on R

3 defined by

L (x) =
⎧⎪⎪⎪⎪⎪⎩

x2

x1

x1 + x2

⎫⎪⎪⎪⎪⎪⎭
Determine the range of L.

5. Let L : R
2 → R

3 be defined by

L (x) =
⎧⎪⎪⎪⎪⎪⎩

x1 + x2

x1 − x2

3x1 + 2x2

⎫⎪⎪⎪⎪⎪⎭
Find a matrix A such that L (x) = Ax for each x in
R

2.

6. Let L be the linear operator on R
2 that rotates a vec-

tor by 30◦ in the counterclockwise direction and
then reflects the resulting vector about the y-axis.
Find the standard matrix representation of L.

7. Let L be the translation operator on R
2 defined by

L (x) = x + a, where a =
⎧⎪⎩ 2

5

⎫⎪⎭
Find the matrix representation of L with respect to
the homogeneous coordinate system.

8. Let

u1 =
⎧⎪⎩ 3

1

⎫⎪⎭ , u2 =
⎧⎪⎩ 5

2

⎫⎪⎭
and let L be the linear operator that rotates vec-
tors in R

2 by 45◦ in the counterclockwise direction.
Find the matrix representation of L with respect to
the ordered basis [u1, u2].

9. Let

u1 =
⎧⎪⎩ 3

1

⎫⎪⎭ , u2 =
⎧⎪⎩ 5

2

⎫⎪⎭
and

v1 =
⎧⎪⎩ 1

−2

⎫⎪⎭ , v2 =
⎧⎪⎩ 1

−1

⎫⎪⎭
and let L be a linear operator on R

2 whose matrix
representation with respect to the ordered basis is
{u1, u2} is

A =
⎧⎪⎩ 2 1

3 2

⎫⎪⎭
(a) Determine the transition matrix from the basis

{v1, v2} to the basis {u1, u2}.
(b) Find the matrix representation of L with re-

spect to {v1, v2}.
10. Let A and B be similar matrices.

(a) Show that det(A) = det(B).
(b) Show that if λ is any scalar, then det(A−λI) =

det(B − λI).
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Orthogonality
We can add to the structure of a vector space by defining a scalar or inner product.
Such a product is not a true vector multiplication, since to every pair of vectors it
associates a scalar rather than a third vector. For example, in R

2, we can define the
scalar product of two vectors x and y to be xTy. We can think of vectors in R

2 as
directed line segments beginning at the origin. It is not difficult to show that the angle
between two line segments will be a right angle if and only if the scalar product of the
corresponding vectors is zero. In general, if V is a vector space with a scalar product,
then two vectors in V are said to be orthogonal if their scalar product is zero.

We can think of orthogonality as a generalization of the concept of perpendicular-
ity to any vector space with an inner product. To see the significance of this, consider
the following problem: Let l be a line passing through the origin, and let Q be a point
not on l. Find the point P on l that is closest to Q. The solution P to this problem is
characterized by the condition that QP is perpendicular to OP (see Figure 5.0.1). If
we think of the line l as corresponding to a subspace of R

2 and v = OQ as a vector
in R

2, then the problem is to find a vector in the subspace that is “closest” to v. The
solution p will then be characterized by the property that p is orthogonal to v − p (see
Figure 5.0.1). In the setting of a vector space with an inner product, we are able to
consider general least squares problems. In these problems, we are given a vector v

v – p

p

O

P

Q

v

Figure 5.0.1. 201
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in V and a subspace W. We wish to find a vector in W that is “closest” to v. A solu-
tion p must be orthogonal to v − p. This orthogonality condition provides the key to
solving the least squares problem. Least squares problems occur in many statistical
applications involving data fitting.

5.1 The Scalar Product in R
n

Two vectors x and y in R
n may be regarded as n × 1 matrices. We can then form the

matrix product xTy. This product is a 1 × 1 matrix that may be regarded as a vector in
R

1 or, more simply, as a real number. The product xTy is called the scalar product of
x and y. In particular, if x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , then

xTy = x1y1 + x2y2 + · · · + xnyn

EXAMPLE 1 If

x =
⎧⎪⎪⎪⎪⎪⎩

3
−2

1

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

4
3
2

⎫⎪⎪⎪⎪⎪⎭
then

xTy = (3, −2, 1)

⎧⎪⎪⎪⎪⎪⎩
4
3
2

⎫⎪⎪⎪⎪⎪⎭ = 3 · 4 − 2 · 3 + 1 · 2 = 8

The Scalar Product in R
2 and R

3

In order to see the geometric significance of the scalar product, let us begin by restrict-
ing our attention to R

2 and R
3. Vectors in R

2 and R
3 can be represented by directed

line segments. Given a vector x in either R
2 or R

3, its Euclidean length can be defined
in terms of the scalar product.

‖x‖ = (xTx)1/2 =

⎧⎪⎨
⎪⎩
√

x2
1 + x2

2 if x ∈ R
2√

x2
1 + x2

2 + x2
3 if x ∈ R

3

Given two nonzero vectors x and y, we can think of them as directed line segments
starting at the same point. The angle between the two vectors is then defined as the
angle θ between the line segments. We can measure the distance between the vectors
by measuring the length of the vector joining the terminal point of x to the terminal
point of y (see Figure 5.1.1). Thus we have the following definition.

Definition Let x and y be vectors in either R
2 or R

3. The distance between x and y is defined
to be the number ‖x − y‖.
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x

y

y – x

(x1, x2)

(y1, y2)

θ

Figure 5.1.1.

EXAMPLE 2 If x = (3, 4)T and y = (−1, 7)T , then the distance between x and y is given by

‖y − x‖ =
√

(−1 − 3)2 + (7 − 4)2 = 5

The angle between two vectors can be computed using the following theorem.

Theorem 5.1.1 If x and y are two nonzero vectors in either R
2 or R

3 and θ is the angle between them,
then

xTy = ‖x‖ ‖y‖ cos θ (1)

Proof The vectors x, y, and y − x may be used to form a triangle as in Figure 5.1.1. By the
law of cosines, we have

‖y − x‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖ cos θ

and hence it follows that

‖x‖ ‖y‖ cos θ = 1
2 (‖x‖2 + ‖y‖2 − ‖y − x‖2)

= 1
2 (‖x‖2 + ‖y‖2 − (y − x)T (y − x))

= 1
2 (‖x‖2 + ‖y‖2 − (yTy − yTx − xTy + xTx))

= xTy

If x and y are nonzero vectors, then we can specify their directions by forming unit
vectors

u = 1

‖x‖x and v = 1

‖y‖y

If θ is the angle between x and y, then

cos θ = xTy
‖x‖‖y‖ = uTv

The cosine of the angle between the vectors x and y is simply the scalar product of the
corresponding direction vectors u and v.
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EXAMPLE 3 Let x and y be the vectors in Example 2. The directions of these vectors are given by
the unit vectors

u = 1

‖x‖x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3

5
4

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and v = 1

‖y‖y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

5
√

2
7

5
√

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The cosine of the angle θ between the two vectors is

cos θ = uTv = 1√
2

and hence θ = π
4 .

Corollary 5.1.2 Cauchy–Schwarz Inequality
If x and y are vectors in either R

2 or R
3, then

|xTy| ≤ ‖x‖ ‖y‖ (2)

with equality holding if and only if one of the vectors is 0 or one vector is a multiple of
the other.

Proof The inequality follows from (1). If one of the vectors is 0, then both sides of (2) are 0.
If both vectors are nonzero, it follows from (1) that equality can hold in (2) if and only
if cos θ = ±1. But this would imply that the vectors are either in the same or opposite
directions and hence that one vector must be a multiple of the other.

If xTy = 0, it follows from Theorem 5.1.1 that either one of the vectors is the zero
vector or cos θ = 0. If cos θ = 0, the angle between the vectors is a right angle.

Definition The vectors x and y in R
2 (or R

3) are said to be orthogonal if xTy = 0.

EXAMPLE 4 (a) The vector 0 is orthogonal to every vector in R
2.

(b) The vectors
⎧⎪⎩ 3

2

⎫⎪⎭ and
⎧⎪⎩−4

6

⎫⎪⎭ are orthogonal in R
2.

(c) The vectors

⎧⎪⎪⎪⎪⎪⎩
2

−3
1

⎫⎪⎪⎪⎪⎪⎭ and

⎧⎪⎪⎪⎪⎪⎩
1
1
1

⎫⎪⎪⎪⎪⎪⎭ are orthogonal in R
3.

Scalar and Vector Projections
The scalar product can be used to find the component of one vector in the direction of
another. Let x and y be nonzero vectors in either R

2 or R
3. We would like to write x as

a sum of the form p + z, where p is in the direction of y and z is orthogonal to p (see
Figure 5.1.2). To do this, let u = (1/‖y‖)y. Thus u is a unit vector (length 1) in the
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z = x – p

u

y

p = αu

x

θ
α

Figure 5.1.2.

direction of y. We wish to find α such that p = αu is orthogonal to z = x − αu. For p
and z to be orthogonal, the scalar α must satisfy

α = ‖x‖ cos θ

= ‖x‖ ‖y‖ cos θ

‖y‖
= xTy

‖y‖
The scalar α is called the scalar projection of x onto y, and the vector p is called the
vector projection of x onto y.

Scalar projection of x onto y:

α = xTy
‖y‖

Vector projection of x onto y:

p = αu = α
1

‖y‖y = xTy
yTy

y

EXAMPLE 5 The point Q in Figure 5.1.3 is the point on the line y = 1
3 x that is closest to the point

(1, 4). Determine the coordinates of Q.

v

w

(1, 4)

Q

3

y = 1
3

x

Figure 5.1.3.
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Solution
The vector w = (3, 1)T is a vector in the direction of the line y = 1

3 x. Let v = (1, 4)T .
If Q is the desired point, then QT is the vector projection of v onto w.

QT =
(

vTw
wTw

)
w = 7

10

⎧⎪⎩ 3
1

⎫⎪⎭ =
⎧⎪⎩ 2.1

0.7

⎫⎪⎭
Thus, Q = (2.1, 0.7) is the closest point.

Notation

If P1 and P2 are two points in 3-space, we will denote the vector from P1 to P2 by−−→
P1P2.

If N is a nonzero vector and P0 is a fixed point, the set of points P such that
−→
P0P is

orthogonal to N forms a plane π in 3-space that passes through P0. The vector N and
the plane π are said to be normal to each other. A point P = (x, y, z) will lie on π if
and only if

(
−→
P0P)TN = 0

If N = (a, b, c)T and P0 = (x0, y0, z0), this equation can be written in the form

a(x − x0) + b(y − y0) + c(z − z0) = 0

EXAMPLE 6 Find the equation of the plane passing through the point (2, −1, 3) and normal to the
vector N = (2, 3, 4)T .

Solution−→
P0P = (x − 2, y + 1, z − 3)T . The equation is (

−→
P0P)TN = 0, or

2(x − 2) + 3(y + 1) + 4(z − 3) = 0

The span of two linearly independent vectors x and y in R
3 corresponds to a plane

through the origin in 3-space. To determine the equation of the plane we must find
a vector normal to the plane. In Section 3 of Chapter 2, it was shown that the cross
product of the two vectors is orthogonal to each vector. If we take N = x × y as our
normal vector, then the equation of the plane is given by

n1x + n2y + n3z = 0

EXAMPLE 7 Find the equation of the plane that passes through the points

P1 = (1, 1, 2), P2 = (2, 3, 3), P3 = (3, −3, 3)

Solution
Let

x = −−→
P1P2 =

⎧⎪⎪⎪⎪⎪⎩
1
2
1

⎫⎪⎪⎪⎪⎪⎭ and y = −−→
P1P3 =

⎧⎪⎪⎪⎪⎪⎩
2

−4
1

⎫⎪⎪⎪⎪⎪⎭
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The normal vector N must be orthogonal to both x and y. If we set

N = x × y =
⎧⎪⎪⎪⎪⎪⎩

6
1

−8

⎫⎪⎪⎪⎪⎪⎭
then N will be a normal vector to the plane that passes through the given points. We
can then use any one of the points to determine the equation of the plane. Using the
point P1, we see that the equation of the plane is

6(x − 1) + (y − 1) − 8(z − 2) = 0

EXAMPLE 8 Find the distance from the point (2, 0, 0) to the plane x + 2y + 2z = 0.

Solution
The vector N = (1, 2, 2)T is normal to the plane and the plane passes through the origin.
Let v = (2, 0, 0)T . The distance d from (2, 0, 0) to the plane is simply the absolute value
of the scalar projection of v onto N. Thus

d = |vTN|
‖N‖ = 2

3

If x and y are nonzero vectors in R
3 and θ is the angle between the vectors, then

cos θ = xTy
‖x‖‖y‖

It then follows that

sin θ =
√

1 − cos2 θ =
√

1 − (xTy)2

‖x‖2‖y‖2
=
√‖x‖2‖y‖2 − (xTy)2

‖x‖‖y‖

and hence

‖x‖‖y‖ sin θ =
√

‖x‖2‖y‖2 − (xTy)2

=
√

(x2
1 + x2

2 + x2
3)(y2

1 + y2
2 + y2

3) − (x1y1 + x2y2 + x3y3)2

=
√

(x2y3 − x3y2)2 + (x3y1 − x1y3)2 + (x1y2 − x2y1)2

= ‖x × y‖

Thus, we have, for any nonzero vectors x and y in R
3,

‖x × y‖ = ‖x‖‖y‖ sin θ

If either x or y is the zero vector then x × y = 0 and hence the norm of x × y will be 0.
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Orthogonality in R
n

The definitions that have been given for R
2 and R

3 can all be generalized to R
n. Indeed,

if x ∈ R
n, then the Euclidean length of x is defined by

‖x‖ = (xTx)1/2 = (x2
1 + x2

2 + · · · + x2
n)1/2

If x and y are two vectors in R
n, then the distance between the vectors is ‖y − x‖.

The Cauchy–Schwarz inequality holds in R
n. (We will prove this in Section 5.4.)

Consequently,

−1 ≤ xTy
‖x‖ ‖y‖ ≤ 1 (3)

for any nonzero vectors x and y in R
n. In view of (3) the definition of the angle between

two vectors that was used for R
2 can be generalized to R

n. Thus the angle θ between
two nonzero vectors x and y in R

n is given by

cos θ = xTy
‖x‖ ‖y‖ , 0 ≤ θ ≤ π

In talking about angles between vectors it is usually more convenient to scale the
vectors so as to make them unit vectors. If we set

u = 1

‖x‖x and v = 1

‖y‖y

then the angle θ between u and v is clearly the same as the angle between x and y, and
its cosine can be computed simply by taking the scalar product of the two unit vectors:

cos θ = xTy
‖x‖ ‖y‖ = uTv

The vectors x and y are said to be orthogonal if xTy = 0. Often the symbol ⊥ is used
to indicate orthogonality. Thus, if x and y are orthogonal, we will write x ⊥ y. Vector
and scalar projections are defined in R

n in the same way that they were defined for R
2.

If x and y are vectors in R
n, then

‖x + y‖2 = (x + y)T (x + y) = ‖x‖2 + 2xTy + ‖y‖2 (4)

In the case that x and y are orthogonal, equation (4) becomes the Pythagorean law

‖x + y‖2 = ‖x‖2 + ‖y‖2

The Pythagorean Law is a generalization of the Pythagorean theorem. When x and
y are nonzero orthogonal vectors in R

2, we can use these vectors and their sum x + y
to form a right triangle as in Figure 5.1.4. The Pythagorean law relates the lengths of
the sides of the triangle. Indeed, if we set

a = ‖x‖, b = ‖y‖, c = ‖x + y‖
then

c2 = a2 + b2 (the famous Pythagorean theorem)
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b = ||y||

a = ||x||

c = ||x + y||

Figure 5.1.4.

In many applications, the cosine of the angle between two nonzero vectors is used
as a measure of how closely the directions of the vectors match up. If cos θ is near 1,
then the angle between the vectors is small and hence the vectors are in nearly the same
direction. A cosine value near zero would indicate that the angle between the vectors
is nearly a right angle.

APPLICATION 1 Information Retrieval Revisited

In Section 3 of Chapter 1, we considered the problem of searching a database for
documents that contain certain key words. If there are m possible key search words
and a total of n documents in the collection, then the database can be represented by an
m × n matrix A. Each column of A represents a document in the database. The entries
of the jth column correspond to the relative frequencies of the key words in the jth
document.

Refined search techniques must deal with vocabulary disparities and the com-
plexities of language. Two of the main problems are polysemy (words having multiple
meanings) and synonymy (multiple words having the same meaning). On the one hand,
some of the words that you are searching for may have multiple meanings and could
appear in contexts that are completely irrelevant to your particular search. For example,
the word calculus would occur frequently in both mathematical papers and in dentistry
papers. On the other hand, most words have synonyms, and it is possible that many
of the documents may use the synonyms rather than the specified search words. For
example, you could search for an article on rabies using the key word dogs; however,
the author of the article may have preferred to use the word canines throughout the
paper. To handle these problems, we need a technique to find the documents that best
match the list of search words without necessarily matching every word on the list. We
want to pick out the column vectors of the database matrix that most closely match a
given search vector. To do this, we use the cosine of the angle between two vectors as
a measure of how closely the vectors match up.

In practice, both m and n are quite large, as there are many possible key words and
many documents to search. For simplicity, let us consider an example where m = 10
and n = 8. Suppose that a Web site has eight modules for learning linear algebra
and each module is located on a separate Web page. Our list of possible search words
consists of

determinants, eigenvalues, linear, matrices, numerical,
orthogonality, spaces, systems, transformations, vector

(This list of key words was compiled from the chapter headings for this book.) Table 1
shows the frequencies of the key words in each of the modules. The (2, 6) entry of the
table is 5, which indicates that the key word eigenvalues appears five times in the sixth
module.
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Table 1 Frequency of Key Words

Modules

Key words M1 M2 M3 M4 M5 M6 M7 M8

determinants 0 6 3 0 1 0 1 1

eigenvalues 0 0 0 0 0 5 3 2

linear 5 4 4 5 4 0 3 3

matrices 6 5 3 3 4 4 3 2

numerical 0 0 0 0 3 0 4 3

orthogonality 0 0 0 0 4 6 0 2

spaces 0 0 5 2 3 3 0 1

systems 5 3 3 2 4 2 1 1

transformations 0 0 0 5 1 3 1 0

vector 0 4 4 3 4 1 0 3

The database matrix is formed by scaling each column of the table so that all
column vectors are unit vectors. Thus, if A is the matrix corresponding to Table 1, then
the columns of the database matrix Q are determined by setting

qj = 1

‖aj‖aj j = 1, . . . , 8

To do a search for the key words orthogonality, spaces, and vector, we form a search
vector x whose entries are all 0 except for the three rows corresponding to the search
rows. To obtain a unit search vector, we put 1√

3
in each of the rows corresponding to

the search words. For this example, the database matrix Q and search vector x (with
entries rounded to three decimal places) are given by

Q=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.000 0.594 0.327 0.000 0.100 0.000 0.147 0.154
0.000 0.000 0.000 0.000 0.000 0.500 0.442 0.309
0.539 0.396 0.436 0.574 0.400 0.000 0.442 0.463
0.647 0.495 0.327 0.344 0.400 0.400 0.442 0.309
0.000 0.000 0.000 0.000 0.300 0.000 0.590 0.463
0.000 0.000 0.000 0.000 0.400 0.600 0.000 0.309
0.000 0.000 0.546 0.229 0.300 0.300 0.000 0.154
0.539 0.297 0.327 0.229 0.400 0.200 0.147 0.154
0.000 0.000 0.000 0.574 0.100 0.300 0.147 0.000
0.000 0.396 0.436 0.344 0.400 0.100 0.000 0.463

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, x=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.000
0.000
0.000
0.000
0.000
0.577
0.577
0.000
0.000
0.577

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If we set y = QTx, then

yi = qT
i x = cos θi

where θi is the angle between the unit vectors x and qi. For our example,

y = (0.000, 0.229, 0.567, 0.331, 0.635, 0.577, 0.000, 0.535)T

Since y5 = 0.635 is the entry of y that is closest to 1, the direction of the search vec-
tor x is closest to the direction of q5 and hence module 5 is the one that best matches
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our search criteria. The next-best matches come from modules 6 (y6 = 0.577) and
3 (y3 = 0.567). If a document doesn’t contain any of the search words, then the corres-
ponding column vector of the database matrix will be orthogonal to the search vector.
Note that modules 1 and 7 do not have any of the three search words and consequently

y1 = qT
1 x = 0 and y7 = qT

7 x = 0

This example illustrates some of the basic ideas behind database searches. Using
modern matrix techniques, we can improve the search process significantly. We can
speed up searches and at the same time correct for errors due to polysemy and syn-
onymy. These advanced techniques are referred to as latent semantic indexing (LSI)
and depend on a matrix factorization, the singular value decomposition, which we will
discuss in Section 5 of Chapter 6.

There are many other important applications involving angles between vectors. In
particular, statisticians use the cosine of the angle between two vectors as a measure of
how closely the two vectors are correlated.

APPLICATION 2 Statistics—Correlation and Covariance Matrices

Suppose that we wanted to compare how closely exam scores for a class correlate
with scores on homework assignments. As an example, we consider the total scores
on assignments and tests of a mathematics class at the University of Massachusetts
Dartmouth. The total scores for homework assignments during the semester for the
class are given in the second column of Table 2. The third column represents the total
scores for the two exams given during the semester, and the last column contains the
scores on the final exam. In each case, a perfect score would be 200 points. The last
row of the table summarizes the class averages.

Table 2 Math Scores Fall 1996

Scores

Student Assignments Exams Final

S1 198 200 196

S2 160 165 165

S3 158 158 133

S4 150 165 91

S5 175 182 151

S6 134 135 101

S7 152 136 80

Average 161 163 131

We would like to measure how student performance compares between each set
of exam or assignment scores. To see how closely the two sets of scores are correlated
and allow for any differences in difficulty, we need to adjust the scores so that each test
has a mean of 0. If, in each column, we subtract the average score from each of the
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test scores, then the translated scores will each have an average of 0. Let us store these
translated scores in a matrix:

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

37 37 65
−1 2 34
−3 −5 2

−11 2 −40
14 19 20

−27 −28 −30
−9 −27 −51

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The column vectors of X represent the deviations from the mean for each of the three
sets of scores. The three sets of translated data specified by the column vectors of X all
have mean 0, and all sum to 0. To compare two sets of scores, we compute the cosine
of the angle between the corresponding column vectors of X. A cosine value near 1
indicates that the two sets of scores are highly correlated. For example, correlation
between the assignment scores and the exam scores is given by

cos θ = xT
1 x2

‖x1‖ ‖x2‖ ≈ 0.92

A perfect correlation of 1 would correspond to the case where the two sets of translated
scores are proportional. Thus, for a perfect correlation, the translated vectors would
satisfy

x2 = αx1 (α > 0)

and if the corresponding coordinates of x1 and x2 were paired off, then each ordered
pair would lie on the line y = αx. Although the vectors x1 and x2 in our example are
not perfectly correlated, the coefficient of 0.92 does indicate that the two sets of scores
are highly correlated. Figure 5.1.5 shows how close the actual pairs are to lying on a
line y = αx. The slope of the line in the figure was determined by setting

α = xT
1 x2

xT
1 x1

= 2625

2506
≈ 1.05

This choice of slope yields an optimal least squares fit to the data points. (See
Exercise 7 of Section 5.3.)

If we scale x1 and x2 to make them unit vectors

u1 = 1

‖x1‖x1 and u2 = 1

‖x2‖x2

then the cosine of the angle between the vectors will remain unchanged, and it can
be computed simply by taking the scalar product uT

1 u2. Let us scale all three sets of
translated scores in this way and store the results in a matrix:

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.74 0.65 0.62
−0.02 0.03 0.33
−0.06 −0.09 0.02
−0.22 0.03 −0.38

0.28 0.33 0.19
−0.54 −0.49 −0.29
−0.18 −0.47 −0.49

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Figure 5.1.5.

If we set C = UTU, then

C =
⎧⎪⎪⎪⎪⎪⎩

1 0.92 0.83
0.92 1 0.83
0.83 0.83 1

⎫⎪⎪⎪⎪⎪⎭
and the (i, j) entry of C represents the correlation between the ith and jth sets of scores.
The matrix C is referred to as a correlation matrix.

The three sets of scores in our example are all positively correlated, since the cor-
relation coefficients are all positive. A negative coefficient would indicate that two data
sets were negatively correlated, and a coefficient of 0 would indicate that they were
uncorrelated. Thus, two sets of test scores would be uncorrelated if the corresponding
vectors of deviations from the mean were orthogonal.

Another statistically important quantity that is closely related to the correlation
matrix is the covariance matrix. Given a collection of n data points representing values
of some variable x, we compute the mean x of the data points and form a vector x of
the deviations from the mean. The variance, s2, is defined by

s2 = 1

n − 1

n∑
1

x2
i = xTx

n − 1

and the standard deviation s is the square root of the variance. If we have two data sets
X1 and X2 each containing n values of a variable, we can form vectors x1 and x2 of
deviations from the mean for both sets. The covariance is defined by

cov(X1, X2) = xT
1 x2

n − 1
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If we have more than two data sets, we can form a matrix X whose columns represent
the deviations from the mean for each data set and then form a covariance matrix S by
setting

S = 1

n − 1
XTX

The covariance matrix for the three sets of mathematics scores is

S = 1

6

⎧⎪⎪⎪⎪⎪⎩
37 −1 −3 −11 14 −27 −9
37 2 −5 2 19 −28 −27
65 34 2 −40 20 −30 −51

⎫⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

37 37 65
−1 2 34
−3 −5 2

−11 2 −40
14 19 20

−27 −28 −30
−9 −27 −51

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
⎧⎪⎪⎪⎪⎪⎩

417.7 437.5 725.7
437.5 546.0 830.0
725.7 830.0 1814.3

⎫⎪⎪⎪⎪⎪⎭
The diagonal entries of S are the variances for the three sets of scores, and the off-
diagonal entries are the covariances.

To illustrate the importance of the correlation and covariance matrices, we will
consider an application to the field of psychology.

APPLICATION 3 Psychology—Factor Analysis and Principal Component Analysis

Factor analysis had its start at the beginning of the 20th century with the efforts of psy-
chologists to identify the factor or factors that make up intelligence. The person most
responsible for pioneering this field was the psychologist Charles Spearman. In a 1904
paper, Spearman analyzed a series of exam scores at a preparatory school. The exams
were taken by a class of 23 pupils in a number of standard subject areas and also in pitch
discrimination. The correlation matrix reported by Spearman is summarized in Table 3.

Table 3 Spearman’s Correlation Matrix

Classics French English Math Discrim. Music

Classics 1 0.83 0.78 0.70 0.66 0.63

French 0.83 1 0.67 0.67 0.65 0.57

English 0.78 0.67 1 0.64 0.54 0.51

Math 0.70 0.67 0.64 1 0.45 0.51

Discrim. 0.66 0.65 0.54 0.45 1 0.40

Music 0.63 0.57 0.51 0.51 0.40 1

Using this and other sets of data, Spearman observed a hierarchy of correlations
among the test scores for the various disciplines. This led him to conclude that “All
branches of intellectual activity have in common one fundamental function (or group
of fundamental functions), . . . ” Although Spearman did not assign names to these
functions, others have used terms such as verbal comprehension, spatial, perceptual,
and associative memory to describe the hypothetical factors.
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The hypothetical factors can be isolated mathematically using a method known as
principal component analysis. The basic idea is to form a matrix X of deviations from
the mean and then factor it into a product UW, where the columns of U correspond to
the hypothetical factors. While in practice, the columns of X are positively correlated,
the hypothetical factors should be uncorrelated. Thus, the column vectors of U should
be mutually orthogonal (i.e., uT

i uj = 0 whenever i 	= j). The entries in each column of
U measure how well the individual students exhibit the particular intellectual ability
represented by that column. The matrix W measures to what extent each test depends
on the hypothetical factors.

The construction of the principal component vectors relies on the covariance mat-
rix S = 1

n−1 XTX. Since it depends on the eigenvalues and eigenvectors of S, we will
defer the details of the method until Chapter 6. In Section 5 of Chapter 6 we will
revisit this application and learn an important factorization called the singular value
decomposition, which is the main tool of principal component analysis.
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SECTION 5.1 EXERCISES
1. Find the angle between the vectors v and w in each

of the following:
(a) v = (2, 1, 3)T , w = (6, 3, 9)T

(b) v = (2, −3)T , w = (3, 2)T

(c) v = (4, 1)T , w = (3, 2)T

(d) v = (−2, 3, 1)T , w = (1, 2, 4)T

2. For each pair of vectors in Exercise 1, find the
scalar projection of v onto w. Also find the vector
projection of v onto w.

3. For each of the following pairs of vectors x and y,
find the vector projection p of x onto y and verify
that p and x − p are orthogonal:
(a) x = (3, 4)T , y = (1, 0)T

(b) x = (3, 5)T , y = (1, 1)T

(c) x = (2, 4, 3)T , y = (1, 1, 1)T

(d) x = (2, −5, 4)T , y = (1, 2, −1)T

4. Let x and y be linearly independent vectors in R
2.

If ‖x‖ = 2 and ‖y‖ = 3, what, if anything, can we
conclude about the possible values of |xT y|?

5. Find the point on the line y = 2x that is closest to
the point (5, 2).

6. Find the point on the line y = 2x + 1 that is closest
to the point (5, 2).

7. Find the distance from the point (1, 2) to the line
4x − 3y = 0.

8. In each of the following, find the equation of the
plane normal to the given vector N and passing
through the point P0:

(a) N = (2, 4, 3)T , P0 = (0, 0, 0)

(b) N = (−3, 6, 2)T , P0 = (4, 2, −5)

(c) N = (0, 0, 1)T , P0 = (3, 2, 4)

9. Find the equation of the plane that passes through
the points

P1 = (2, 3, 1), P2 = (5, 4, 3), P3 = (3, 4, 4)

10. Find the distance from the point (1, 1, 1) to the
plane 2x + 2y + z = 0.
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11. Find the distance from the point (2, 1, −2) to the
plane

6(x − 1) + 2(y − 3) + 3(z + 4) = 0

12. If x = (x1, x2)T , y = (y1, y2)T , and z = (z1, z2)T are
arbitrary vectors in R

2, prove that

(a) xTx ≥ 0 (b) xT y = yT x

(c) xT (y + z) = xTy + xT z

13. Show that if u and v are any vectors in R
2, then

‖u+v‖2 ≤ (‖u‖+‖v‖)2 and hence ‖u+v‖ ≤ ‖u‖+
‖v‖. When does equality hold? Give a geometric
interpretation of the inequality.

14. Let x1, x2, and x3 be vectors in R
3. If x1 ⊥ x2 and

x2 ⊥ x3, is it necessarily true that x1 ⊥ x3? Prove
your answer.

15. Let A be a 2 × 2 matrix with linearly independ-
ent column vectors a1 and a2. If a1 and a2 are used
to form a parallelogram P with altitude h (see the
figure), show that
(a) h2‖a2‖2 = ‖a1‖2‖a2‖2 − (aT

1 a2)2

(b) Area of P = | det(A)|

h
a1

a1

a2

a2α

16. If x and y are linearly independent vectors in R
3,

then they can be used to form a parallelogram P
in the plane through the origin corresponding to
Span(x, y). Show that

Area of P = ‖x × y‖
17. Let

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4
4

−4
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4
2
2
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Determine the angle between x and y.

(b) Determine the distance between x and y.

18. Let x and y be vectors in R
n and define

p = xT y
yT y

y and z = x − p

(a) Show that p ⊥ z. Thus, p is the vector projec-
tion of x onto y; that is, x = p + z, where p
and z are orthogonal components of x, and p is
a scalar multiple of y.

(b) If ‖p‖ = 6 and ‖z‖ = 8, determine the value
of ‖x‖.

19. Use the database matrix U from Application 1 and
search for the key words orthogonality, spaces, vec-
tor, only this time give the key word orthogonality
twice the weight of the other two key search vector
words. Which of the eight modules best matches
the search criteria? [Hint: Form the search vector
using the weights 2, 1, 1 in the rows correspond-
ing to the search words and then scale the vector to
make it a unit vector.]

20. Five students in an elementary school take aptitude
tests in English, mathematics, and science. Their
scores are given in the following table. Determine
the correlation matrix and describe how the three
sets of scores are correlated.

Scores
Student English Mathematics Science

S1 61 53 53

S2 63 73 78

S3 78 61 82

S4 65 84 96

S5 63 59 71

Average 66 66 76

21. Let t be a fixed real number and let

c = cos t, s = sin t,

x = (c, cs, cs2, . . . , csn−1, sn)T

Show that x is a unit vector in R
n+1.

Hint:

1 + s2 + s4 + · · · + s2n−2 = 1 − s2n

1 − s2
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5.2 Orthogonal Subspaces

Let A be an m × n matrix and let x ∈ N(A), the null space of A. Since Ax = 0, we have

ai1x1 + ai2x2 + · · · + ainxn = 0 (1)

for i = 1, . . . , m. Equation (1) says that x is orthogonal to the ith column vector of
AT for i = 1, . . . , m. Since x is orthogonal to each column vector of AT , it is orthogonal
to any linear combination of the column vectors of AT . So if y is any vector in the
column space of AT , then xTy = 0. Thus each vector in N(A) is orthogonal to every
vector in the column space of AT . When two subspaces of R

n have this property, we
say that they are orthogonal.

Definition Two subspaces X and Y of R
n are said to be orthogonal if xTy = 0 for every x ∈ X

and every y ∈ Y . If X and Y are orthogonal, we write X ⊥ Y .

EXAMPLE 1 Let X be the subspace of R
3 spanned by e1, and let Y be the subspace spanned by e2.

If x ∈ X and y ∈ Y , these vectors must be of the form

x =
⎧⎪⎪⎪⎪⎪⎩

x1

0
0

⎫⎪⎪⎪⎪⎪⎭ and y =
⎧⎪⎪⎪⎪⎪⎩

0
y2

0

⎫⎪⎪⎪⎪⎪⎭
Thus,

xTy = x1 · 0 + 0 · y2 + 0 · 0 = 0

Therefore, X ⊥ Y .

The concept of orthogonal subspaces does not always agree with our intuitive idea
of perpendicularity. For example, the floor and wall of the classroom “look” ortho-
gonal, but the xy-plane and the yz-plane are not orthogonal subspaces. Indeed, we can
think of the vectors x1 = (1, 1, 0)T and x2 = (0, 1, 1)T as lying in the xy and yz planes,
respectively. Since

xT
1 x2 = 1 · 0 + 1 · 1 + 0 · 1 = 1

the subspaces are not orthogonal. The next example shows that the subspace corres-
ponding to the z-axis is orthogonal to the subspace corresponding to the xy-plane.

EXAMPLE 2 Let X be the subspace of R
3 spanned by e1 and e2, and let Y be the subspace spanned

by e3. If x ∈ X and y ∈ Y , then

xTy = x1 · 0 + x2 · 0 + 0 · y3 = 0

Thus, X ⊥ Y . Furthermore, if z is any vector in R
3 that is orthogonal to every vector in

Y , then z ⊥ e3, and hence

z3 = zTe3 = 0

But if z3 = 0, then z ∈ X. Therefore, X is the set of all vectors in R
3 that are orthogonal

to every vector in Y (see Figure 5.2.1).
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X

e1

e2

Y

e3

Figure 5.2.1.

Definition Let Y be a subspace of R
n. The set of all vectors in R

n that are orthogonal to every
vector in Y will be denoted Y⊥. Thus,

Y⊥ = {
x ∈ R

n | xTy = 0 for every y ∈ Y
}

The set Y⊥ is called the orthogonal complement of Y .

Note

The subspaces X = Span(e1) and Y = Span(e2) of R
3 given in Example 1 are

orthogonal, but they are not orthogonal complements. Indeed,

X⊥ = Span(e2, e3) and Y⊥ = Span(e1, e3)

Remarks

1. If X and Y are orthogonal subspaces of R
n, then X ∩ Y = {0}.

2. If Y is a subspace of R
n, then Y⊥ is also a subspace of R

n.

Proof of (1) If x ∈ X ∩ Y and X ⊥ Y , then ‖x‖2 = xTx = 0 and hence x = 0.

Proof of (2) If x ∈ Y⊥ and α is a scalar, then for any y ∈ Y ,

(αx)Ty = α(xTy) = α · 0 = 0

Therefore, αx ∈ Y⊥. If x1 and x2 are elements of Y⊥, then

(x1 + x2)Ty = xT
1 y + xT

2 y = 0 + 0 = 0

for each y ∈ Y . Hence, x1 + x2 ∈ Y⊥. Therefore, Y⊥ is a subspace of R
n.

Fundamental Subspaces
Let A be an m × n matrix. We saw in Chapter 3 that a vector b ∈ R

m is in the column
space of A if and only if b = Ax for some x ∈ R

n. If we think of A as a linear
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transformation mapping R
n into R

m, then the column space of A is the same as the
range of A. Let us denote the range of A by R(A). Thus

R(A) = {b ∈ R
m | b = Ax for some x ∈ R

n}
= the column space of A

The column space of AT , R(AT ), is a subspace of R
n:

R(AT ) = {
y ∈ R

n | y = ATx for some x ∈ R
m
}

The column space of R(AT ) is essentially the same as the row space of A, except that it
consists of vectors in R

n (n × 1 matrices) rather than n-tuples. Thus, y ∈ R(AT ) if and
only if yT is in the row space of A. We have seen that R(AT ) ⊥ N(A). The following
theorem shows that N(A) is actually the orthogonal complement of R(AT ).

Theorem 5.2.1 Fundamental Subspaces Theorem
If A is an m × n matrix, then N(A) = R(AT )⊥ and N(AT ) = R(A)⊥.

Proof On the one hand, we have already seen that N(A) ⊥ R(AT ), and this implies that N(A) ⊂
R(AT )⊥. On the other hand, if x is any vector in R(AT )⊥, then x is orthogonal to each
of the column vectors of AT and, consequently, Ax = 0. Thus, x must be an element of
N(A) and hence N(A) = R(AT )⊥. This proof does not depend on the dimensions of A.
In particular, the result will also hold for the matrix B = AT . Consequently,

N(AT ) = N(B) = R(BT )⊥ = R(A)⊥

EXAMPLE 3 Let

A =
⎧⎪⎩ 1 0

2 0

⎫⎪⎭
The column space of A consists of all vectors of the form⎧⎪⎩ α

2α

⎫⎪⎭ = α

⎧⎪⎩ 1
2

⎫⎪⎭
Note that if x is any vector in R

2 and b = Ax, then

b =
⎧⎪⎩ 1 0

2 0

⎫⎪⎭⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩ 1x1

2x1

⎫⎪⎭ = x1

⎧⎪⎩ 1
2

⎫⎪⎭
The null space of AT consists of all vectors of the form β(−2, 1)T . Since (1, 2)T and
(−2, 1)T are orthogonal, it follows that every vector in R(A) will be orthogonal to every
vector in N(AT ). The same relationship holds between R(AT ) and N(A). R(AT ) consists
of vectors of the form αe1, and N(A) consists of all vectors of the form βe2. Since e1

and e2 are orthogonal, it follows that each vector in R(AT ) is orthogonal to every vector
in N(A).
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Theorem 5.2.1 is one of the most important theorems in this chapter. In Section 5.3,
we will see that the result N(AT ) = R(A)⊥ provides a key to solving least squares
problems. For the present, we will use Theorem 5.2.1 to prove the following theorem,
which, in turn, will be used to establish two more important results about orthogonal
subspaces:

Theorem 5.2.2 If S is a subspace of R
n, then dim S + dim S⊥ = n. Furthermore, if {x1, . . . , xr} is a

basis for S and {xr+1, . . . , xn} is a basis for S⊥, then {x1, . . . , xr, xr+1, . . . , xn} is a basis
for R

n.

Proof If S = {0}, then S⊥ = R
n and

dim S + dim S⊥ = 0 + n = n

If S 	= {0}, then let {x1, . . . , xr} be a basis for S and define X to be an r × n matrix
whose ith row is xT

i for each i. By construction, the matrix X has rank r and R(XT ) = S.
By Theorem 5.2.1,

S⊥ = R(XT )⊥ = N(X)

It follows from Theorem 3.6.5 that

dim S⊥ = dim N(X) = n − r

To show that {x1, . . . , xr, xr+1, . . . , xn} is a basis for R
n, it suffices to show that the n

vectors are linearly independent. Suppose that

c1x1 + · · · + crxr + cr+1xr+1 + · · · + cnxn = 0

Let y = c1x1 + · · · + crxr and z = cr+1xr+1 + · · · + cnxn. We then have

y + z = 0
y = −z

Thus, y and z are both elements of S ∩ S⊥. But S ∩ S⊥ = {0}. Therefore,

c1x1 + · · · + crxr = 0
cr+1xr+1 + · · · + cnxn = 0

Since x1, . . . , xr are linearly independent,

c1 = c2 = · · · = cr = 0

Similarly, xr+1, . . . , xn are linearly independent and hence

cr+1 = cr+2 = · · · = cn = 0

So x1, x2, . . . , xn are linearly independent and form a basis for R
n.

Given a subspace S of R
n, we will use Theorem 5.2.2 to prove that each x ∈ R

n

can be expressed uniquely as a sum y + z, where y ∈ S and z ∈ S⊥.
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Definition If U and V are subspaces of a vector space W and each w ∈ W can be written
uniquely as a sum u + v, where u ∈ U and v ∈ V , then we say that W is a direct
sum of U and V , and we write W = U ⊕ V .

Theorem 5.2.3 If S is a subspace of R
n, then

R
n = S ⊕ S⊥

Proof The result is trivial if either S = {0} or S = R
n. In the case where dim S = r, 0 < r < n,

it follows from Theorem 5.2.2 that each vector x ∈ R
n can be represented in the form

x = c1x1 + · · · + crxr + cr+1xr+1 + · · · + cnxn

where {x1, . . . , xr} is a basis for S and {xr+1, . . . , xn} is a basis for S⊥. If we let

u = c1x1 + · · · + crxr and v = cr+1xr+1 + · · · + cnxn

then u ∈ S, v ∈ S⊥, and x = u + v. To show uniqueness, suppose that x can also be
written as a sum y + z, where y ∈ S and z ∈ S⊥. Thus

u + v = x = y + z
u − y = z − v

But u − y ∈ S and z − v ∈ S⊥, so each is in S ∩ S⊥. Since

S ∩ S⊥ = {0}
it follows that

u = y and v = z

Theorem 5.2.4 If S is a subspace of R
n, then (S⊥)⊥ = S.

Proof On the one hand, if x ∈ S, then x is orthogonal to each y in S⊥. Therefore, x ∈ (S⊥)⊥
and hence S ⊂ (S⊥)⊥. On the other hand, suppose that z is an arbitrary element of
(S⊥)⊥. By Theorem 5.2.3, we can write z as a sum u + v, where u ∈ S and v ∈ S⊥.
Since v ∈ S⊥, it is orthogonal to both u and z. It then follows that

0 = vTz = vTu + vTv = vTv

and, consequently, v = 0. Therefore, z = u ∈ S and hence S = (S⊥)⊥.

It follows from Theorem 5.2.4 that if T is the orthogonal complement of a subspace
S, then S is the orthogonal complement of T , and we may say simply that S and T
are orthogonal complements. In particular, it follows from Theorem 5.2.1 that N(A)
and R(AT ) are orthogonal complements of each other and that N(AT ) and R(A) are
orthogonal complements. Hence we may write

N(A)⊥ = R(AT ) and N(AT )⊥ = R(A)

Recall that the system Ax = b is consistent if and only if b ∈ R(A). Since
R(A) = N(AT )⊥, we have the following result, which may be considered a corollary to
Theorem 5.2.1:
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Corollary 5.2.5 If A is an m × n matrix and b ∈ R
m, then either there is a vector x ∈ R

n such that
Ax = b or there is a vector y ∈ R

m such that ATy = 0 and yTb 	= 0.

Corollary 5.2.5 is illustrated in Figure 5.2.2 for the case where R(A) is a two-
dimensional subspace of R

3. The angle θ in the figure will be a right angle if and only
if b ∈ R(A).

b

y R(A)
θ

N(AT)

Figure 5.2.2.

EXAMPLE 4 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 2
0 1 1
1 3 4

⎫⎪⎪⎪⎪⎪⎭
Find the bases for N(A), R(AT ), N(AT ), and R(A).

Solution
We can find bases for N(A) and R(AT ) by transforming A into reduced row echelon
form: ⎧⎪⎪⎪⎪⎪⎩

1 1 2
0 1 1
1 3 4

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 1 2
0 1 1
0 2 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Since (1, 0, 1) and (0, 1, 1) form a basis for the row space of A, it follows that (1, 0, 1)T

and (0, 1, 1)T form a basis for R(AT ). If x ∈ N(A), it follows from the reduced row
echelon form of A that

x1 + x3 = 0
x2 + x3 = 0

Thus

x1 = x2 = −x3

Setting x3 = α, we see that N(A) consists of all vectors of the form α(−1, −1, 1)T .
Note that (−1, −1, 1)T is orthogonal to (1, 0, 1)T and (0, 1, 1)T .
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To find bases for R(A) and N(AT ), transform AT to reduced row echelon form.⎧⎪⎪⎪⎪⎪⎩
1 0 1
1 1 3
2 1 4

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 2
0 1 2

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 2
0 0 0

⎫⎪⎪⎪⎪⎪⎭
Thus, (1, 0, 1)T and (0, 1, 2)T form a basis for R(A). If x ∈ N(AT ), then x1 = −x3,
x2 = −2x3. Hence, N(AT ) is the subspace of R

3 spanned by (−1, −2, 1)T . Note that
(−1, −2, 1)T is orthogonal to (1, 0, 1)T and (0, 1, 2)T .

We saw in Chapter 3 that the row space and the column space have the same
dimension. If A has rank r, then

dim R(A) = dim R(AT ) = r

Actually, A can be used to establish a one-to-one correspondence between R(AT ) and
R(A).

We can think of an m × n matrix A as a linear transformation from R
n to R

m:

x ∈ R
n → Ax ∈ R

m

Since R(AT ) and N(A) are orthogonal complements in R
n,

R
n = R(AT ) ⊕ N(A)

Each vector x ∈ R
n can be written as a sum

x = y + z, y ∈ R(AT ), z ∈ N(A)

It follows that

Ax = Ay + Az = Ay for each x ∈ R
n

and hence

R(A) = {Ax | x ∈ R
n} = {

Ay | y ∈ R(AT )
}

Thus, if we restrict the domain of A to R(AT ), then A maps R(AT ) onto R(A).
Furthermore, the mapping is one-to-one. Indeed, if x1, x2 ∈ R(AT ) and

Ax1 = Ax2

then

A(x1 − x2) = 0

and hence

x1 − x2 ∈ R(AT ) ∩ N(A)

Since R(AT ) ∩ N(A) = {0}, it follows that x1 = x2. Therefore, we can think of A as
determining a one-to-one correspondence between R(AT ) and R(A). Since each b ∈
R(A) corresponds to exactly one y ∈ R(AT ), we can define an inverse transformation
from R(A) to R(AT ). Indeed, every m × n matrix A is invertible when viewed as a linear
transformation from R(AT ) to R(A).
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EXAMPLE 5 Let A =
⎧⎪⎩ 2 0 0

0 3 0

⎫⎪⎭. R(AT ) is spanned by e1 and e2, and N(A) is spanned by e3.

Any vector x ∈ R
3 can be written as a sum

x = y + z

where

y = (x1, x2, 0)T ∈ R(AT ) and z = (0, 0, x3)T ∈ N(A)

If we restrict ourselves to vectors y ∈ R(AT ), then

y =
⎧⎪⎪⎪⎪⎪⎩

x1

x2

0

⎫⎪⎪⎪⎪⎪⎭ → Ay =
⎧⎪⎩ 2x1

3x2

⎫⎪⎭
In this case, R(A) = R

2 and the inverse transformation from R(A) to R(AT ) is
defined by

b =
⎧⎪⎩ b1

b2

⎫⎪⎭ →
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1
2 b1
1
3 b2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎭

SECTION 5.2 EXERCISES
1. For each of the following matrices, determine a

basis for each of the subspaces R(AT ), N(A), R(A),
and N(AT ):

(a) A =
⎧⎪⎩ 3 4

6 8

⎫⎪⎭ (b) A =
⎧⎪⎩ 1 3 1

2 4 0

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 −2
1 3
2 1
3 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (d) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 1 1 1
0 0 1 1
1 1 2 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
2. Let S be the subspace of R

3 spanned by x =
(1, −1, 1)T .
(a) Find a basis for S⊥.
(b) Give a geometrical description of S and S⊥.

3. (a) Let S be the subspace of R
3 spanned by the

vectors x = (x1, x2, x3)T and y = (y1, y2, y3)T .
Let

A =
⎧⎪⎩ x1 x2 x3

y1 y2 y3

⎫⎪⎭
Show that S⊥ = N(A).

(b) Find the orthogonal complement of the
subspace of R

3 spanned by (1, 2, 1)T and
(1, −1, 2)T .

4. Let S be the subspace of R
4 spanned by x1 =

(1, 0, −2, 1)T and x2 = (0, 1, 3, −2)T . Find a basis
for S⊥.

5. Let A be a 3 × 2 matrix with rank 2. Give geomet-
ric descriptions of R(A) and N(AT ), and describe
geometrically how the subspaces are related.

6. Is it possible for a matrix to have the vector (3, 1, 2)
in its row space and (2, 1, 1)T in its null space?
Explain.

7. Let aj be a nonzero column vector of an m×n mat-
rix A. Is it possible for aj to be in N(AT )? Explain.

8. Let S be the subspace of R
n spanned by the vec-

tors x1, x2, . . . , xk. Show that y ∈ S⊥ if and only if
y ⊥ xi for i = 1, . . . , k.

9. If A is an m × n matrix of rank r, what are the
dimensions of N(A) and N(AT )? Explain.

10. Prove Corollary 5.2.5.

11. Prove: If A is an m × n matrix and x ∈ R
n, then

either Ax = 0 or there exists y ∈ R(AT ) such that
xT y 	= 0. Draw a picture similar to Figure 5.2.2
to illustrate this result geometrically for the case
where N(A) is a two-dimensional subspace of R

3.
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12. Let A be an m×n matrix. Explain why the following
are true.
(a) Any vector x in R

n can be uniquely written as
a sum y + z, where y ∈ N(A) and z ∈ R(AT ).

(b) Any vector b ∈ R
m can be uniquely written as

a sum u + v, where u ∈ N(AT ) and v ∈ R(A).
13. Let A be an m × n matrix. Show that

(a) if x ∈ N(ATA), then Ax is in both R(A) and
N(AT ).

(b) N(ATA) = N(A).
(c) A and ATA have the same rank.
(d) if A has linearly independent columns, then

ATA is nonsingular.
14. Let A be an m × n matrix, B an n × r matrix, and

C = AB. Show that
(a) N(B) is a subspace of N(C).

(b) N(C)⊥ is a subspace of N(B)⊥ and, con-
sequently, R(CT ) is a subspace of R(BT ).

15. Let U and V be subspaces of a vector space W.
Show that if W = U ⊕ V , then U ∩ V = {0}.

16. Let A be an m × n matrix of rank r and let
{x1, . . . , xr} be a basis for R(AT ). Show that
{Ax1, . . . , Axr} is a basis for R(A).

17. Let x and y be linearly independent vectors in R
n

and let S = Span(x, y). We can use x and y to define
a matrix A by setting

A = xyT + yxT

(a) Show that A is symmetric.

(b) Show that N(A) = S⊥.

(c) Show that the rank of A must be 2.

5.3 Least Squares Problems

A standard technique in mathematical and statistical modeling is to find a least squares
fit to a set of data points in the plane. The least squares curve is usually the graph of a
standard type of function, such as a linear function, a polynomial, or a trigonometric
polynomial. Since the data may include errors in measurement or experiment-related
inaccuracies, we do not require the curve to pass through all the data points. Instead,
we require the curve to provide an optimal approximation in the sense that the sum of
squares of errors between the y values of the data points and the corresponding y values
of the approximating curve are minimized.

The technique of least squares was developed independently by Adrien-Marie Le-
gendre and Carl Friedrich Gauss. The first paper on the subject was published by
Legendre in 1806, although there is clear evidence that Gauss had discovered it as a stu-
dent nine years prior to Legendre’s paper and had used the method to do astronomical
calculations. Figure 5.3.1 is a portrait of Gauss.

Figure 5.3.1. Carl Friedrich Gauss
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APPLICATION 1 Astronomy—The Ceres Orbit of Gauss

On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the asteroid
Ceres. He was able to track the asteroid for six weeks, but it was lost due to interference
caused by the sun. A number of leading astronomers published papers predicting the
orbit of the asteroid. Gauss also published a forecast, but his predicted orbit differed
considerably from the others. Ceres was relocated by one observer on December 7
and by another on January 1, 1802. In both cases, the position was very close to that
predicted by Gauss. Gauss won instant fame in astronomical circles and for a time was
more well known as an astronomer than as a mathematician. The key to his success
was the use of the method of least squares.

Least Squares Solutions of Overdetermined Systems
A least squares problem can generally be formulated as an overdetermined linear
system of equations. Recall that an overdetermined system is one involving more equa-
tions than unknowns. Such systems are usually inconsistent. Thus, given an m × n
system Ax = b with m > n, we cannot expect in general to find a vector x ∈ R

n for
which Ax equals b. Instead, we can look for a vector x for which Ax is “closest” to b.
As you might expect, orthogonality plays an important role in finding such an x.

If we are given a system of equations Ax = b, where A is an m × n matrix with
m > n and b ∈ R

m, then, for each x ∈ R
n, we can form a residual

r(x) = b − Ax

The distance between b and Ax is given by

‖b − Ax‖ = ‖r(x)‖
We wish to find a vector x ∈ R

n for which ‖r(x)‖ will be a minimum. Minimizing
‖r(x)‖ is equivalent to minimizing ‖r(x)‖2. A vector x̂ that accomplishes this is said to
be a least squares solution of the system Ax = b.

If x̂ is a least squares solution of the system Ax = b and p = Ax̂, then p is a vector
in the column space of A that is closest to b. The next theorem guarantees that such a
closest vector p not only exists, but is unique. Additionally, it provides an important
characterization of the closest vector.

Theorem 5.3.1 Let S be a subspace of R
m. For each b ∈ R

m, there is a unique element p of S that is
closest to b; that is,

‖b − y‖ > ‖b − p‖
for any y 	= p in S. Furthermore, a given vector p in S will be closest to a given vector
b ∈ R

m if and only if b − p ∈ S⊥.

Proof Since R
m = S ⊕ S⊥, each element b in R

m can be expressed uniquely as a sum

b = p + z

where p ∈ S and z ∈ S⊥. If y is any other element of S, then

‖b − y‖2 = ‖(b − p) + (p − y)‖2
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Since p − y ∈ S and b − p = z ∈ S⊥, it follows from the Pythagorean law that

‖b − y‖2 = ‖b − p‖2 + ‖p − y‖2

Therefore,

‖b − y‖ > ‖b − p‖
Thus, if p ∈ S and b−p ∈ S⊥, then p is the element of S that is closest to b. Conversely,
if q ∈ S and b−q 	∈ S⊥, then q 	= p, and it follows from the preceding argument (with
y = q) that

‖b − q‖ > ‖b − p‖

In the special case that b is in the subspace S to begin with, we have

b = p + z, p ∈ S, z ∈ S⊥

and

b = b + 0

By the uniqueness of the direct sum representation,

p = b and z = 0

A vector x̂ will be a solution of the least squares problem Ax = b if and only if
p = Ax̂ is the vector in R(A) that is closest to b. The vector p is said to be the projection
of b onto R(A). It follows from Theorem 5.3.1 that

b − p = b − Ax̂ = r(x̂)

must be an element of R(A)⊥. Thus, x̂ is a solution of the least squares problem if and
only if

r(x̂) ∈ R(A)⊥ (1)

(see Figure 5.3.2).

b

p
R(A)

(b) b ∈ R2 and A is a 3 × 2 matrix of rank 2.

b

p

R(A)

(a) b ∈ R2 and A is a 2 × 1 matrix of rank 1.

r(x)ˆ

r(x)ˆ

Figure 5.3.2.

How do we find a vector x̂ satisfying (1)? The key to solving the least squares
problem is provided by Theorem 5.2.1, which states that

R(A)⊥ = N(AT )

A vector x̂ will be a least squares solution to the system Ax = b if and only if

r(x̂) ∈ N(AT )
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or, equivalently,

0 = ATr(x̂) = AT (b − Ax̂)

Thus, to solve the least squares problem Ax = b, we must solve

ATAx = ATb (2)

Equation (2) represents an n × n system of linear equations. These equations are called
the normal equations. In general, it is possible to have more than one solution of the
normal equations; however, if x̂ and ŷ are both solutions, then, since the projection p
of b onto R(A) is unique,

Ax̂ = Aŷ = p

The following theorem characterizes the conditions under which the least squares
problem Ax = b will have a unique solution:

Theorem 5.3.2 If A is an m × n matrix of rank n, the normal equations

ATAx = ATb

have a unique solution

x̂ = (ATA)−1ATb

and x̂ is the unique least squares solution of the system Ax = b.

Proof We will first show that ATA is nonsingular. To prove this, let z be a solution of

ATAx = 0 (3)

Then Az ∈ N(AT ). Clearly, Az ∈ R(A) = N(AT )⊥. Since N(AT ) ∩ N(AT )⊥ = {0}, it
follows that Az = 0. If A has rank n, the column vectors of A are linearly independent
and, consequently, Ax = 0 has only the trivial solution. Thus, z = 0 and (3) has only
the trivial solution. Therefore, by Theorem 1.5.2, ATA is nonsingular. It follows that
x̂ = (ATA)−1ATb is the unique solution of the normal equations and, consequently, the
unique least squares solution of the system Ax = b.

The projection vector

p = Ax̂ = A(ATA)−1ATb

is the element of R(A) that is closest to b in the least squares sense. The matrix
P = A(ATA)−1AT is called the projection matrix.

APPLICATION 2 Spring Constants

Hooke’s law states that the force applied to a spring is proportional to the distance that
the spring is stretched. Thus, if F is the force applied and x is the distance that the
spring has been stretched, then F = kx. The proportionality constant k is called the
spring constant.

Some physics students want to determine the spring constant for a given spring.
They apply forces of 3, 5, and 8 pounds, which have the effect of stretching the spring
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4, 7, and 11 inches, respectively. Using Hooke’s law, they derive the following system
of equations:

4k = 3
7k = 5

11k = 8

The system is clearly inconsistent, since each equation yields a different value of k.
Rather than use any one of these values, the students decide to compute the least
squares solution of the system.

(4, 7, 11)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
4
7
11

⎫⎪⎪⎪⎪⎪⎪⎪⎭ (k) = (4, 7, 11)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
3
5
8

⎫⎪⎪⎪⎪⎪⎪⎪⎭
186k = 135

k ≈ 0.726

EXAMPLE 1 Find the least squares solution of the system

x1 + x2 = 3
−2x1 + 3x2 = 1

2x1 − x2 = 2

Solution
The normal equations for this system are⎧⎪⎩ 1 −2 2

1 3 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 1
−2 3

2 −1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩ 1 −2 2

1 3 −1

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

3
1
2

⎫⎪⎪⎪⎪⎪⎭
This simplifies to the 2 × 2 system⎧⎪⎩ 9 −7

−7 11

⎫⎪⎭⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩ 5

4

⎫⎪⎭
The solution of the 2 × 2 system is

(
83
50 , 71

50

)T
.

Scientists often collect data and try to find a functional relationship among the
variables. For example, the data may involve temperatures T0, T1, . . . , Tn of a liquid
measured at times t0, t1, . . . , tn, respectively. If the temperature T can be represented as
a function of the time t, this function can be used to predict the temperatures at future
times. If the data consist of n + 1 points in the plane, it is possible to find a polyno-
mial of degree n or less passing through all the points. Such a polynomial is called an
interpolating polynomial. Actually, since the data usually involve experimental error,
there is no reason to require that the function pass through all the points. Indeed, lower
degree polynomials that do not pass through the points exactly usually give a truer
description of the relationship between the variables. If, for example, the relationship
between the variables is actually linear and the data involve slight errors, it would be
disastrous to use an interpolating polynomial (see Figure 5.3.3).
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x –1.00 0.00 2.10 2.30 2.40 5.30 6.00 6.50 8.00

y –1.02 –0.52 0.55 0.70 0.70 2.13 2.52 2.82 3.54

8

5

–1

–1

Figure 5.3.3.

Given a table of data

x x1 x2 · · · xm

y y1 y2 · · · ym

we wish to find a linear function

y = c0 + c1x

that best fits the data in the least squares sense. If we require that

yi = c0 + c1xi for i = 1, . . . , m

we get a system of m equations in two unknowns.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 x1

1 x2
...

...
1 xm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩ c0

c1

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

ym

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (4)

The linear function whose coefficients are the least squares solution of (4) is said to be
the best least squares fit to the data by a linear function.

EXAMPLE 2 Given the data

x 0 3 6
y 1 4 5

Find the best least squares fit by a linear function.
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Solution
For this example the system (4) becomes

Ac = y

where

A =
⎧⎪⎪⎪⎪⎪⎩

1 0
1 3
1 6

⎫⎪⎪⎪⎪⎪⎭ , c =
⎧⎪⎩ c0

c1

⎫⎪⎭ , and y =
⎧⎪⎪⎪⎪⎪⎩

1
4
5

⎫⎪⎪⎪⎪⎪⎭
The normal equations

ATAc = ATy

simplify to ⎧⎪⎩ 3 9
9 45

⎫⎪⎭⎧⎪⎩ c0

c1

⎫⎪⎭ =
⎧⎪⎩ 10

42

⎫⎪⎭ (5)

The solution of this system is
(

4
3 , 2

3

)
. Thus, the best linear least squares fit is

given by

y = 4
3 + 2

3 x

Example 2 could also have been solved using calculus. The residual r(c) is given by

r(c) = y − Ac

and

‖r(c)‖2 = ‖y − Ac‖2

= [1 − (c0 + 0c1)]2 + [4 − (c0 + 3c1)]2 + [5 − (c0 + 6c1)]2

= f (c0, c1)

Thus, ‖r(c)‖2 can be thought of as a function of two variables, f (c0, c1). The minimum
of this function will occur when its partial derivatives are zero:

∂f

∂c0
= −2(10 − 3c0 − 9c1) = 0

∂f

∂c1
= −6(14 − 3c0 − 15c1) = 0

Dividing both equations through by −2 gives the same system as (5) (see Figure 5.3.4).
If the data do not resemble a linear function, we could use a higher degree

polynomial. To find the coefficients c0, c1, . . . , cn of the best least squares fit to the data

x x1 x2 · · · xm

y y1 y2 · · · ym

by a polynomial of degree n, we must find the least squares solution the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

1 xm x2
m · · · xn

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c0

c1
...

cn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

ym

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (6)



232 Chapter 5 Orthogonality

0 3 6

}d1

d2{

(6, 5)
}d3

||r (c) ||2 = d2
1 + d2

2 + d2
3

(3, 4)

y = c0 + c1x

(0, 1)

Figure 5.3.4.

EXAMPLE 3 Find the best quadratic least squares fit to the data

x 0 1 2 3
y 3 2 4 4

Solution
For this example the system (6) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1 1 1
1 2 4
1 3 9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c0

c1

c2

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
2
4
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus the normal equations are

⎧⎪⎪⎪⎪⎪⎩
1 1 1 1
0 1 2 3
0 1 4 9

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
1 1 1
1 2 4
1 3 9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c0

c1

c2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 1 1 1
0 1 2 3
0 1 4 9

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
4
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
These simplify to ⎧⎪⎪⎪⎪⎪⎩

4 6 14
6 14 36

14 36 98

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c0

c1

c2

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

13
22
54

⎫⎪⎪⎪⎪⎪⎭
The solution of this system is (2.75, −0.25, 0.25). The quadratic polynomial that gives
the best least squares fit to the data is

p(x) = 2.75 − 0.25x + 0.25x2

APPLICATION 3 Coordinate Metrology

Many manufactured goods, such as rods, disks, and pipes, are circular in shape. A
company will often employ quality control engineers to test whether items produced
on the production line are meeting industrial standards. Sensing machines are used to
record the coordinates of points on the perimeter of the manufactured products. To
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Figure 5.3.5.

determine how close these points are to being circular, we can fit a least squares circle
to the data and check to see how close the measured points are to the circle. (See
Figure 5.3.5.)

To fit a circle

(x − c1)2 + (y − c2)2 = r2 (7)

to n sample pairs of coordinates (x1, y1), (x2, y2), . . . , (xn, yn), we must determine the
center (c1, c2) and the radius r. Rewriting equation (7), we get

2xc1 + 2yc2 + (r2 − c2
1 − c2

2) = x2 + y2

If we set c3 = r2 − c2
1 − c2

2, then the equation takes the form

2xc1 + 2yc2 + c3 = x2 + y2

Substituting each of the data points into this equation, we obtain the overdetermined
system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 2y1 1
2x2 2y2 1

...
...

...
2xn 2yn 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

c1

c2

c3

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x2

1 + y2
1

x2
2 + y2

2
...

x2
n + y2

n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Once we find the least squares solution c, the center of the least squares circle is (c1, c2),
and the radius is determined by setting

r =
√

c3 + c2
1 + c2

2

To measure how close the sampled points are to the circle, we can form a residual
vector r by setting

ri = r2 − (xi − c1)2 − (yi − c2)2 i = 1, . . . , n

We can then use ‖r‖ as a measure of how close the points are to the circle.
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APPLICATION 4 Management Science: The Analytic Hierarchy Process Revisited

In Section 3 of Chapter 1 we looked at an example of how one can use the analytic
hierarchy process from management science as a tool for making hiring decisions in
a Mathematics department. The process involves selecting the criteria upon which the
decision is based and assigning weights to the criteria. In the example, hiring decisions
were based on rating the candidates in the areas of Research, Teaching, and Profes-
sional Activities. For each of these areas the committee assigned weights to all of
candidates. The weights are measurements of the relative strengths of the candidates
in each area. Once all of the weights have been assigned, the overall ranking of the
candidates can be determined by multiplying a matrix times a vector.

The key to the whole process is the assignment of weights. In our example the eval-
uation of teaching will involve qualitative judgments by the search committee. These
judgments must then be translated into weights. The evaluation of research can be both
quantitative based on the number of pages the candidates have published in journals
and qualitative based on the quality of the papers published. A standard technique for
determining weights based on qualitative judgments is to first make pairwise comparis-
ons between the candidates, and then use those comparisons to determine weights. The
method we describe here leads to an overdetermined linear system. We will compute
the weights by finding the least squares solution to the system.

Later in Chapter 6 (Section 8) we will examine an alternative “eigenvector”
method that is commonly used to determine weights based on pairwise comparisons.
In that method one forms a comparison matrix C whose (i, j) entry represents weight
of the ith characteristic or alternative relative to the jth characteristic or alternative.
The method depends upon an important theorem about positive matrices (i.e., matrices
whose entries are all positive real numbers) which we will study in Section 6.8. The
“eigenvector” method was recommended by T. L. Saaty, the developer of the analytic
hierarchy process theory.

For our search example the committee assigned weights for the three criteria based
on the qualitative judgments that Teaching and Research were equally important and
that both were twice as important as Professional Activities. To reflect these judgments
the weights w1, w2, w3 for Research, Teaching, and Professional Activities must satisfy:

w1 = w2, w1 = 2w3, w2 = 2w3

Additionally the weights must all add up to 1. Thus the weights must be solutions to
the system

w1 − w2 + 0w3 = 0

w1 + 0w2 − 2w3 = 0

0w1 + w2 − 2w3 = 0

w1 + w2 + w3 = 1

Although the system is overdetermined, it does have a unique solution w =
(0.4, 0.4, 0.2)T . Usually overdetermined systems turn out to be inconsistent. In fact had
the committee used four criteria and made pairwise comparisons based on their human
judgments, it is quite likely that the system they would end up with (seven equations
and four unknowns) would be inconsistent. For an inconsistent system one could de-
termine weights that add up to 1 by finding the least squares solution to a linear system.
We illustrate how this in done in the next example.
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EXAMPLE 4 Suppose the search committee for the mathematics position has narrowed the field
down to four candidates: Dr. Gauss, Dr. Ipsen, Dr. O’Leary, and Dr. Taussky. To de-
termine the weights for research the committee decides to evaluate both the quantity
of publications and the quality of the publications. The committee feels that quality
is more important than quantity so in comparing the two they give quantity of pub-
lications a weight of 0.4 and quality a weight of 0.6. The hierarchy structure of the
decision process is shown in Figure 5.3.6. All of the weights computed by the com-
mittee are included in the figure. We will examine how the weights for quantity and
quality of publications were determined and then combine all of the weights in the
figure to calculate a vector r containing the overall ratings of the candidates.

The quantitative research weights are computed by taking the number of pages
published by a candidate and dividing by the total number of pages published by all
candidates combined. These weights are given in Table 1.

Table 1 Quantity of Research Weights

Candidate Pages Weights

Gauss 700 0.35

Ipsen 400 0.20

O’Leary 500 0.25

Taussky 400 0.20

Total 2000 1.00

Subcriteria
Research
Quantity

0.40

Research
Quality

0.60

Dr Gauss
0.35

Dr Ipsen
0.20

Dr O’Leary
0.25

Dr Taussky
0.20

Dr Gauss
0.3289

Dr Ipsen
0.1739

Dr O’Leary
0.2188

Dr Taussky
0.2784

Dr Gauss
0.21

Dr Ipsen
0.29

Dr O’Leary
0.33

Dr Taussky
0.17

Dr Gauss
0.23

Dr Ipsen
0.28

Dr O’Leary
0.28

Dr Taussky
0.21

Pick a Candidate
1.00

Teaching
0.40

Professional
Activities

0.20

Research
0.40

Criteria

Alternatives

Objective

Figure 5.3.6. Analytic Hierarchy Process Chart
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To rate the quality of research the committee did comparisons of the quality of
publications for each pair of candidates. If for a particular pair the quality was rated
equal, then the candidates were given equal weights. It was agreed that no candidate
would receive a quality weight that was more than twice the rate of another candidate.
Thus if candidate i had more impressive publications than candidate j, then weights
would be assigned so that

wi = βwj or wj = 1

β
wi where 1 < β ≤ 2

After studying the publications of all the candidates, the committee agreed upon the
following pairwise comparisons of the weights:

w1 = 1.75w2, w1 = 1.5w3, w1 = 1.25w4, w2 = 0.75w3, w2 = 0.50w4, w3 = 0.75w4

These conditions lead to the linear system

1w1 − 1.75w2 + 0w3 + 0w4 = 0

1w1 + 0w2 − 1.5w3 + 0w4 = 0

1w1 + 0w2 + 0w3 − 1.25w4 = 0

0w1 + 1w2 − 0.75w3 + 0w4 = 0

0w1 + 1w2 + 0w3 − 0.50w4 = 0

0w1 + 0w2 + 1w3 − 0.75w4 = 0

For our solution w to be a weight vector, its entries must add up to 1.

w1 + w2 + w3 + w4 = 1

Given that the AHP weights must satisfy this last equation exactly, we can solve for
w4:

w4 = 1 − w1 − w2 − w3 (8)

and rewrite the other equations to form a 6 × 3 system

1w1 − 1.75w2 + 0w3 = 0

1w1 + 0w2 − 1.5w3 = 0

2.25w1 + 1.25w2 + 1.25w3 = 1.25

0w1 + 1w2 − 0.75w3 = 0

0.5w1 + 1.5w2 + 0.5w3 = 0.5

0.75w1 + 0.75w2 + 1.75w3 = 0.75

Although this system is inconsistent, it does have a unique least squares solution w1 =
0.3289, w2 = 0.1739, w3 = 0.2188. It follows from equation (8) that w4 = 0.2784.

The final step in our decision process is to combine the rating vectors from the
categories and subcategories of evaluation. We multiply each of these vectors by the
appropriate weight given in the chart and then combine them to form the overall rating
vector r.
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r = 0.40

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩0.40

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.35
0.20
0.25
0.20

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭+ 0.60

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.3289
0.1739
0.2188
0.2784

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭+ 0.40

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.21
0.29
0.33
0.17

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭+ 0.20

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.23
0.28
0.28
0.21

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0.40

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.3373
0.1843
0.2313
0.2470

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭+ 0.40

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.21
0.29
0.33
0.17

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭+ 0.20

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.23
0.28
0.28
0.21

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.2649
0.2457
0.2805
0.2088

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The candidate with the highest rating is O’Leary. Gauss comes in second. Ipsen and
Taussky are third and fourth, respectively.

SECTION 5.3 EXERCISES
1. Find the least squares solution of each of the fol-

lowing systems:

(a) x1 + x2 = 3

2x1 − 3x2 = 1

0x1 + 0x2 = 2

(b) −x1 + x2 = 10

2x1 + x2 = 5

x1 − 2x2 = 20

(c) x1 + x2 + x3 = 4

−x1 + x2 + x3 = 0

− x2 + x3 = 1

x1 + x3 = 2

2. For each of your solutions x̂ in Exercise 1:
(a) determine the projection p = Ax̂.

(b) calculate the residual r(x̂).

(c) verify that r(x̂) ∈ N(AT ).
3. For each of the following systems Ax = b, find all

least squares solutions:

(a) A =
⎧⎪⎪⎪⎪⎪⎩

1 2
2 4

−1 −2

⎫⎪⎪⎪⎪⎪⎭, b =
⎧⎪⎪⎪⎪⎪⎩

3
2
1

⎫⎪⎪⎪⎪⎪⎭
(b) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 3

−1 3 1
1 2 4

⎫⎪⎪⎪⎪⎪⎭, b =
⎧⎪⎪⎪⎪⎪⎩

−2
0
8

⎫⎪⎪⎪⎪⎪⎭
4. For each of the systems in Exercise 3, determine the

projection p of b onto R(A) and verify that b − p is
orthogonal to each of the column vectors of A.

5. (a) Find the best least squares fit by a linear
function to the data

x −1 0 1 2
y 0 1 3 9

(b) Plot your linear function from part (a) along
with the data on a coordinate system.

6. Find the best least squares fit to the data in Exer-
cise 5 by a quadratic polynomial. Plot the points
x = −1, 0, 1, 2 for your function and sketch the
graph.

7. Given a collection of points (x1, y1), (x2, y2), . . . ,
(xn, yn), let

x = (x1, x2, . . . , xn)T y = (y1, y2, . . . , yn)T

x = 1

n

n∑
i=1

xi y = 1

n

n∑
i=1

yi

and let y = c0 +c1x be the linear function that gives
the best least squares fit to the points. Show that if
x = 0, then

c0 = y and c1 = xT y
xT x

8. The point (x, y) is the center of mass for the col-
lection of points in Exercise 7. Show that the least
squares line must pass through the center of mass.
[Hint: Use a change of variables z = x − x to
translate the problem so that the new independent
variable has mean 0.]

9. Let A be an m × n matrix of rank n and let P =
A(ATA)−1AT .
(a) Show that Pb = b for every b ∈ R(A). Explain

this property in terms of projections.

(b) If b ∈ R(A)⊥, show that Pb = 0.

(c) Give a geometric illustration of parts (a)
and (b) if R(A) is a plane through the origin
in R

3.
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10. Let A be an 8 × 5 matrix of rank 3, and let b be a
nonzero vector in N(AT ).
(a) Show that the system Ax = b must be incon-

sistent.
(b) How many least squares solutions will the

system Ax = b have? Explain.
11. Let P = A(ATA)−1AT , where A is an m × n matrix

of rank n.
(a) Show that P2 = P.
(b) Prove that Pk = P for k = 1, 2, . . . .
(c) Show that P is symmetric. [Hint: If B is nonsin-

gular, then (B−1)T = (BT )−1.]
12. Show that if⎧⎪⎩ A I

O AT

⎫⎪⎭⎧⎪⎩ x̂
r

⎫⎪⎭ =
⎧⎪⎩ b

0

⎫⎪⎭
then x̂ is a least squares solution of the system
Ax = b and r is the residual vector.

13. Let A ∈ R
m×n and let x̂ be a solution of the least

squares problem Ax = b. Show that a vector y ∈
R

n will also be a solution if and only if y = x̂ + z,
for some vector z ∈ N(A). [Hint: N(ATA) = N(A).]

14. Find the equation of the circle that gives the best
least squares circle fit to the points (−1, −2),
(0, 2.4), (1.1, −4), and (2.4, −1.6).

15. Suppose that in the search procedure described
in Example 4, the search committee made the
following judgments in evaluating the teaching
credentials of the candidates:

(i) Gauss and Taussky have equal teaching
credentials.

(ii) O’Leary’s teaching credentials should be
given 1.25 times the weight of Ipsen’s cre-
dentials and 1.75 times the weight given to
the credentials of both Gauss and Taussky.

(iii) Ipsen’s teaching credentials should be
given 1.25 times the weight given to the
credentials of both Gauss and Taussky.

(a) Use the method given in Application 4 to de-
termine a weight vector for rating the teaching
credentials of the candidates.

(b) Use the weight vector from part (a) to obtain
overall ratings of the candidates.

5.4 Inner Product Spaces

Scalar products are useful not only in R
n, but in a wide variety of contexts. To

generalize this concept to other vector spaces, we introduce the following definition.

Definition and Examples

Definition An inner product on a vector space V is an operation on V that assigns, to each pair
of vectors x and y in V , a real number 〈x, y〉 satisfying the following conditions:

I. 〈x, x〉 ≥ 0 with equality if and only if x = 0.
II. 〈x, y〉 = 〈y, x〉 for all x and y in V .

III. 〈αx + βy, z〉 = α 〈x, z〉 + β 〈y, z〉 for all x, y, z in V and all scalars α and β.

A vector space V with an inner product is called an inner product space.

The Vector Space R
n

The standard inner product for R
n is the scalar product

〈x, y〉 = xTy

Given a vector w with positive entries, we could also define an inner product on R
n by

〈x, y〉 =
n∑

i=1

xiyiwi (1)

The entries wi are referred to as weights.
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The Vector Space R
m×n

Given A and B in R
m×n, we can define an inner product by

〈A, B〉 =
m∑

i=1

n∑
j=1

aijbij (2)

We leave it to the reader to verify that (2) does indeed define an inner product on R
m×n.

The Vector Space C[a, b]

We may define an inner product on C[a, b] by

〈 f , g〉 =
∫ b

a
f (x)g(x) dx (3)

Note that

〈 f , f 〉 =
∫ b

a
(f (x))2 dx ≥ 0

If f (x0) 	= 0 for some x0 in [a, b], then, since (f (x))2 is continuous, there exists a
subinterval I of [a, b] containing x0 such that (f (x))2 ≥ (f (x0))2/2 for all x in I. If we
let p represent the length of I, then it follows that

〈 f , f 〉 =
∫ b

a
( f (x))2 dx ≥

∫
I
( f (x))2 dx ≥ ( f (x0))2p

2
> 0

So if 〈 f , f 〉 = 0, then f (x) must be identically zero on [a, b]. We leave it to the reader
to verify that (3) satisfies the other two conditions specified in the definition of an inner
product.

If w(x) is a positive continuous function on [a, b], then

〈 f , g〉 =
∫ b

a
f (x)g(x)w(x) dx (4)

also defines an inner product on C[a, b]. The function w(x) is called a weight function.
Thus it is possible to define many different inner products on C[a, b].

The Vector Space Pn

Let x1, x2, . . . , xn be distinct real numbers. For each pair of polynomials in Pn, define

〈p, q〉 =
n∑

i=1

p(xi)q(xi) (5)

It is easily seen that (5) satisfies conditions (ii) and (iii) of the definition of an inner
product. To show that (i) holds, note that

〈p, p〉 =
n∑

i=1

(p(xi))
2 ≥ 0
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If 〈p, p〉 = 0, then x1, x2, . . . , xn must be roots of p(x) = 0. Since p(x) is of degree less
than n, it must be the zero polynomial.

If w(x) is a positive function, then

〈p, q〉 =
n∑

i=1

p(xi)q(xi)w(xi)

also defines an inner product on Pn.

Basic Properties of Inner Product Spaces
The results presented in Section 5.1 for scalar products in R

n all generalize to inner
product spaces. In particular, if v is a vector in an inner product space V , the length, or
norm of v is given by

‖v‖ = √〈v, v〉
Two vectors u and v are said to be orthogonal if 〈u, v〉 = 0. As in R

n, a pair of
orthogonal vectors will satisfy the Pythagorean law.

Theorem 5.4.1 The Pythagorean Law
If u and v are orthogonal vectors in an inner product space V, then

‖u + v‖2 = ‖u‖2 + ‖v‖2

Proof

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 2 〈u, v〉 + 〈v, v〉
= ‖u‖2 + ‖v‖2

Interpreted in R
2, this is just the familiar Pythagorean theorem as shown in

Figure 5.4.1.

u

v

u + v

Figure 5.4.1.

EXAMPLE 1 Consider the vector space C[−1, 1] with inner product defined by (3). The vectors 1
and x are orthogonal, since

〈1, x〉 =
∫ 1

−1
1 · x dx = 0

To determine the lengths of these vectors, we compute

〈1, 1〉 =
∫ 1

−1
1 · 1 dx = 2

〈x, x〉 =
∫ 1

−1
x2 dx = 2

3
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It follows that

‖1‖ = (〈1, 1〉)1/2 = √
2

‖x‖ = (〈x, x〉)1/2 =
√

6

3

Since 1 and x are orthogonal, they satisfy the Pythagorean law:

‖1 + x‖2 = ‖1‖2 + ‖x‖2 = 2 + 2

3
= 8

3

The reader may verify that

‖1 + x‖2 = 〈1 + x, 1 + x〉 =
∫ 1

−1
(1 + x)2 dx = 8

3

EXAMPLE 2 For the vector space C[−π , π], if we use a constant weight function w(x) = 1/π to
define an inner product

〈f , g〉 = 1

π

∫ π

−π

f (x)g(x) dx (6)

then

〈cos x, sin x〉 = 1

π

∫ π

−π

cos x sin x dx = 0

〈cos x, cos x〉 = 1

π

∫ π

−π

cos x cos x dx = 1

〈sin x, sin x〉 = 1

π

∫ π

−π

sin x sin x dx = 1

Thus, cos x and sin x are orthogonal unit vectors with respect to this inner product. It
follows from the Pythagorean law that

‖ cos x + sin x‖ = √
2

The inner product (6) plays a key role in Fourier analysis applications involving
trigonometric approximation of functions. We will look at some of these applications
in Section 5.5.

For the vector space R
m×n the norm derived from the inner product (2) is called

the Frobenius norm and is denoted by ‖ · ‖F. Thus, if A ∈ R
m×n, then

‖A‖F = (〈A, A〉)1/2 =
⎛
⎝ m∑

i=1

n∑
j=1

a2
ij

⎞
⎠1/2

EXAMPLE 3 If

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
1 2
3 3

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

−1 1
3 0

−3 4

⎫⎪⎪⎪⎪⎪⎭
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then

〈A, B〉 = 1 · −1 + 1 · 1 + 1 · 3 + 2 · 0 + 3 · −3 + 3 · 4 = 6

Hence, A is not orthogonal to B. The norms of these matrices are given by

‖A‖F = (1 + 1 + 1 + 4 + 9 + 9)1/2 = 5
‖B‖F = (1 + 1 + 9 + 0 + 9 + 16)1/2 = 6

EXAMPLE 4 In P5, define an inner product by (5) with xi = (i−1)/4 for i = 1, 2, . . . , 5. The length
of the function p(x) = 4x is given by

‖4x‖ = (〈4x, 4x〉)1/2 =
(

5∑
i=1

16x2
i

)1/2

=
(

5∑
i=1

(i − 1)2

)1/2

= √
30

Definition If u and v are vectors in an inner product space V and v 	= 0, then the scalar
projection of u onto v is given by

α = 〈u, v〉
‖v‖

and the vector projection of u onto v is given by

p = α

(
1

‖v‖v
)

= 〈u, v〉
〈v, v〉v (7)

Observations

If v 	= 0 and p is the vector projection of u onto v, then

I. u − p and p are orthogonal.
II. u = p if and only if u is a scalar multiple of v.

Proof of
Observation I

Since

〈p, p〉 =
〈

α

‖v‖v,
α

‖v‖v
〉

=
(

α

‖v‖
)2

〈v, v〉 = α2

and

〈u, p〉 = (〈u, v〉)2

〈v, v〉 = α2

it follows that
〈u − p, p〉 = 〈u, p〉 − 〈p, p〉 = α2 − α2 = 0

Therefore, u − p and p are orthogonal.

Proof of
Observation II

If u = βv, then the vector projection of u onto v is given by

p = 〈βv, v〉
〈v, v〉 v = βv = u
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Conversely, if u = p, it follows from (7) that

u = βv where β = α

‖v‖
Observations I and II are useful for establishing the following theorem:

Theorem 5.4.2 The Cauchy–Schwarz Inequality
If u and v are any two vectors in an inner product space V, then

| 〈u, v〉 | ≤ ‖u‖ ‖v‖ (8)

Equality holds if and only if u and v are linearly dependent.

Proof If v = 0, then
| 〈u, v〉 | = 0 = ‖u‖ ‖v‖

If v 	= 0, then let p be the vector projection of u onto v. Since p is orthogonal to u − p,
it follows from the Pythagorean law that

‖p‖2 + ‖u − p‖2 = ‖u‖2

Thus
(〈u, v〉)2

‖v‖2
= ‖p‖2 = ‖u‖2 − ‖u − p‖2

and hence
(〈u, v〉)2 = ‖u‖2‖v‖2 − ‖u − p‖2‖v‖2 ≤ ‖u‖2‖v‖2 (9)

Therefore,

| 〈u, v〉 | ≤ ‖u‖ ‖v‖
Equality holds in (9) if and only if u = p. It follows from observation II that equality
will hold in (8) if and only if v = 0 or u is a multiple of v. More simply stated, equality
will hold if and only if u and v are linearly dependent.

One consequence of the Cauchy–Schwarz inequality is that if u and v are nonzero
vectors, then

−1 ≤ 〈u, v〉
‖u‖‖v‖ ≤ 1

and hence there is a unique angle θ in [0, π] such that

cos θ = 〈u, v〉
‖u‖‖v‖ (10)

Thus equation (10) can be used to define the angle θ between two nonzero vectors u
and v.

Norms
The word norm in mathematics has its own meaning that is independent of an inner
product and its use here should be justified.
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w

v

v + w

Figure 5.4.2.

Definition A vector space V is said to be a normed linear space if, to each vector v ∈ V , there
is associated a real number ‖v‖, called the norm of v, satisfying

I. ‖v‖ ≥ 0 with equality if and only if v = 0.
II. ‖αv‖ = |α| ‖v‖ for any scalar α.

III. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V .

The third condition is called the triangle inequality (see Figure 5.4.2).

Theorem 5.4.3 If V is an inner product space, then the equation

‖v‖ = √〈v, v〉 for all v ∈ V

defines a norm on V.

Proof It is easily seen that conditions I and II of the definition are satisfied. We leave this for
the reader to verify and proceed to show that condition III is satisfied.

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 2 〈u, v〉 + 〈v, v〉
≤ ‖u‖2 + 2‖u‖ ‖v‖ + ‖v‖2 (Cauchy–Schwarz)
= (‖u‖ + ‖v‖)2

Thus,

‖u + v‖ ≤ ‖u‖ + ‖v‖

It is possible to define many different norms on a given vector space. For example,
in R

n we could define

‖x‖1 =
n∑

i=1

|xi|

for every x = (x1, x2, . . . , xn)T . It is easily verified that ‖ · ‖1 defines a norm on
R

n. Another important norm on R
n is the uniform norm or infinity norm, which is

defined by

‖x‖∞ = max
1≤i≤n

|xi|
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More generally, we could define a norm on R
n by

‖x‖p =
(

n∑
i=1

|xi|p
)1/p

for any real number p ≥ 1. In particular, if p = 2, then

‖x‖2 =
(

n∑
i=1

|xi|2
)1/2

= √〈x, x〉

The norm ‖ · ‖2 is the norm on R
n derived from the inner product. If p 	= 2, ‖ · ‖p does

not correspond to any inner product. In the case of a norm that is not derived from an
inner product, the Pythagorean law will not hold. For example,

x1 =
⎧⎪⎩ 1

2

⎫⎪⎭ and x2 =
⎧⎪⎩−4

2

⎫⎪⎭
are orthogonal; however,

‖x1‖2
∞ + ‖x2‖2

∞ = 4 + 16 = 20

while

‖x1 + x2‖2
∞ = 16

If, however, ‖ · ‖2 is used, then

‖x1‖2
2 + ‖x2‖2

2 = 5 + 20 = 25 = ‖x1 + x2‖2
2

EXAMPLE 5 Let x be the vector (4, −5, 3)T in R
3. Compute ‖x‖1, ‖x‖2, and ‖x‖∞.

‖x‖1 = |4| + |−5| + |3| = 12
‖x‖2 = √

16 + 25 + 9 = 5
√

2
‖x‖∞ = max(|4|, |−5|, |3|) = 5

It is also possible to define different matrix norms for R
m×n. In Chapter 7 we will

study other types of matrix norms that are useful in determining the sensitivity of linear
systems.

In general, a norm provides a way of measuring the distance between vectors.

Definition Let x and y be vectors in a normed linear space. The distance between x and y is
defined to be the number ‖y − x‖.

Many applications involve finding a unique closest vector in a subspace S to a given
vector v in a vector space V . If the norm used for V is derived from an inner product,
then the closest vector can be computed as a vector projection of v onto the subspace S.
This type of approximation problem is discussed further in the next section.
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SECTION 5.4 EXERCISES
1. Let x = (−1, −1, 1, 1)T and y = (1, 1, 5, −3)T .

Show that x ⊥ y. Calculate ‖x‖2, ‖y‖2, ‖x + y‖2

and verify that the Pythagorean law holds.

2. Let x = (1, 1, 1, 1)T and y = (8, 2, 2, 0)T .
(a) Determine the angle θ between x and y.

(b) Find the vector projection p of x onto y.

(c) Verify that x − p is orthogonal to p.

(d) Compute ‖x − p‖2, ‖p‖2, ‖x‖2 and verify that
the Pythagorean law is satisfied.

3. Use equation (1) with weight vector w =(
1
4 , 1

2 , 1
4

)T
to define an inner product for R

3, and
let x = (1, 1, 1)T and y = (−5, 1, 3)T .
(a) Show that x and y are orthogonal with respect

to this inner product.

(b) Compute the values of ‖x‖ and ‖y‖ with re-
spect to this inner product.

4. Given

A =
⎧⎪⎪⎪⎪⎪⎩

1 2 2
1 0 2
3 1 1

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

−4 1 1
−3 3 2

1 −2 −2

⎫⎪⎪⎪⎪⎪⎭
determine the value of each of the following.
(a) 〈A, B〉 (b) ‖A‖F

(c) ‖B‖F (d) ‖A + B‖F

5. Show that equation (2) defines an inner product on
R

m×n.

6. Show that the inner product defined by equation (3)
satisfies the last two conditions of the definition of
an inner product.

7. In C[0, 1], with inner product defined by (3), com-
pute
(a)

〈
ex, e−x

〉
(b) 〈x, sin πx〉 (c)

〈
x2, x3

〉
8. In C[0, 1], with inner product defined by (3), con-

sider the vectors 1 and x.
(a) Find the angle θ between 1 and x.

(b) Determine the vector projection p of 1 onto x
and verify that 1 − p is orthogonal to p.

(c) Compute ‖1 − p‖, ‖p‖, ‖1‖ and verify that the
Pythagorean law holds.

9. In C[−π , π ] with inner product defined by (6),
show that cos mx and sin nx are orthogonal and
that both are unit vectors. Determine the distance
between the two vectors.

10. Show that the functions x and x2 are orthogonal
in P5 with inner product defined by (5), where
xi = (i − 3)/2 for i = 1, . . . , 5.

11. In P5 with inner product as in Exercise 10 and norm
defined by

‖p‖ = √〈p, p〉 =
{

5∑
i=1

[
p(xi)

]2

}1/2

compute
(a) ‖x‖ (b) ‖x2‖
(c) the distance between x and x2

12. If V is an inner product space, show that

‖v‖ = √〈v, v〉
satisfies the first two conditions in the definition of
a norm.

13. Show that

‖x‖1 =
n∑

i=1

|xi|

defines a norm on R
n.

14. Show that

‖x‖∞ = max
1≤i≤n

|xi|
defines a norm on R

n.
15. Compute ‖x‖1, ‖x‖2, and ‖x‖∞ for each of the fol-

lowing vectors in R
3.

(a) x = (−3, 4, 0)T (b) x = (−1, −1, 2)T

(c) x = (1, 1, 1)T

16. Let x = (5, 2, 4)T and y = (3, 3, 2)T . Compute
‖x − y‖1, ‖x − y‖2, and ‖x − y‖∞. Under which
norm are the two vectors closest together? Under
which norm are they farthest apart?

17. Let x and y be vectors in an inner product space.
Show that if x ⊥ y then the distance between x and
y is (‖x‖2 + ‖y‖2

)1/2

18. Show that if u and v are vectors in an inner product
space that satisfy the Pythagorean law

‖u + v‖2 = ‖u‖2 + ‖v‖2

then u and v must be orthogonal.
19. In R

n with inner product

〈x, y〉 = xT y

derive a formula for the distance between two vec-
tors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T .
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20. Let A be a nonsingular n × n matrix and for each
vector x in R

n define

‖x‖A = ‖Ax‖2 (11)

Show that (11) defines a norm on R
n.

21. Let x ∈ R
n. Show that ‖x‖∞ ≤ ‖x‖2.

22. Let x ∈ R
2. Show that ‖x‖2 ≤ ‖x‖1. [Hint: Write

x in the form x1e1 + x2e2 and use the triangle
inequality.]

23. Give an example of a nonzero vector x ∈ R
2 for

which

‖x‖∞ = ‖x‖2 = ‖x‖1

24. Show that in any vector space with a norm

‖−v‖ = ‖v‖
25. Show that for any u and v in a normed vector space

‖u + v‖ ≥ | ‖u‖ − ‖v‖ |

26. Prove that, for any u and v in an inner product
space V ,

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2

Give a geometric interpretation of this result for the
vector space R

2.

27. The result of Exercise 26 is not valid for norms
other than the norm derived from the inner product.
Give an example of this in R

2 using ‖ · ‖1.

28. Determine whether the following define norms on
C[a, b]:
(a) ‖ f ‖ = | f (a)| + | f (b)|

(b) ‖ f ‖ = ∫ b
a | f (x)| dx

(c) ‖ f ‖ = max
a≤x≤b

| f (x)|
29. Let x ∈ R

n and show that
(a) ‖x‖1 ≤ n‖x‖∞ (b) ‖x‖2 ≤ √

n ‖x‖∞
Give examples of vectors in R

n for which equality
holds in parts (a) and (b).

30. Sketch the set of points (x1, x2) = xT in R
2 such

that

(a) ‖x‖2 = 1 (b) ‖x‖1 = 1 (c) ‖x‖∞ = 1

31. Let K be an n × n matrix of the form

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −c −c · · · −c −c
0 s −sc · · · −sc −sc
0 0 s2 · · · −s2c −s2c
...
0 0 0 · · · sn−2 −sn−2c
0 0 0 · · · 0 sn−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where c2 + s2 = 1. Show that ‖K‖F = √

n.

32. The trace of an n×n matrix C, denoted tr(C), is the
sum of its diagonal entries; that is,

tr(C) = c11 + c22 + · · · + cnn

If A and B are m × n matrices, show that
(a) ‖A‖2

F = tr(ATA)
(b) ‖A + B‖2

F = ‖A‖2
F + 2 tr(AT B) + ‖B‖2

F .

33. Consider the vector space R
n with inner product

〈x, y〉 = xTy. Show that for any n × n matrix A,

(a) 〈Ax, y〉 = 〈
x, AT y

〉
(b)

〈
ATAx, x

〉 = ‖Ax‖2

5.5 Orthonormal Sets

In R
2, it is generally more convenient to use the standard basis {e1, e2} than to use

some other basis, such as {(2, 1)T , (3, 5)T}. For example, it would be easier to find
the coordinates of (x1, x2)T with respect to the standard basis. The elements of the
standard basis are orthogonal unit vectors. In working with an inner product space V ,
it is generally desirable to have a basis of mutually orthogonal unit vectors. Such a
basis is convenient not only in finding coordinates of vectors, but also in solving least
squares problems.

Definition Let v1, v2, . . . , vn be nonzero vectors in an inner product space V . If
〈
vi, vj

〉 = 0
whenever i 	= j, then {v1, v2, . . . , vn} is said to be an orthogonal set of vectors.
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EXAMPLE 1 The set {(1, 1, 1)T , (2, 1, −3)T , (4, −5, 1)T} is an orthogonal set in R
3, since

(1, 1, 1)(2, 1, −3)T = 0
(1, 1, 1)(4, −5, 1)T = 0

(2, 1, −3)(4, −5, 1)T = 0

Theorem 5.5.1 If {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an inner product space V,
then v1, v2, . . . , vn are linearly independent.

Proof Suppose that v1, v2, . . . , vn are mutually orthogonal nonzero vectors and

c1v1 + c2v2 + · · · + cnvn = 0 (1)

If 1 ≤ j ≤ n, then, taking the inner product of vj with both sides of equation (1), we
see that

c1
〈
vj, v1

〉+ c2
〈
vj, v2

〉+ · · · + cn
〈
vj, vn

〉 = 0

cj‖vj‖2 = 0

and hence all the scalars c1, c2, . . . , cn must be 0.

Definition An orthonormal set of vectors is an orthogonal set of unit vectors.

The set {u1, u2, . . . , un} will be orthonormal if and only if〈
ui, uj

〉 = δij

where

δij =
{

1 if i = j
0 if i 	= j

Given any orthogonal set of nonzero vectors {v1, v2, . . . , vn}, it is possible to form an
orthonormal set by defining

ui =
(

1

‖vi‖
)

vi for i = 1, 2, . . . , n

The reader may verify that {u1, u2, . . . , un} will be an orthonormal set.

EXAMPLE 2 We saw in Example 1 that if v1 = (1, 1, 1)T , v2 = (2, 1, −3)T , and v3 = (4, −5, 1)T ,
then {v1, v2, v3} is an orthogonal set in R

3. To form an orthonormal set, let

u1 =
(

1

‖v1‖
)

v1 = 1√
3

(1, 1, 1)T

u2 =
(

1

‖v2‖
)

v2 = 1√
14

(2, 1, −3)T

u3 =
(

1

‖v3‖
)

v3 = 1√
42

(4, −5, 1)T
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EXAMPLE 3 In C[−π , π] with inner product

〈f , g〉 = 1

π

∫ π

−π

f (x)g(x) dx (2)

the set {1, cos x, cos 2x, . . . , cos nx} is an orthogonal set of vectors, since for any
positive integers j and k

〈1, cos kx〉 = 1

π

∫ π

−π

cos kx dx = 0

〈cos jx, cos kx〉 = 1

π

∫ π

−π

cos jx cos kx dx = 0 (j 	= k)

The functions cos x, cos 2x, . . . , cos nx are already unit vectors since

〈cos kx, cos kx〉 = 1

π

∫ π

−π

cos2 kx dx = 1 for k = 1, 2, . . . , n

To form an orthonormal set, we need only find a unit vector in the direction of 1.

‖1‖2 = 〈1, 1〉 = 1

π

∫ π

−π

1 dx = 2

Thus, 1/
√

2 is a unit vector, and hence {1/
√

2, cos x, cos 2x, . . . , cos nx} is an ortho-
normal set of vectors.

It follows from Theorem 5.5.1 that if B = {u1, u2, . . . , uk} is an orthonormal set in
an inner product space V , then B is a basis for the subspace S = Span(u1, u2, . . . , uk).
We say that B is an orthonormal basis for S. It is generally much easier to work with
an orthonormal basis than with an ordinary basis. In particular, it is much easier to
calculate the coordinates of a given vector v with respect to an orthonormal basis.
Once these coordinates have been determined, they can be used to compute ‖v‖.

Theorem 5.5.2 Let {u1, u2, . . . , un} be an orthonormal basis for an inner product space V. If v =
n∑

i=1

ciui, then ci = 〈v, ui〉.

Proof

〈v, ui〉 =
〈

n∑
j=1

cjuj, ui

〉
=

n∑
j=1

cj
〈
uj, ui

〉 = n∑
j=1

cjδji = ci

As a consequence of Theorem 5.5.2, we can state two more important results:

Corollary 5.5.3 Let {u1, u2, . . . , un} be an orthonormal basis for an inner product space V. If

u =
n∑

i=1

aiui and v =
n∑

i=1

biui, then

〈u, v〉 =
n∑

i=1

aibi
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Proof By Theorem 5.5.2

〈v, ui〉 = bi i = 1, . . . , n

Therefore,

〈u, v〉 =
〈

n∑
i=1

aiui, v

〉
=

n∑
i=1

ai 〈ui, v〉 =
n∑

i=1

ai 〈v, ui〉 =
n∑

i=1

aibi

Corollary 5.5.4 Parseval’s Formula

If {u1, . . . , un} is an orthonormal basis for an inner product space V and v =
n∑

i=1

ciui,

then

‖v‖2 =
n∑

i=1

c2
i

Proof If v =
n∑

i=1

ciui, then, by Corollary 5.5.3,

‖v‖2 = 〈v, v〉 =
n∑

i=1

c2
i

EXAMPLE 4 The vectors

u1 =
(

1√
2

,
1√
2

)T

and u2 =
(

1√
2

, − 1√
2

)T

form an orthonormal basis for R
2. If x ∈ R

2, then

xTu1 = x1 + x2√
2

and xTu2 = x1 − x2√
2

It follows from Theorem 5.5.2 that

x = x1 + x2√
2

u1 + x1 − x2√
2

u2

and it follows from Corollary 5.5.4 that

‖x‖2 =
(

x1 + x2√
2

)2

+
(

x1 − x2√
2

)2

= x2
1 + x2

2

EXAMPLE 5 Given that {1/
√

2, cos 2x} is an orthonormal set in C[−π , π] (with inner product as in
Example 3), determine the value of

∫ π

−π
sin4 x dx without computing antiderivatives.

Solution
Since

sin2 x = 1 − cos 2x

2
= 1√

2

1√
2

+
(

−1

2

)
cos 2x
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it follows from Parseval’s formula that∫ π

−π

sin4 x dx = π‖ sin2 x‖2 = π

(
1

2
+ 1

4

)
= 3π

4

Orthogonal Matrices
Of particular importance are n×n matrices whose column vectors form an orthonormal
set in R

n.

Definition An n × n matrix Q is said to be an orthogonal matrix if the column vectors of Q
form an orthonormal set in R

n.

Theorem 5.5.5 An n × n matrix Q is orthogonal if and only if QTQ = I.

Proof It follows from the definition that an n × n matrix Q is orthogonal if and only if its
column vectors satisfy

qT
i qj = δij

However, qT
i qj is the (i, j) entry of the matrix QTQ. Thus Q is orthogonal if and only if

QTQ = I.

It follows from the theorem that if Q is an orthogonal matrix then Q is invertible
and Q−1 = QT .

EXAMPLE 6 For any fixed θ , the matrix

Q =
⎧⎪⎩ cos θ −sin θ

sin θ cos θ

⎫⎪⎭
is orthogonal and

Q−1 = QT =
⎧⎪⎩ cos θ sin θ

−sin θ cos θ

⎫⎪⎭
The matrix Q in Example 6 can be thought of as a linear transformation from R

2

onto R
2 that has the effect of rotating each vector by an angle θ while leaving the

length of the vector unchanged (see Example 2 in Section 4.2 of Chapter 4). Similarly,
Q−1 can be thought of as a rotation by the angle −θ (see Figure 5.5.1).

In general, inner products are preserved under multiplication by an orthogonal
matrix [i.e., 〈x, y〉 = 〈Qx, Qy〉]. Indeed,

〈Qx, Qy〉 = (Qy)TQx = yTQTQx = yTx = 〈x, y〉
In particular, if x = y, then ‖Qx‖2 = ‖x‖2 and hence ‖Qx‖ = ‖x‖. Multiplication by
an orthogonal matrix preserves the lengths of vectors.
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θ

y

Q–1y

Qx

x

(a) (b)

θ–

Figure 5.5.1.

Properties of Orthogonal Matrices
If Q is an n × n orthogonal matrix, then

(a) the column vectors of Q form an orthonormal basis for R
n.

(b) QTQ = I
(c) QT = Q−1

(d) 〈Qx, Qy〉 = 〈x, y〉
(e) ‖Qx‖2 = ‖x‖2

Permutation Matrices
A permutation matrix is a matrix formed from the identity matrix by reordering its
columns. Clearly, then, permutation matrices are orthogonal matrices. If P is the per-
mutation matrix formed by reordering the columns of I in the order (k1, . . . , kn), then
P = (ek1 , . . . , ekn). If A is an m × n matrix, then

AP = (Aek1 , . . . , Aekn) = (ak1 , . . . , akn)

Postmultiplication of A by P reorders the columns of A in the order (k1, . . . , kn). For
example, if

A =
⎧⎪⎩ 1 2 3

1 2 3

⎫⎪⎭ and P =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
0 0 1
1 0 0

⎫⎪⎪⎪⎪⎪⎭
then

AP =
⎧⎪⎩ 3 1 2

3 1 2

⎫⎪⎭
Since P = (ek1 , . . . , ekn) is orthogonal, it follows that

P−1 = PT =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

eT
k1
...

eT
kn

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The k1 column of PT will be e1, the k2 column will be e2, and so on. Thus, PT is a
permutation matrix. The matrix PT can be formed directly from I by reordering its
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rows in the order (k1, k2, . . . , kn). In general, a permutation matrix can be formed from
I by reordering either its rows or its columns.

If Q is the permutation matrix formed by reordering the rows of I in the order
(k1, k2, . . . , kn) and B is an n × r matrix, then

QB =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

eT
k1
...

eT
kn

⎫⎪⎪⎪⎪⎪⎪⎪⎭B =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

eT
k1

B
...

eT
kn

B

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
�bk1
...

�bkn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus QB is the matrix formed by reordering the rows of B in the order (k1, k2, . . . , kn).
For example, if

Q =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

1 1
2 2
3 3

⎫⎪⎪⎪⎪⎪⎭
then

QB =
⎧⎪⎪⎪⎪⎪⎩

3 3
1 1
2 2

⎫⎪⎪⎪⎪⎪⎭
In general, if P is an n × n permutation matrix, premultiplication of an n × r matrix B
by P reorders the rows of B and postmultiplication of an m × n matrix A by P reorders
the columns of A.

Orthonormal Sets and Least Squares
Orthogonality plays an important role in solving least squares problems. Recall that if
A is an m × n matrix of rank n, then the least squares problem Ax = b has a unique
solution x̂ that is determined by solving the normal equations ATAx = ATb. The pro-
jection p = Ax̂ is the vector in R(A) that is closest to b. The least squares problem is
especially easy to solve in the case where the column vectors of A form an orthonormal
set in R

m.

Theorem 5.5.6 If the column vectors of A form an orthonormal set of vectors in R
m, then ATA = I and

the solution to the least squares problem is

x̂ = ATb

Proof The (i, j ) entry of ATA is formed from the ith row of AT and the jth column of A. Thus,
the (i, j ) entry is actually the scalar product of the ith and jth columns of A. Since the
column vectors of A are orthonormal, it follows that

ATA = (
δij
) = I

Consequently, the normal equations simplify to

x = ATb
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What if the columns of A are not orthonormal? In the next section we will learn
a method for finding an orthonormal basis for R(A). From this method we will obtain
a factorization of A into a product QR, where Q has an orthonormal set of column
vectors and R is upper triangular. With this factorization, the least squares problem is
easily solved.

If we have an orthonormal basis for R(A), the projection p = Ax̂ can be determined
in terms of the basis elements. Indeed, this is a special case of the more general least
squares problem of finding the element p in a subspace S of an inner product space
V that is closest to a given element x in V . This problem is easily solved if S has an
orthonormal basis. We first prove the following theorem:

Theorem 5.5.7 Let S be a subspace of an inner product space V and let x ∈ V. Let {u1, u2, . . . , un} be
an orthonormal basis for S. If

p =
n∑

i=1

ciui (3)

where

ci = 〈x, ui〉 for each i (4)

then p − x ∈ S⊥ (see Figure 5.5.2).

x

p
S

p – x

Figure 5.5.2.

Proof We will show first that (p − x) ⊥ ui for each i.

〈ui, p − x〉 = 〈ui, p〉 − 〈ui, x〉
=
〈

ui,
n∑

j=1

cjuj

〉
− ci

=
n∑

j=1

cj 〈ui, uj〉 − ci

= 0

So p − x is orthogonal to all the ui’s. If y ∈ S, then

y =
n∑

i=1

αiui
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and hence

〈p − x, y〉 =
〈

p − x,
n∑

i=1

αiui

〉
=

n∑
i=1

αi 〈p − x, ui〉 = 0

If x ∈ S, the preceding result is trivial, since by Theorem 5.5.2, p−x = 0. If x 	∈ S,
then p is the element in S closest to x.

Theorem 5.5.8 Under the hypothesis of Theorem 5.5.7, p is the element of S that is closest to x; that is,

‖y − x‖ > ‖p − x‖
for any y 	= p in S.

Proof If y ∈ S and y 	= p, then

‖y − x‖2 = ‖(y − p) + (p − x)‖2

Since y − p ∈ S, it follows from Theorem 5.5.7 and the Pythagorean law that

‖y − x‖2 = ‖y − p‖2 + ‖p − x‖2 > ‖p − x‖2

Therefore, ‖y − x‖ > ‖p − x‖.

The vector p defined by (3) and (4) is said to be the projection of x onto S.

Corollary 5.5.9 Let S be a nonzero subspace of R
m and let b ∈ R

m. If {u1, u2, . . . , uk} is an orthonor-
mal basis for S and U = (u1, u2, . . . , uk), then the projection p of b onto S is given by

p = UUTb

Proof It follows from Theorem 5.5.7 that the projection p of b onto S is given by

p = c1u1 + c2u2 + · · · + ckuk = Uc

where

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c1

c2
...

ck

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uT
1 b

uT
2 b
...

uT
k b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= UTb

Therefore,

p = UUTb

The matrix UUT in Corollary 5.5.9 is the projection matrix corresponding to the
subspace S of R

m. To project any vector b ∈ R
m onto S, we need only find an or-

thonormal basis {u1, u2, . . . , uk} for S, form the matrix UUT , and then multiply UUT

times b.
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If P is a projection matrix corresponding to a subspace S of R
m, then, for any b ∈

R
m, the projection p of b onto S is unique. If Q is also a projection matrix corresponding

to S, then

Qb = p = Pb

It then follows that

qj = Qej = Pej = pj for j = 1, . . . , m

and hence Q = P. Thus, the projection matrix for a subspace S of R
m is unique.

EXAMPLE 7 Let S be the set of all vectors in R
3 of the form (x, y, 0)T . Find the vector p in S that is

closest to w = (5, 3, 4)T (see Figure 5.5.3).

S

w

(5, 3, 4)

(5, 3, 0)

Figure 5.5.3.

Solution
Let u1 = (1, 0, 0)T and u2 = (0, 1, 0)T . Clearly, u1 and u2 form an orthonormal basis
for S. Now

c1 = wTu1 = 5
c2 = wTu2 = 3

The vector p turns out to be exactly what we would expect:

p = 5u1 + 3u2 = (5, 3, 0)T

Alternatively, p could have been calculated using the projection matrix UUT .

p = UUTw =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

5
3
4

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5
3
0

⎫⎪⎪⎪⎪⎪⎭
Approximation of Functions
In many applications, it is necessary to approximate a continuous function in terms of
functions from some special type of approximating set. Most commonly, we approx-
imate by a polynomial of degree n or less. We can use Theorem 5.5.8 to obtain the best
least squares approximation.

EXAMPLE 8 Find the best least squares approximation to ex on the interval [0, 1] by a linear function.
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Solution
Let S be the subspace of all linear functions in C[0, 1]. Although the functions 1 and x
span S, they are not orthogonal. We seek a function of the form x−a that is orthogonal
to 1.

〈1, x − a〉 =
∫ 1

0
(x − a) dx = 1

2
− a

Thus, a = 1
2 . Since ‖x − 1

2‖ = 1/
√

12, it follows that

u1(x) = 1 and u2(x) = √
12
(
x − 1

2

)
form an orthonormal basis for S.

Let

c1 =
∫ 1

0
u1(x) ex dx = e − 1

c2 =
∫ 1

0
u2(x) ex dx = √

3 (3 − e)

The projection

p(x) = c1u1(x) + c2u2(x)

= (e − 1) · 1 + √
3(3 − e)

[√
12
(
x − 1

2

)]
= (4e − 10) + 6(3 − e)x

is the best linear least squares approximation to ex on [0, 1] (see Figure 5.5.4).

0.5

0.5 1.0

1.0

1.5

2.0

2.5 y = p(x)

y = e x

Figure 5.5.4.
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Approximation by Trigonometric Polynomials
Trigonometric polynomials are used to approximate periodic functions. By a trigono-
metric polynomial of degree n we mean a function of the form

tn(x) = a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

We have already seen that the collection of functions

1√
2

, cos x, cos 2x, . . . , cos nx

forms an orthonormal set with respect to the inner product (2). We leave it to the reader
to verify that if the functions

sin x, sin 2x, . . . , sin nx

are added to the collection, it will still be an orthonormal set. Thus, we can use The-
orem 5.5.8 to find the best least squares approximation to a continuous 2π periodic
function f (x) by a trigonometric polynomial of degree n or less. Note that〈

f ,
1√
2

〉
1√
2

= 〈f , 1〉 1

2

so that if

a0 = 〈 f , 1〉 = 1

π

∫ π

−π

f (x) dx

and

ak = 〈 f , cos kx〉 = 1

π

∫ π

−π

f (x) cos kx dx

bk = 〈 f , sin kx〉 = 1

π

∫ π

−π

f (x) sin kx dx

for k = 1, 2, . . . , n, then these coefficients determine the best least squares approxim-
ation to f . The ak’s and the bk’s turn out to be the well-known Fourier coefficients
that occur in many applications involving trigonometric series approximations of
functions.

Let us think of f (x) as representing the position at time x of an object moving along
a line, and let tn be the Fourier approximation of degree n to f . If we set

rk =
√

a2
k + b2

k and θk = Tan−1

(
bk

ak

)
then

ak cos kx + bk sin kx = rk

(
ak

rk
cos kx + bk

rk
sin kx

)
= rk cos(kx − θk)

Thus, the motion f (x) is being represented as a sum of simple harmonic motions.
For signal-processing applications, it is useful to express the trigonometric ap-

proximation in complex form. To this end, we define complex Fourier coefficients ck

in terms of the real Fourier coefficients ak and bk:
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ck = 1

2
(ak − ibk) = 1

2π

∫ π

−π

f (x)(cos kx − i sin kx) dx

= 1

2π

∫ π

−π

f (x)e−ikxdx (k ≥ 0)

The latter equality follows from the identity

eiθ = cos θ + i sin θ

We also define the coefficient c−k to be the complex conjugate of ck. Thus

c−k = ck = 1

2
(ak + ibk) (k ≥ 0)

Alternatively, if we solve for ak and bk, then

ak = ck + c−k and bk = i(ck − c−k)

From these identities, it follows that

ckeikx + c−ke−ikx = (ck + c−k) cos kx + i(ck − c−k) sin kx

= ak cos kx + bk sin kx

and hence the trigonometric polynomial

tn(x) = a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

can be rewritten in complex form as

tn(x) =
n∑

k=−n

ckeikx

APPLICATION 1 Signal Processing

The Discrete Fourier Transform
The function f (x) pictured in Figure 5.5.5(a) corresponds to a noisy signal. Here the
independent variable x represents time and the signal values are plotted as a function of
time. In this context, it is convenient to start with time 0. Thus, we will choose [0, 2π],
rather than [−π , π], as the interval for our inner product.

Let us approximate f (x) by a trigonometric polynomial

tn(x) =
n∑

k=−n

ckeikx
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0 2 4 6 8 10
(b)  Filtered Signal
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(a)  Noisy Signal
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Figure 5.5.5.

As noted in the previous discussion, the trigonometric approximation allows us to
represent the function as a sum of simple harmonics. The kth harmonic can be written
as rk cos(kx−θk). It is said to have angular frequency k. A signal is smooth if the coeffi-
cients ck approach 0 rapidly as k increases. If some of the coefficients corresponding to
larger frequencies are not small, the graph will appear to be noisy as in Figure 5.5.5(a).
We can filter the signal by setting these coefficients equal to 0. Figure 5.5.5(b) shows
the smooth function obtained by suppressing some of the higher frequencies from the
original signal.

In actual signal-processing applications, we do not have a mathematical formula
for the signal function f (x); rather, the signal is sampled over a sequence of times
x0, x1, . . . , xN , where xj = 2jπ

N . The function f is represented by the N sample values

y0 = f (x0), y1 = f (x1), . . . , yN−1 = f (xN−1)

[Note: yN = f (2π) = f (0) = y0.] In this case it is not possible to compute the Fourier
coefficients as integrals. Instead of using

ck = 1

2π

∫ 2π

0
f (x)e−ikxdx

we use a numerical integration method, the trapezoid rule, to approximate the integral.
The approximation is given by

dk = 1

N

N−1∑
j=0

f (xj)e
−ikxj (5)
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The dk coefficients are approximations to the Fourier coefficients. The larger the
sample size N, the closer dk will be to ck.

If we set

ωN = e− 2π i
N = cos

2π

N
− i sin

2π

N

then equation (5) can be rewritten in the form

dk = 1

N

N−1∑
j=0

yjω
jk
N

The finite sequence {d0, d1, . . . , dN−1} is said to be the discrete Fourier transform of
{y0, y1, . . . , yN−1}. The discrete Fourier transform can be determined by a single matrix
vector multiplication. For example, if N = 4, the coefficients are given by

d0 = 1

4
(y0 + y1 + y2 + y3)

d1 = 1

4
(y0 + ω4y1 + ω2

4y2 + ω3
4y3)

d2 = 1

4
(y0 + ω2

4y1 + ω4
4y2 + ω6

4y3)

d3 = 1

4
(y0 + ω3

4y1 + ω6
4y2 + ω9

4y3)

If we set

z = 1

4
y = 1

4
(y0, y1, y2, y3)T

then the vector d = (d0, d1, d2, d3)T is determined by multiplying z by the matrix

F4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix F4 is called a Fourier matrix.

In the case of N sample values, y0, y1, . . . , yN−1, the coefficients are computed by
setting

z = 1

N
y and d = FNz

where y = (y0, y1, . . . , yN−1)T and FN is the N × N matrix whose (j, k) entry is given
by fj,k = ω

(j−1)(k−1)
N . The method of computing the discrete Fourier transform d by

multiplying FN times z will be referred to as the DFT algorithm. The DFT computation
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requires a multiple of N2 arithmetic operations (roughly 8N2, since complex arithmetic
is used).

In signal-processing applications, N is generally very large and consequently the
DFT computation of the discrete Fourier transform can be prohibitively slow and costly
even on modern high-powered computers. A revolution in signal processing occurred
in 1965 with the introduction by James W. Cooley and John W. Tukey of a dramatically
more efficient method for computing the discrete Fourier transform. Actually, it turns
out that the 1965 Cooley-Tukey paper is a rediscovery of a method that was known to
Gauss in 1805.

The Fast Fourier Transform
The method of Cooley and Tukey, known as the fast Fourier transform or simply the
FFT, is an efficient algorithm for computing the discrete Fourier transform. It takes ad-
vantage of the special structure of the Fourier matrices. We illustrate this method in the
case N = 4. To see the special structure, we rearrange the columns of F4 so that its odd-
numbered columns all come before the even-numbered columns. This rearrangement
is equivalent to postmultiplying F4 by the permutation matrix

P4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
If we set w = PT

4 z, then

F4z = F4P4PT
4 z = F4P4w

Partitioning F4P4 into 2 × 2 blocks, we get

F4P4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The (1,1) and (2,1) blocks are both equal to the Fourier matrix F2, and if we set

D2 =
⎧⎪⎩ 1 0

0 −i

⎫⎪⎭
then the (1,2) and (2,2) blocks are D2F2 and −D2F2, respectively. The computation of
the Fourier transform can now be carried out as a block multiplication.

d4 =
⎧⎪⎩ F2 D2F2

F2 −D2F2

⎫⎪⎭⎧⎪⎩w1

w2

⎫⎪⎭ =
⎧⎪⎩ F2w1 + D2F2w2

F2w1 − D2F2w2

⎫⎪⎭
The computation reduces to computing two Fourier transforms of length 2. If we set
q1 = F2w1 and q2 = D2(F2w2), then

d4 =
⎧⎪⎩ q1 + q2

q1 − q2

⎫⎪⎭
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The procedure we have just described will work in general whenever the number
of sample points is even. If, say, N = 2m, and we permute the columns of F2m so that
the odd columns are first, then the reordered Fourier matrix F2mP2m can be partitioned
into m × m blocks

F2mP2m =
⎧⎪⎩ Fm DmFm

Fm −DmFm

⎫⎪⎭
where Dm is a diagonal matrix whose (j, j) entry is ω

j−1
2m . The discrete Fourier transform

can then be computed in terms of two transforms of length m. Furthermore, if m is even,
then each length m transform can be computed in terms of two transforms of length m

2 ,
and so on.

If, initially, N is a power of 2, say, N = 2k, then we can apply this procedure re-
cursively through k levels of recursion. The amount of arithmetic required to compute
the FFT is proportional to Nk = N log2 N. In fact, the actual amount of arithmetic op-
erations required for the FFT is approximately 5N log2 N. How dramatic of a speedup
is this? If we consider, for example, the case where N = 220 = 1,048,576, then the
DFT algorithm requires 8N2 = 8 · 240 operations, that is, approximately 8.8 trillion
operations. On the other hand, the FFT algorithm requires only 100N = 100 · 220, or
approximately 100 million, operations. The ratio of these two operations counts is

r = 8N2

5N log2 N
= 0.08 · 1,048,576 = 83,886

In this case, the FFT algorithm is approximately 84,000 times faster than the DFT
algorithm.

SECTION 5.5 EXERCISES
1. Which of the following sets of vectors form an

orthonormal basis for R
2?

(a) {(1, 0)T , (0, 1)T}

(b)

{(
3

5
,

4

5

)T

,

(
5

13
,

12

13

)T
}

(c) {(1, −1)T , (1, 1)T}

(d)

⎧⎨
⎩
(√

3

2
,

1

2

)T

,

(
−1

2
,

√
3

2

)T
⎫⎬
⎭

2. Let

u1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

3
√

2

1
3
√

2

− 4
3
√

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , u2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
3

2
3

1
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , u3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that {u1, u2, u3} is an orthonormal basis

for R
3.

(b) Let x = (1, 1, 1)T . Write x as a linear combina-
tion of u1, u2, and u3 using Theorem 5.5.2 and
use Parseval’s formula to compute ‖x‖.

3. Let S be the subspace of R
3 spanned by the vectors

u2 and u3 of Exercise 2. Let x = (1, 2, 2)T . Find the
projection p of x onto S. Show that (p − x) ⊥ u2

and (p − x) ⊥ u3.

4. Let θ be a fixed real number and let

x1 =
⎧⎪⎩ cos θ

sin θ

⎫⎪⎭ and x2 =
⎧⎪⎩ − sin θ

cos θ

⎫⎪⎭
(a) Show that {x1, x2} is an orthonormal basis for

R
2.

(b) Given a vector y in R
2, write it as a linear

combination c1x1 + c2x2.

(c) Verify that

c2
1 + c2

2 = ‖y‖2 = y2
1 + y2

2
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5. Let u1 and u2 form an orthonormal basis for R
2 and

let u be a unit vector in R
2. If uT u1 = 1

2 , determine
the value of |uT u2|.

6. Let {u1, u2, u3} be an orthonormal basis for an inner
product space V and let

u = u1 + 2u2 + 2u3 and v = u1 + 7u3

Determine the value of each of the following:
(a) 〈u, v〉 (b) ‖u‖ and ‖v‖
(c) The angle θ between u and v

7. Let {u1, u2, u3} be an orthonormal basis for an in-
ner product space V . If x = c1u1 + c2u2 + c3u3 is
a vector with the properties ‖x‖ = 5, 〈u1, x〉 = 4,
and x ⊥ u2, then what are the possible values of c1,
c2, c3?

8. The functions cos x and sin x form an orthonormal
set in C[−π , π ]. If

f (x) = 3 cos x + 2 sin x and g(x) = cos x − sin x

use Corollary 5.5.3 to determine the value of

〈f , g〉 = 1

π

∫ π

−π

f (x)g(x) dx

9. The set

S =
{

1√
2

, cos x, cos 2x, cos 3x, cos 4x

}
is an orthonormal set of vectors in C[−π , π ] with
inner product defined by (2).
(a) Use trigonometric identities to write the func-

tion sin4 x as a linear combination of elements
of S.

(b) Use part (a) and Theorem 5.5.2 to find the
values of the following integrals:
(a)

∫ π

−π
sin4 x cos x dx (b)

∫ π

−π
sin4 x cos 2x dx

(c)
∫ π

−π
sin4 x cos 3x dx (d)

∫ π

−π
sin4 x cos 4x dx

10. Write out the Fourier matrix F8. Show that F8P8

can be partitioned into block form:⎧⎪⎩ F4 D4F4

F4 −D4F4

⎫⎪⎭
11. Prove that the transpose of an orthogonal matrix is

an orthogonal matrix.

12. If Q is an n × n orthogonal matrix and x and
y are nonzero vectors in R

n, then how does the
angle between Qx and Qy compare with the angle
between x and y? Prove your answer.

13. Let Q be an n × n orthogonal matrix. Use math-
ematical induction to prove each of the following.

(a) (Qm)−1 = (QT )m = (Qm)T for any positive
integer m.

(b) ‖Qmx‖ = ‖x‖ for any x ∈ R
n.

14. Let u be a unit vector in R
n and let H = I − 2uuT .

Show that H is both orthogonal and symmetric and
hence is its own inverse.

15. Let Q be an orthogonal matrix and let d = det(Q).
Show that |d| = 1.

16. Show that the product of two orthogonal matrices
is also an orthogonal matrix. Is the product of
two permutation matrices a permutation matrix?
Explain.

17. How many n × n permutation matrices are there?

18. Show that if P is a symmetric permutation matrix
then P2k = I and P2k+1 = P.

19. Show that if U is an n × n orthogonal matrix then

u1uT
1 + u2uT

2 + · · · + unuT
n = I

20. Use mathematical induction to show that if Q ∈
R

n×n is both upper triangular and orthogonal, then
qj = ±ej, j = 1, . . . , n.

21. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2
1
2 − 1

2
1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that the column vectors of A form an

orthonormal set in R
4.

(b) Solve the least squares problem Ax = b for
each of the following choices of b.
(a) b = (4, 0, 0, 0)T (b) b = (1, 2, 3, 4)T

(c) b = (1, 1, 2, 2)T

22. Let A be the matrix given in Exercise 21.
(a) Find the projection matrix P that projects vec-

tors in R
4 onto R(A).

(b) For each of your solutions x to Exercise 21(b),
compute Ax and compare it with Pb.

23. Let A be the matrix given in Exercise 21.
(a) Find an orthonormal basis for N(AT ).

(b) Determine the projection matrix Q that pro-
jects vectors in R

4 onto N(AT ).
24. Let A be an m × n matrix, let P be the projection

matrix that projects vectors in R
m onto R(A), and

let Q be the projection matrix that projects vectors
in R

n onto R(AT ). Show that
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(a) I − P is the projection matrix from R
m onto

N(AT ).
(b) I − Q is the projection matrix from R

n onto
N(A).

25. Let P be the projection matrix corresponding to a
subspace S of R

m. Show that
(a) P2 = P (b) PT = P

26. Let A be an m×n matrix whose column vectors are
mutually orthogonal and let b ∈ R

m. Show that if y
is the least squares solution of the system Ax = b,
then

yi = bT ai

aT
i ai

i = 1, . . . , n

27. Let v be a vector in an inner product space V and
let p be the projection of v onto an n-dimensional
subspace S of V . Show that ‖p‖ ≤ ‖v‖. Under what
conditions does equality occur.

28. Let v be a vector in an inner product space V and
let p be the projection of v onto an n-dimensional
subspace S of V . Show that ‖p‖2 = 〈p, v〉.

29. Given the vector space C[−1, 1] with inner product

〈 f , g〉 =
∫ 1

−1
f (x)g(x) dx

and norm
‖ f ‖ = (〈f , f 〉)1/2

(a) Show that the vectors 1 and x are orthogonal.
(b) Compute ‖1‖ and ‖x‖.
(c) Find the best least squares approximation to

x1/3 on [−1, 1] by a linear function l(x) =
c11 + c2x.

(d) Sketch the graphs of x1/3 and l(x) on [−1, 1].
30. Consider the inner product space C[0, 1] with inner

product defined by

〈f , g〉 =
∫ 1

0
f (x)g(x) dx

Let S be the subspace spanned by the vectors 1 and
2x − 1.
(a) Show that 1 and 2x − 1 are orthogonal.
(b) Determine ‖1‖ and ‖2x − 1‖.
(c) Find the best least squares approximation to√

x by a function from the subspace S.
31. Let

S = {1/
√

2, cos x, cos 2x, . . . , cos nx,

sin x, sin 2x, . . . , sin nx}
Show that S is an orthonormal set in C[−π , π ] with
inner product defined by (2).

32. Find the best least squares approximation to f (x) =
|x| on [−π , π ] by a trigonometric polynomial of
degree less than or equal to 2.

33. Let {x1, x2, . . . , xk, xk+1, . . . , xn} be an orthonormal
basis for an inner product space V . Let S1 be the
subspace of V spanned by x1, . . . , xk, and let S2 be
the subspace spanned by xk+1, xk+2, . . . , xn. Show
that S1 ⊥ S2.

34. Let x be an element of the inner product space V in
Exercise 33, and let p1 and p2 be the projections of
x onto S1 and S2, respectively. Show that
(a) x = p1 + p2.
(b) if x ∈ S⊥

1 , then p1 = 0 and hence S⊥
1 = S2.

35. Let S be a subspace of an inner product space V .
Let {x1, . . . , xn} be an orthogonal basis for S and
let x ∈ V . Show that the best least squares ap-
proximation to x by elements of S is given by

p =
n∑

i=1

〈x, xi〉
〈xi, xi〉xi

36. A (real or complex) scalar u is said to be an nth root
of unity if un = 1.

(a) Show that if u is an nth root of unity and u 	= 1,
then

1 + u + +u2 + · · · + un−1 = 0

[Hint: 1−un = (1−u)(1+u+u2 +· · ·+un−1)]

(b) Let ωn = e
2π i
n . Use Euler’s formula (eiθ =

cos θ + i sin θ ) to show that ωn is an nth root
of unity.

(c) Show that if j and k are positive integers and if
uj = ωj−1

n and zk = ω−(k−1)
n , then uj, zk, and ujzk

are all nth roots of unity.
37. Let ωn, uj, and zk be defined as in Exercise 36. If Fn

is the n × n Fourier matrix, then its (j, s) entry is

fjs = ω(j−1)(s−1)
n = us−1

Let Gn be the matrix defined by

gsk = 1

fsk
= ω−(s−1)(k−1) = zs−1

k , 1 ≤ s ≤ n,

1 ≤ k ≤ n

Show that the the (j, k) entry of FnGn is

1 + ujzk + (ujzk)2 + · · · + (ujzk)n−1

38. Use the results from Exercises 36 and 37 to show
that Fn is nonsingular and

F−1
n = 1

n
Gn = 1

n
Fn

where Fn is the matrix whose (i, j) entry is the
complex conjugate of fij.



266 Chapter 5 Orthogonality

5.6 The Gram–Schmidt Orthogonalization Process

In this section we learn a process for constructing an orthonormal basis for an n-
dimensional inner product space V . The method involves using projections to transform
an ordinary basis {x1, x2, . . . , xn} into an orthonormal basis {u1, u2, . . . , un}.

We will construct the ui’s so that

Span(u1, . . . , uk) = Span(x1, . . . , xk)

for k = 1, . . . , n. To begin the process, let

u1 =
(

1

‖x1‖
)

x1 (1)

Span(u1) = Span(x1), since u1 is a unit vector in the direction of x1. Let p1 denote the
projection of x2 onto Span(x1) = Span(u1); that is,

p1 = 〈x2, u1〉 u1

By Theorem 5.5.7,

(x2 − p1) ⊥ u1

Note that x2 − p1 	= 0, since

x2 − p1 = − 〈x2, u1〉
‖x1‖ x1 + x2 (2)

and x1 and x2 are linearly independent. If we set

u2 = 1

‖x2 − p1‖
(x2 − p1) (3)

then u2 is a unit vector orthogonal to u1. It follows from (1), (2), and (3) that
Span(u1, u2) ⊂ Span(x1, x2). Since u1 and u2 are linearly independent, it also follows
that {u1, u2} is an orthonormal basis for Span(x1, x2), and hence

Span(x1, x2) = Span(u1, u2)

To construct u3, continue in the same manner: Let p2 be the projection of x3 onto
Span(x1, x2) = Span(u1, u2); that is,

p2 = 〈x3, u1〉 u1 + 〈x3, u2〉 u2

and set

u3 = 1

‖x3 − p2‖
(x3 − p2)

and so on (see Figure 5.6.1).
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x3 – p2

x3

p2

Span (x1, x2)

Figure 5.6.1.

Theorem 5.6.1 The Gram–Schmidt Process
Let {x1, x2, . . . , xn} be a basis for the inner product space V. Let

u1 =
(

1

‖x1‖
)

x1

and define u2, . . . , un recursively by

uk+1 = 1

‖xk+1 − pk‖
(xk+1 − pk) for k = 1, . . . , n − 1

where

pk = 〈xk+1, u1〉 u1 + 〈xk+1, u2〉 u2 + · · · + 〈xk+1, uk〉 uk

is the projection of xk+1 onto Span(u1, u2, . . . , uk). Then the set

{u1, u2, . . . , un}
is an orthonormal basis for V.

Proof We will argue inductively. Clearly, Span(u1) = Span(x1). Suppose that u1, u2, . . . , uk

have been constructed so that {u1, u2, . . . , uk} is an orthonormal set and

Span(u1, u2, . . . , uk) = Span(x1, x2, . . . , xk)

Since pk is a linear combination of u1, . . . , uk, it follows that pk ∈ Span(x1, . . . , xk)
and xk+1 − pk ∈ Span(x1, . . . , xk+1).

xk+1 − pk = xk+1 −
k∑

i=1

cixi

Since x1, . . . , xk+1 are linearly independent, it follows that xk+1 − pk is nonzero
and, by Theorem 5.5.7, it is orthogonal to each ui, 1 ≤ i ≤ k. Thus, {u1, u2, . . . , uk+1}
is an orthonormal set of vectors in Span(x1, . . . , xk+1). Since u1, . . . , uk+1 are linearly
independent, they form a basis for Span(x1, . . . , xk+1) and, consequently,

Span(u1, . . . , uk+1) = Span(x1, . . . , xk+1)

It follows by mathematical induction that {u1, u2, . . . , un} is an orthonormal basis
for V .
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EXAMPLE 1 Find an orthonormal basis for P3 if the inner product on P3 is defined by

〈p, q〉 =
3∑

i=1

p(xi)q(xi)

where x1 = −1, x2 = 0, and x3 = 1.

Solution
Starting with the basis {1, x, x2}, we can use the Gram–Schmidt process to generate an
orthonormal basis.

‖1‖2 = 〈1, 1〉 = 3

so

u1 =
(

1

‖1‖
)

1 = 1√
3

Set

p1 =
〈
x,

1√
3

〉
1√
3

=
(

−1 · 1√
3

+ 0 · 1√
3

+ 1 · 1√
3

)
1√
3

= 0

Therefore,

x − p1 = x and ‖x − p1‖2 = 〈x, x〉 = 2

Hence,

u2 = 1√
2

x

Finally,

p2 =
〈
x2,

1√
3

〉
1√
3

+
〈
x2,

1√
2

x

〉
1√
2

x = 2

3

‖x2 − p2‖2 =
〈
x2 − 2

3
, x2 − 2

3

〉
= 2

3

and hence

u3 =
√

6

2

(
x2 − 2

3

)

Orthogonal polynomials will be studied in more detail in Section 5.7.

EXAMPLE 2 Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 4
1 4 −2
1 4 2
1 −1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Find an orthonormal basis for the column space of A.
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Solution
The column vectors of A are linearly independent and hence form a basis for a three-
dimensional subspace of R

4. The Gram–Schmidt process can be used to construct an
orthonormal basis as follows: Set

r11 = ‖a1‖ = 2

q1 = 1

r11
a1 =

(
1

2
,

1

2
,

1

2
,

1

2

)T

r12 = 〈
a2, q1

〉 = qT
1 a2 = 3

p1 = r12q1 = 3q1

a2 − p1 =
(

−5

2
,

5

2
,

5

2
, −5

2

)T

r22 = ‖a2 − p1‖ = 5

q2 = 1

r22
(a2 − p1) =

(
−1

2
,

1

2
,

1

2
, −1

2

)T

r13 = 〈
a3, q1

〉 = qT
1 a3 = 2, r23 = 〈

a3, q2

〉 = qT
2 a3 = −2

p2 = r13q1 + r23q2 = (2, 0, 0, 2)T

a3 − p2 = (2, −2, 2, −2)T

r33 = ‖a3 − p2‖ = 4

q3 = 1

r33
(a3 − p2) =

(
1

2
, −1

2
,

1

2
, −1

2

)T

The vectors q1, q2, q3 form an orthonormal basis for R(A).

We can obtain a useful factorization of the matrix A if we keep track of all the
inner products and norms computed in the Gram–Schmidt process. For the matrix in
Example 2, if the rij’s are used to form a matrix

R =
⎧⎪⎪⎪⎪⎪⎩

r11 r12 r13

0 r22 r23

0 0 r33

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

2 3 2
0 5 −2
0 0 4

⎫⎪⎪⎪⎪⎪⎭
and we set

Q = (q1, q2, q3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2
1
2

1
2

1
2 − 1

2
1
2

1
2

1
2

1
2 − 1

2 − 1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then it is easily verified that QR = A. This result is proved in the following theorem.

Theorem 5.6.2 Gram–Schmidt QR Factorization
If A is an m × n matrix of rank n, then A can be factored into a product QR, where
Q is an m × n matrix with orthonormal column vectors and R is an upper triangular
n × n matrix whose diagonal entries are all positive. [Note: R must be nonsingular
since det(R) > 0.]
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Proof Let p1, . . . , pn−1 be the projection vectors defined in Theorem 5.6.1, and let
{q1, q2, . . . , qn} be the orthonormal basis of R(A) derived from the Gram–Schmidt
process. Define

r11 = ‖a1‖
rkk = ‖ak − pk−1‖ for k = 2, . . . , n

and

rik = qT
i ak for i = 1, . . . , k − 1 and k = 2, . . . , n

By the Gram–Schmidt process,

r11q1 = a1 (4)

rkkqk = ak − r1kq1 − r2kq2 − · · · − rk−1,kqk−1 for k = 2, . . . , n

System (4) may be rewritten in the form

a1 = r11q1

a2 = r12q1 + r22q2
...

an = r1nq1 + · · · + rnnqn

If we set

Q = (q1, q2, . . . , qn)

and define R to be the upper triangular matrix

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
r11 r12 · · · r1n

0 r22 · · · r2n

...
0 0 · · · rnn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then the jth column of the product QR will be

Qrj = r1jq1 + r2jq2 + · · · + rjjqj = aj

for j = 1, . . . , n. Therefore,

QR = (a1, a2, . . . , an) = A

EXAMPLE 3 Compute the Gram–Schmidt QR factorization of the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 −1
2 0 1
2 −4 2
4 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Solution

Step 1. Set

r11 = ‖a1‖ = 5

q1 = 1

r11
a1 =

(
1

5
,

2

5
,

2

5
,

4

5

)T

Step 2. Set

r12 = qT
1 a2 = −2

p1 = r12q1 = −2q1

a2 − p1 =
(

−8

5
,

4

5
, −16

5
,

8

5

)T

r22 = ‖a2 − p1‖ = 4

q2 = 1

r22
(a2 − p1) =

(
−2

5
,

1

5
, −4

5
,

2

5

)T

Step 3. Set

r13 = qT
1 a3 = 1, r23 = qT

2 a3 = −1

p2 = r13q1 + r23q2 = q1 − q2 =
(

3

5
,

1

5
,

6

5
,

2

5

)T

a3 − p2 =
(

−8

5
,

4

5
,

4

5
, −2

5

)T

r33 = ‖a3 − p2‖ = 2

q3 = 1

r33
(a3 − p2) =

(
−4

5
,

2

5
,

2

5
, −1

5

)T

At each step, we have determined a column of Q and a column of R. The
factorization is given by

A = QR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5 − 2

5 − 4
5

2
5

1
5

2
5

2
5 − 4

5
2
5

4
5

2
5 − 1

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

5 −2 1
0 4 −1
0 0 2

⎫⎪⎪⎪⎪⎪⎭

We saw in Section 5.5 that if the columns of an m×n matrix A form an orthonormal
set, then the least squares solution of Ax = b is simply x̂ = ATb. If A has rank n, but
its column vectors do not form an orthonormal set in R

m, then the QR factorization can
be used to solve the least squares problem.

Theorem 5.6.3 If A is an m × n matrix of rank n, then the least squares solution of Ax = b is given
by x̂ = R−1QTb, where Q and R are the matrices obtained from the factorization given
in Theorem 5.6.2. The solution x̂ may be obtained by using back substitution to solve
Rx = QTb.
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Proof Let x̂ be the least squares solution of Ax = b guaranteed by Theorem 5.3.2. Thus, x̂ is
the solution of the normal equations

ATAx = ATb

If A is factored into a product QR, these equations become

(QR)TQRx = (QR)Tb

or

RT (QTQ)Rx = RTQTb

Since Q has orthonormal columns, it follows that QTQ = I and hence

RTRx = RTQTb

Since RT is invertible, this equation simplifies to

Rx = QTb or x = R−1QTb

EXAMPLE 4 Find the least squares solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −2 −1
2 0 1
2 −4 2
4 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1

1
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Solution
The coefficient matrix of this system was factored in Example 3. Using that factoriza-
tion, we have

QTb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
5

2
5

2
5

4
5

− 2
5

1
5 − 4

5
2
5

− 4
5

2
5

2
5 − 1

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
1
1

−2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

−1
−1

2

⎫⎪⎪⎪⎪⎪⎭
The system Rx = QTb is easily solved by back substitution:⎧⎪⎪⎪⎪⎪⎩

5 −2 1 −1
0 4 −1 −1
0 0 2 2

⎫⎪⎪⎪⎪⎪⎭
The solution is x = (− 2

5 , 0, 1
)T

.
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The Modified Gram–Schmidt Process
In Chapter 7 we will consider computer methods for solving least squares problems.
The QR factorization method of Example 4 does not in general produce accurate results
when carried out with finite-precision arithmetic. In practice, there may be a loss of
orthogonality due to round off error in computing q1, q2, . . . , qn. We can achieve better
numerical accuracy using a modified version of the Gram–Schmidt method. In the
modified version, the vector q1 is constructed as before:

q1 = 1

‖a1‖a1

However, the remaining vectors a2, . . . , an are then modified so as to be orthogonal to
q1. This can be done by subtracting from each vector ak the projection of ak onto q1:

a(1)
k = ak − (qT

1 ak)q1 k = 2, . . . , n

At the second step, we take

q2 = 1

‖a(1)
2 ‖a(1)

2

The vector q2 is already orthogonal to q1. We then modify the remaining vectors to
make them orthogonal to q2:

a(2)
k = a(1)

k − (qT
2 a(1)

k )q2 k = 3, . . . , n

In a similar manner, q3, q4, . . . , qn are successively determined. At the last step we
need only set

qn = 1

‖a(n−1)
n ‖a(n−1)

n

to achieve an orthonormal set {q1, . . . , qn}. The following algorithm summarizes the
process:

Algorithm 5.6.1 Modified Gram–Schmidt Process

For k = 1, 2, . . . , n set

rkk = ‖ak‖
qk = 1

rkk
ak

For j = k + 1, k + 2, . . . , n, set

rkj = qT
k aj

aj = aj − rkjqk

→ End for loop
→ End for loop

If the modified Gram–Schmidt process is applied to the column vectors of an m×n
matrix A having rank n, then, as before, we can obtain a QR factorization of A. This
factorization may then be used computationally to determine the least squares solution
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to Ax = b, however, in this case one should not compute c = QTb directly. Instead, as
each column vector qk is determined, one modifies the right hand side vector obtaining
a modified vector bk and then sets ck = qT

k bk. An algorithm for solving least squares
problems using the modified Gram–Schmidt QR factorization is given in Section 7 of
Chapter 7.

SECTION 5.6 EXERCISES
1. For each of the following, use the Gram–Schmidt

process to find an orthonormal basis for R(A).

(a) A =
⎧⎪⎩−1 3

1 5

⎫⎪⎭ (b) A =
⎧⎪⎩ 2 5

1 10

⎫⎪⎭
2. Factor each of the matrices in Exercise 1 into a

product QR, where Q is an orthogonal matrix and
R is upper triangular.

3. Given the basis {(1, 2, −2)T , (4, 3, 2)T , (1, 2, 1)T} for
R

3, use the Gram–Schmidt process to obtain an
orthonormal basis.

4. Consider the vector space C[−1, 1] with inner
product defined by

〈f , g〉 =
∫ 1

−1
f (x)g(x) dx

Find an orthonormal basis for the subspace spanned
by 1, x, and x2.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1
1 1
2 1

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

12
6

18

⎫⎪⎪⎪⎪⎪⎭
(a) Use the Gram–Schmidt process to find an or-

thonormal basis for the column space of A.
(b) Factor A into a product QR, where Q has an or-

thonormal set of column vectors and R is upper
triangular.

(c) Solve the least squares problem Ax = b

6. Repeat Exercise 5 using

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1
4 2
0 2

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

0
20
10

⎫⎪⎪⎪⎪⎪⎭
7. Given x1 = 1

2 (1, 1, 1, −1)T and x2 = 1
6 (1, 1, 3, 5)T ,

verify that these vectors form an orthonormal set in
R

4. Extend this set to an orthonormal basis for R
4

by finding an orthonormal basis for the null space
of ⎧⎪⎩ 1 1 1 −1

1 1 3 5

⎫⎪⎭
[Hint: First find a basis for the null space and then
use the Gram–Schmidt process.]

8. Use the Gram–Schmidt process to find an or-
thonormal basis for the subspace of R

4 spanned
by x1 = (4, 2, 2, 1)T , x2 = (2, 0, 0, 2)T , and x3 =
(1, 1, −1, 1)T .

9. Repeat Exercise 8 using the modified Gram–
Schmidt process and compare answers.

10. Let A be an m × 2 matrix. Show that if both the
classical Gram–Schmidt process and the modified
Gram–Schmidt process are applied to the column
vectors of A, then both algorithms will produce the
exact same QR factorization, even when the com-
putations are carried out in finite-precision arith-
metic (i.e., show that both algorithms will perform
the exact same arithmetic computations).

11. Let A be an m × 3 matrix. Let QR be the QR factor-
ization obtained when the classical Gram–Schmidt
process is applied to the column vectors of A, and
let Q̃R̃ be the factorization obtained when the mod-
ified Gram–Schmidt process is used. Show that
if all computations were carried out using exact
arithmetic then we would have

Q̃ = Q and R̃ = R

and show that when the computations are done in
finite-precision arithmetic, r̃23 will not necessarily
be equal to r23 and consequently r̃33 and q̃3 will not
necessarily be the same as r33 and q3.

12. What will happen if the Gram–Schmidt process is
applied to a set of vectors {v1, v2, v3}, where v1 and
v2 are linearly independent, but v3 ∈ Span(v1, v2).
Will the process fail? If so, how? Explain.

13. Let A be an m × n matrix of rank n and let b ∈ R
m.

Show that if Q and R are the matrices derived from
applying the Gram–Schmidt process to the column
vectors of A and

p = c1q1 + c2q2 + · · · + cnqn

is the projection of b onto R(A), then
(a) c = QT b (b) p = QQT b

(c) QQT = A(ATA)−1AT
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14. Let U be an m-dimensional subspace of R
n and

let V be a k-dimensional subspace of U, where
0 < k < m.
(a) Show that any orthonormal basis

{v1, v2, . . . , vk}
for V can be expanded to form an orthonormal
basis {v1, v2, . . . , vk, vk+1, . . . , vm} for U.

(b) Show that if W = Span(vk+1, vk+2 . . . , vm),
then U = V ⊕ W.

15. (Dimension Theorem) Let U and V be subspaces
of R

n. In the case that U ∩ V = {0}, we have the
following dimension relation

dim (U + V) = dim U + dim V

(See Exercise 18 in Section 3.4 of Chapter 3.) Make
use of the result from Exercise 14 to prove the more
general theorem

dim (U + V) = dim U + dim V − dim(U ∩ V)

5.7 Orthogonal Polynomials

We have already seen how polynomials can be used for data fitting and for approxim-
ating continuous functions. Since both of these problems are least squares problems,
they can be simplified by selecting an orthogonal basis for the class of approximating
polynomials. This leads us to the concept of orthogonal polynomials.

In this section we study families of orthogonal polynomials associated with vari-
ous inner products on C[a, b]. We will see that the polynomials in each of these classes
satisfy a three-term recursion relation. This recursion relation is particularly useful in
computer applications. Certain families of orthogonal polynomials have important ap-
plications in many areas of mathematics. We will refer to these polynomials as classical
polynomials and examine them in more detail. In particular, the classical polynomials
are solutions of certain classes of second-order linear differential equations that arise
in the solution of many partial differential equations from mathematical physics.

Orthogonal Sequences
Since the proof of Theorem 5.6.1 was by induction, the Gram–Schmidt process is
valid for a denumerable set. Thus, if x1, x2, . . . is a sequence of vectors in an inner
product space V and x1, x2, . . . , xn are linearly independent for each n, then the Gram–
Schmidt process may be used to form a sequence u1, u2, . . . , where {u1, u2, . . .} is an
orthonormal set and

Span(x1, x2, . . . , xn) = Span(u1, u2, . . . , un)

for each n. In particular, from the sequence 1, x, x2, . . . it is possible to construct an
orthonormal sequence p0(x), p1(x), . . . .

Let P be the vector space of all polynomials and define the inner product 〈, 〉 on
P by

〈p, q〉 =
∫ b

a
p(x)q(x)w(x) dx (1)

where w(x) is a positive continuous function. The interval can be taken as either open
or closed and may be finite or infinite. If, however,∫ b

a
p(x)w(x) dx

is improper, we require that it converge for every p ∈ P.
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Definition Let p0(x), p1(x), . . . be a sequence of polynomials with deg pi(x) = i for each i. If〈
pi(x), pj(x)

〉 = 0 whenever i 	= j, then {pn(x)} is said to be a sequence of orthogonal
polynomials. If

〈
pi, pj

〉 = δij, then {pn(x)} is said to be a sequence of orthonormal
polynomials.

Theorem 5.7.1 If p0, p1, . . . is a sequence of orthogonal polynomials, then

I. p0, . . . , pn−1 form a basis for Pn.
II. pn ∈ P⊥

n (i.e., pn is orthogonal to every polynomial of degree less than n).

Proof It follows from Theorem 5.5.1 that p0, p1, . . . , pn−1 are linearly independent in Pn.
Since dim Pn = n, these n vectors must form a basis for Pn. Let p(x) be any polynomial
of degree less than n. Then

p(x) =
n−1∑
i=0

cipi(x)

and hence

〈pn, p〉 =
〈

pn,
n−1∑
i=0

cipi

〉
=

n−1∑
i=0

ci〈pn, pi〉 = 0

Therefore, pn ∈ P⊥
n .

If {p0, p1, . . . , pn−1} is an orthogonal set in Pn and

ui =
(

1

‖pi‖
)

pi for i = 0, . . . , n − 1

then {u0, . . . , un−1} is an orthonormal basis for Pn. Hence, if p ∈ Pn, then

p =
n−1∑
i=0

〈p, ui〉 ui

=
n−1∑
i=0

〈
p,

(
1

‖pi‖
)

pi

〉 (
1

‖pi‖
)

pi

=
n−1∑
i=0

〈p, pi〉
〈pi, pi〉pi

Similarly, if f ∈ C[a, b], then the best least squares approximation to f by the elements
of Pn is given by

p =
n−1∑
i=0

〈f , pi〉
〈pi, pi〉pi

where p0, p1, . . . , pn−1 are orthogonal polynomials.
Another nice feature of sequences of orthogonal polynomials is that they satisfy a

three-term recursion relation.
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Theorem 5.7.2 Let p0, p1, . . . be a sequence of orthogonal polynomials. Let ai denote the lead
coefficient of pi for each i, and define p−1(x) to be the zero polynomial. Then

αn+1pn+1(x) = (x − βn+1)pn(x) − αnγnpn−1(x) (n ≥ 0)

where α0 = γ0 = 1 and

αn = an−1

an
, βn = 〈pn−1, xpn−1〉

〈pn−1, pn−1〉 , γn = 〈pn, pn〉
〈pn−1, pn−1〉 (n ≥ 1)

Proof Since p0, p1, . . . , pn+1 form a basis for Pn+2, we can write

xpn(x) =
n+1∑
k=0

cnkpk(x) (2)

where

cnk = 〈xpn, pk〉
〈pk, pk〉 (3)

For any inner product defined by (1),

〈xf , g〉 = 〈f , xg〉
In particular,

〈xpn, pk〉 = 〈pn, xpk〉
It follows from Theorem 5.7.1 that if k < n − 1, then

cnk = 〈xpn, pk〉
〈pk, pk〉 = 〈pn, xpk〉

〈pk, pk〉 = 0

Therefore, (2) simplifies to

xpn(x) = cn,n−1pn−1(x) + cn,npn(x) + cn,n+1pn+1(x)

This equation can be rewritten in the form

cn,n+1pn+1(x) = (x − cn,n)pn(x) − cn,n−1pn−1(x) (4)

Comparing the lead coefficients of the polynomials on each side of (4), we see that

cn,n+1an+1 = an

or

cn,n+1 = an

an+1
= αn+1 (5)
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It follows from (4) that

cn,n+1〈pn, pn+1〉 = 〈
pn, (x − cn,n)pn

〉− cn,n−1〈pn, pn−1〉
0 = 〈pn, xpn〉 − cnn〈pn, pn〉

Thus,

cnn = 〈pn, xpn〉
〈pn, pn〉 = βn+1

It follows from (3) that

〈pn−1, pn−1〉 cn,n−1 = 〈xpn, pn−1〉
= 〈pn, xpn−1〉
= 〈pn, pn〉 cn−1,n

and hence, by (5), we have

cn,n−1 = 〈pn, pn〉
〈pn−1, pn−1〉αn = γnαn

In generating a sequence of orthogonal polynomials by the recursion relation in
Theorem 5.7.2, we are free to choose any nonzero lead coefficient an+1 that we want at
each step. This is reasonable, since any nonzero multiple of a particular pn+1 will also
be orthogonal to p0, . . . , pn. If we were to choose our ai’s to be 1, for example, then the
recursion relation would simplify to

pn+1(x) = (x − βn+1)pn(x) − γnpn−1(x)

Classical Orthogonal Polynomials
Let us now look at some examples. Because of their importance we will consider the
classical polynomials beginning with the simplest, the Legendre polynomials.

Legendre Polynomials

The Legendre polynomials are orthogonal with respect to the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

Let Pn(x) denote the Legendre polynomial of degree n. If we choose the lead coef-
ficients so that Pn(1) = 1 for each n, then the recursion formula for the Legendre
polynomials is

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x)

By the use of this formula, the sequence of Legendre polynomials is easily generated.
The first five polynomials of the sequence are

P0(x) = 1
P1(x) = x
P2(x) = 1

2 (3x2 − 1)
P3(x) = 1

2 (5x3 − 3x)
P4(x) = 1

8 (35x4 − 30x2 + 3)
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Chebyshev Polynomials

The Chebyshev polynomials are orthogonal with respect to the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x)(1 − x2)−1/2 dx

It is customary to normalize the lead coefficients so that a0 = 1 and ak = 2k−1 for
k = 1, 2, . . . . The Chebyshev polynomials are denoted by Tn(x) and have the interesting
property that

Tn(cos θ) = cos nθ

This property, together with the trigonometric identity

cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ

can be used to derive the recursion relations

T1(x) = xT0(x)

Tn+1(x) = 2xTn(x) − Tn−1(x) for n ≥ 1

Jacobi Polynomials

The Legendre and Chebyshev polynomials are both special cases of the Jacobi poly-
nomials. The Jacobi polynomials P(λ,μ)

n are orthogonal with respect to the inner
product,

〈p, q〉 =
∫ 1

−1
p(x)q(x)(1 − x)λ(1 + x)μ dx

where λ, μ > −1.

Hermite Polynomials

The Hermite polynomials are defined on the interval (−∞, ∞). They are orthogonal
with respect to the inner product

〈p, q〉 =
∫ ∞

−∞
p(x)q(x)e−x2

dx

The recursion relation for Hermite polynomials is given by
Hn+1(x) = 2xHn(x) − 2nHn−1(x)

Laguerre Polynomials

The Laguerre polynomials are defined on the interval (0, ∞) and are orthogonal with
respect to the inner product,

〈p, q〉 =
∫ ∞

0
p(x)q(x)xλe−x dx

where λ > −1. The recursion relation for the Laguerre polynomials is given by

(n + 1)L(λ)
n+1(x) = (2n + λ + 1 − x)L(λ)

n (x) − (n + λ)L(λ)
n−1(x)

The Chebyshev, Hermite, and Laguerre polynomials are compared in Table 1.
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Table 1 Chebyshev, Hermite, and Laguerre Polynomials

Chebyshev Hermite Laguerre (λ = 0)

Tn+1 = 2xTn − Tn−1, n ≥ 1 Hn+1 = 2xHn − 2nHn−1 (n + 1)L(0)
n+1 = (2n + 1 − x)L(0)

n − nL(0)
n−1

T0 = 1 H0 = 1 L(0)
0 = 1

T1 = x H1 = 2x L(0)
1 = 1 − x

T2 = 2x2 − 1 H2 = 4x2 − 2 L(0)
2 = 1

2 x2 − x + 2

T3 = 4x3 − 3x H3 = 8x3 − 12x L(0)
3 = 1

6 x3 + 9x2 − 18x + 6

APPLICATION 1 Numerical Integration

One important application of orthogonal polynomials occurs in numerical integration.
To approximate ∫ b

a
f (x)w(x) dx (6)

we first approximate f (x) by an interpolating polynomial. Using Lagrange’s interpola-
tion formula,

P(x) =
n∑

i=1

f (xi)Li(x)

where the Lagrange functions Li are defined by

Li(x) =

n∏
j=1
j	=i

(x − xj)

n∏
j=1
j	=i

(xi − xj)

we can determine a polynomial P(x) that agrees with f (x) at n points x1, . . . , xn in [a, b].
The integral (6) is then approximated by∫ b

a
P(x)w(x) dx =

n∑
i=1

Aif (xi) (7)

where

Ai =
∫ b

a
Li(x)w(x) dx i = 1, . . . , n

It can be shown that (7) will give the exact value of the integral whenever f (x) is
a polynomial of degree less than n. If the points x1, . . . , xn are chosen properly, for-
mula (7) will be exact for higher degree polynomials. Indeed, it can be shown that
if p0, p1, p2, . . . is a sequence of orthogonal polynomials with respect to the inner
product (1) and x1, . . . , xn are the zeros of pn(x), then formula (7) will be exact for all
polynomials of degree less than 2n. The following theorem guarantees that the roots of
pn are all real and lie in the open interval (a, b).
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Theorem 5.7.3 If p0, p1, p2, . . . is a sequence of orthogonal polynomials with respect to the inner
product (1), then the zeros of pn(x) are all real and distinct and lie in the interval
(a, b).

Proof Let x1, . . . , xm be the zeros of pn(x) that lie in (a, b) and for which pn(x) changes sign.
Thus pn(x) must have a factor of (x − xi)ki , where ki is odd, for i = 1, . . . , m. We may
write

pn(x) = (x − x1)k1 (x − x2)k2 · · · (x − xm)kmq(x)

where q(x) does not change sign on (a, b) and q(xi) 	= 0 for i = 1, . . . , m. Clearly,
m ≤ n. We will show that m = n. Let

r(x) = (x − x1)(x − x2) · · · (x − xm)

The product

pn(x)r(x) = (x − x1)k1+1(x − x2)k2+1 · · · (x − xm)km+1q(x)

will involve only even powers of (x − xi) for each i and hence will not change sign on
(a, b). Therefore,

〈pn, r〉 =
∫ b

a
pn(x)r(x)w(x) dx 	= 0

Since pn is orthogonal to all polynomials of degree less than n, it follows that
deg(r(x)) = m ≥ n.

Numerical integration formulas of the form (7), where the xi’s are roots of ortho-
gonal polynomials, are called Gaussian quadrature formulas. The proof of exactness
for polynomials of degree less than 2n can be found in most undergraduate numerical
analysis textbooks.

Actually, it is not necessary to perform n integrations to calculate the quadrature
coefficients A1,. . . , An. They can be determined by solving an n × n linear system.
Exercise 16 illustrates how this is done when the roots of the Legendre polynomial Pn

are used in a quadrature rule for approximating
∫ 1
−1 f (x) dx.

SECTION 5.7 EXERCISES
1. Use the recursion formulas to calculate (a) T4, T5

and (b) H4, H5.

2. Let p0(x), p1(x), and p2(x) be orthogonal with re-
spect to the inner product

〈p(x), q(x)〉 =
∫ 1

−1

p(x)q(x)

1 + x2
dx

Use Theorem 5.7.2 to calculate p1(x) and p2(x) if
all polynomials have lead coefficient 1.

3. Show that the Chebyshev polynomials have the
following properties:
(a) 2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), for m > n

(b) Tm(Tn(x)) = Tmn(x)
4. Find the best quadratic least squares approximation

to ex on [−1, 1] with respect to the inner product

〈f , g〉 =
∫ 1

−1
f (x)g(x) dx
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5. Let p0, p1, . . . be a sequence of orthogonal polyno-
mials and let an denote the lead coefficient of pn.
Prove that

‖pn‖2 = an 〈xn, pn〉

6. Let Tn(x) denote the Chebyshev polynomial of
degree n and define

Un−1(x) = 1

n
T ′

n(x)

for n = 1, 2, . . . .
(a) Compute U0(x), U1(x), and U2(x).

(b) Show that if x = cos θ , then

Un−1(x) = sin nθ

sin θ

7. Let Un−1(x) be defined as in Exercise 6 for n ≥ 1
and define U−1(x) = 0. Show that
(a) Tn(x) = Un(x) − xUn−1(x), for n ≥ 0

(b) Un(x) = 2xUn−1(x) − Un−2(x), for n ≥ 1
8. Show that the Ui’s defined in Exercise 6 are ortho-

gonal with respect to the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x)(1 − x2)1/2 dx

The Ui’s are called Chebyshev polynomials of the
second kind.

9. Verify that the Legendre polynomial Pn(x) satisfies
the second-order equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

for n = 0, 1, 2.

10. Prove each of the following.
(a) H′

n(x) = 2nHn−1(x), n = 0, 1, . . .

(b) H′′
n (x)−2xH′

n(x)+2nHn(x) = 0, n = 0, 1, . . .
11. Given a function f (x) that passes through the points

(1, 2), (2, −1), and (3, 4), use the Lagrange in-
terpolating formula to construct a second-degree
polynomial that interpolates f at the given points.

12. Show that if f (x) is a polynomial of degree less than
n, then f (x) must equal the interpolating polynomial
P(x) in (7) and hence the sum in (7) gives the exact
value for

∫ b
a f (x)w(x) dx.

13. Use the zeros of the Legendre polynomial P2(x) to
obtain a two-point quadrature formula∫ 1

−1
f (x) dx ≈ A1f (x1) + A2f (x2)

14. (a) For what degree polynomials will the quadrat-
ure formula in Exercise 13 be exact?

(b) Use the formula from Exercise 13 to approx-
imate∫ 1

−1
(x3+3x2+1) dx and

∫ 1

−1

1

1 + x2
dx

How do the approximations compare with the
actual values?

15. Let x1, x2, . . . , xn be distinct points in the interval
[−1, 1] and let

Ai =
∫ 1

−1
Li(x)dx, i = 1, . . . , n

where the Li’s are the Lagrange functions for the
points x1, x2, . . . , xn.
(a) Explain why the quadrature formula∫ 1

−1
f (x)dx = A1 f (x1) + A2 f (x2) + · · · + An f (xn)

will yield the exact value of the integral
whenever f (x) is a polynomial of degree less
than n.

(b) Apply the quadrature formula to a polynomial
of degree 0 and show that

A1 + A2 + · · · + An = 2

16. Let x1, x2, . . . , xn be the roots of the Legendre poly-
nomial Pn. If the Ai’s are defined as in Exercise 15,
then the quadrature formula∫ 1

−1
f (x)dx = A1 f (x1) + A2 f (x2) + · · · + An f (xn)

will be exact for all polynomials of degree less than
2n.
(a) Show that if 1 ≤ j < 2n, then

Pj(x1)A1+Pj(x2)A2 +· · ·+Pj(xn)An = 〈1, Pj

〉=0

(b) Use the results from part (a) and from Ex-
ercise 15 to set up a nonhomogeneous n × n
linear system for determining the coefficients
A1, A2, . . . , An.

17. Let Q0(x), Q1(x), . . . be an orthonormal sequence of
polynomials, that is, it is an orthogonal sequence of
polynomials and ‖Qk‖ = 1 for each k.
(a) How can the recursion relation in The-

orem 5.7.2 be simplified in the case of an
orthonormal sequence of polynomials?
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(b) Let λ be a root of Qn. Show that λ must satisfy the matrix equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 α1

α1 β2 α2

. . .
. . .

. . .
αn−2 βn−1 αn−1

αn−1 βn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0(λ)
Q1(λ)

...
Qn−2(λ)

Qn−1(λ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0(λ)
Q1(λ)

...
Qn−2(λ)

Qn−1(λ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the αi’s and βj’s are the coefficients from the recursion equations.

Chapter Five Exercises

MATLAB EXERCISES

1. Set

x = [ 0 : 4, 4, −4, 1, 1]′ and y = ones(9, 1)

(a) Use the MATLAB function norm to compute
the values of ‖x‖, ‖y‖, ‖x + y‖ and to verify
that the triangle inequality holds. Use MATLAB
also to verify that the parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2)

is satisfied.
(b) If

t = xT y
‖x‖‖y‖

then why do we know that |t| must be less
than or equal to 1? Use MATLAB to compute
the value of t and use the MATLAB function
acos to compute the angle between x and y.
Convert the angle to degrees by multiplying by
180/π . (Note that the number π is given by pi
in MATLAB.)

(c) Use MATLAB to compute the vector projection
p of x onto y. Set z = x − p and verify that
z is orthogonal to p by computing the scalar
product of the two vectors. Compute ‖x‖2 and
‖z‖2 +‖p‖2 and verify that the Pythagorean law
is satisfied.

2. (Least Squares Fit to a Data Set by a Linear Func-
tion) The following table of x and y values was given
in Section 5.3 of this chapter (see Figure 5.3.3).

x −1.0 0.0 2.1 2.3 2.4 5.3 6.0 6.5 8.0
y −1.02 −0.52 0.55 0.70 0.70 2.13 2.52 2.82 3.54

The nine data points are nearly linear and hence
the data can be approximated by a linear function

z = c1x + c2. Enter the x and y coordinates of the
data points as column vectors x and y, respectively.
Set V = [ x,ones(size(x))] and use the MAT-
LAB “\” operation to compute the coefficients c1

and c2 as the least squares solution to the 9 × 2 lin-
ear system Vc = y. To see the results graphically,
set

w = −1 : 0.1 : 8
and

z = c(1) ∗ w + c(2) ∗ ones(size(w))

and plot the original data points and the least squares
linear fit, using the MATLAB command

plot(x, y, ‘x’, w, z)

3. (Construction of Temperature Profiles by Least
Squares Polynomials) Among the important inputs
in weather forecasting models are data sets consist-
ing of temperature values at various parts of the
atmosphere. These values are either measured dir-
ectly using weather balloons or inferred from remote
soundings taken by weather satellites. A typical set
of RAOB (weather balloon) data is given next. The
temperature T in kelvins may be considered as a
function of p, the atmospheric pressure measured in
decibars. Pressures in the range from 1 to 3 decibars
correspond to the top of the atmosphere, and those
in the range from 9 to 10 decibars correspond to the
lower part of the atmosphere.

p 1 2 3 4 5 6 7 8 9 10
T 222 227 223 233 244 253 260 266 270 266

(a) Enter the pressure values as a column vector p
by setting p = [1 : 10]′, and enter the tem-
perature values as a column vector T. To find
the best least squares fit to the data by a linear
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function c1x + c2, set up an overdetermined sys-
tem Vc = T. The coefficient matrix V can be
generated in MATLAB by setting

V = [ p,ones(10, 1)]

or, alternatively, by setting

A = vander(p); V = A(:, 9 : 10)

Note For any vector x = (x1, x2, . . . , xn+1)T ,
the MATLAB command vander(x) generates
a full Vandermonde matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn
1 xn−1

1 · · · x1 1

xn
2 xn−1

2 · · · x2 1
...

xn
n+1 xn−1

n+1 · · · xn+1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
For a linear fit, only the last two columns of
the full Vandermonde matrix are used. More
information on the vander function can be
obtained by typing help vander. Once V
has been constructed, the least squares solu-
tion c of the system can be calculated using the
MATLAB “\” operation.

(b) To see how well the linear function fits the data,
define a range of pressure values by setting

q = 1 : 0.1 : 10;

The corresponding function values can be de-
termined by setting

z = polyval(c, q);

We can plot the function and the data points with
the command

plot(q, z, p, T, ‘x’)

(c) Let us now try to obtain a better fit by us-
ing a cubic polynomial approximation. Again
we can calculate the coefficients of the cubic
polynomial

c1x3 + c2x2 + c3x + c4

that gives the best least squares fit to the data
by finding the least squares solution of an over-
determined system Vc = T. The coefficient
matrix V is determined by taking the last four
columns of the matrix A = vander(p). To see
the results graphically, again set

z = polyval(c, q)

and plot the cubic function and data points, us-
ing the same plot command as before. Where do
you get the better fit, at the top or bottom of the
atmosphere?

(d) To obtain a good fit at both the top and bot-
tom of the atmosphere, try using a sixth-degree
polynomial. Determine the coefficients as be-
fore using the last seven columns of A. Set z =
polyval(c, q) and plot the results.

4. (Least Squares Circles) The parametric equations for
a circle with center (3, 1) and radius 2 are

x = 3 + 2 cos t y = 1 + 2 sin t

Set t = 0 : .5 : 6 and use MATLAB to generate
vectors of x and y coordinates for the corresponding
points on the circle. Next, add some noise to your
points by setting

x = x+0.1 ∗ rand(1, 13)

and

y = y+0.1 ∗ rand(1, 13)

Use MATLAB to determine the center c and radius
r of the circle that gives the best least squares fit to
the points. Set

t1 = 0 : 0.1 : 6.3

x1 = c(1)+r ∗cos(t1)

y1 = c(2)+r ∗sin(t1)

and use the command

plot(x1,y1,x,y,‘x’)

to plot the circle and the data points.
5. (Fundamental Subspaces: Orthonormal Bases) The

vector spaces N(A), R(A), N(AT ), and R(AT ) are the
four fundamental subspaces associated with a matrix
A. We can use MATLAB to construct orthonor-
mal bases for each of the fundamental subspaces
associated with a given matrix. We can then con-
struct projection matrices corresponding to each
subspace.
(a) Set

A = rand(5, 2) ∗ rand(2, 5)

What would you expect the rank and nullity
of A to be? Explain. Use MATLAB to check
your answer by computing rank(A) and Z =
null(A). The columns of Z form an orthonor-
mal basis for N(A).

(b) Next, set

Q = orth(A), W = null(A′),
S = [Q W]

The matrix S should be orthogonal. Why? Ex-
plain. Compute S ∗ S′ and compare your result
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to eye(5). In theory, AT W and WTA should both
consist entirely of zeros. Why? Explain. Use
MATLAB to compute AT W and WT A.

(c) Prove that if Q and W had been computed in
exact arithmetic, then we would have

I − WWT = QQT and QQTA = A

[Hint: Write SST in terms of Q and W.] Use
MATLAB to verify these identities.

(d) Prove that if Q had been calculated in exact
arithmetic, then we would have QQT b = b for
all b ∈ R(A). Use MATLAB to verify this prop-
erty by setting b = A ∗ rand(5, 1) and then
computing Q ∗ Q′ ∗ b and comparing it with b.

(e) Since the column vectors of Q form an orthonor-
mal basis for R(A), it follows that QQT is the
projection matrix corresponding to R(A). Thus,
for any c ∈ R

5, the vector q = QQT c is the

projection of c onto R(A). Set c = rand(5, 1)
and compute the projection vector q. The vector
r = c − q should be in N(AT ). Why? Explain.
Use MATLAB to compute A′ ∗ r.

(f) The matrix WWT is the projection matrix cor-
responding to N(AT ). Use MATLAB to compute
the projection w = WWT c of c onto N(AT ) and
compare the result to r.

(g) Set Y = orth(A′) and use it to compute the
projection matrix U corresponding to R(AT ). Let
b = rand(5, 1) and compute the projection
vector y = U ∗ b of b onto R(AT ). Compute
also U ∗ y and compare it with y. The vector
s = b − y should be in N(A). Why? Explain.
Use MATLAB to compute A ∗ s.

(h) Use the matrix Z = null(A) to compute
the projection matrix V corresponding to N(A).
Compute V ∗ b and compare it with s.

CHAPTER TEST A True or False

For each statement that follows, answer true if the state-
ment is always true and false otherwise. In the case of
a true statement, explain or prove your answer. In the
case of a false statement, give an example to show that
the statement is not always true.

1. If x and y are nonzero vectors in R
n, then the vec-

tor projection of x onto y is equal to the vector
projection of y onto x.

2. If x and y are unit vectors in R
n and |xT y| = 1, then

x and y are linearly independent.

3. If U, V , and W are subspaces of R
3 and if U ⊥ V

and V ⊥ W, then U ⊥ W.

4. It is possible to find a nonzero vector y in the column
space of A such that AT y = 0.

5. If A is an m × n matrix, then AAT and ATA have the
same rank.

6. If an m × n matrix A has linearly dependent columns
and b is a vector in R

m, then b does not have a unique
projection onto the column space of A.

7. If N(A) = {0}, then the system Ax = b will have a
unique least squares solution.

8. If Q1 and Q2 are orthogonal matrices, then Q1Q2 also
is an orthogonal matrix.

9. If {u1, u2, . . . , uk} is an orthonormal set of vectors in
R

n and

U = (u1, u2, . . . , uk)

then UT U = Ik (the k × k identity matrix).
10. If {u1, u2, . . . , uk} is an orthonormal set of vectors in

R
n and

U = (u1, u2, . . . , uk)

then UUT = In (the n × n identity matrix).

CHAPTER TEST B

1. Let

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
1
2
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2

1
2
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Find the vector projection p of x onto y.

(b) Verify that x − p is orthogonal to p.

(c) Verify that the Pythagorean Law holds for x, p,
and x − p.

2. Let v1 and v2 be vectors in an inner product space V .
(a) Is it possible for | 〈v1, v2〉 | to be greater than

‖v1‖ ‖v2‖? Explain.

(b) If

| 〈v1, v2〉 | = ‖v1‖ ‖v2‖
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what can you conclude about the vectors v1 and
v2? Explain.

3. Let v1 and v2 be vectors in an inner product space V .
Show that

‖v1 + v2‖2 ≤ (‖v1‖ + ‖v2‖)2

4. Let A be a 7 × 5 matrix with rank equal to 4 and
let b be a vector in R

8. The four fundamental sub-
spaces associated with A are R(A), N(AT ), R(AT ), and
N(A).
(a) What is the dimension of N(AT ), and which of

the other fundamental subspaces is the ortho-
gonal complement of N(AT )?

(b) If x is a vector in R(A) and AT x = 0, then
what can you conclude about the value of ‖x‖?
Explain.

(c) What is the dimension of N(AT A)? How many
solutions will the least squares system Ax = b
have? Explain.

5. Let x and y be vectors in R
n and let Q be an n × n

orthogonal matrix. Show that if

z = Qx and w = Qy

then the angle between z and w is equal to the angle
between x and y.

6. Let S be the two-dimensional subspace of R
3

spanned by

x1 =
⎧⎪⎪⎪⎪⎪⎩

1
0
2

⎫⎪⎪⎪⎪⎪⎭ and x2 =
⎧⎪⎪⎪⎪⎪⎩

0
1

−2

⎫⎪⎪⎪⎪⎪⎭
(a) Find a basis for S⊥.

(b) Give a geometric description of S and S⊥

(c) Determine the projection matrix P that projects
vectors in R

3 onto S⊥.
7. Given the table of data points

x −1 1 2
y 1 3 3

find the best least squares fit by a linear function
f (x) = c1 + c2x.

8. Let {u1, u2, u3} be an orthonormal basis for a three-
dimensional subspace S of an inner product space V ,
and let

x = 2u1 −2u2 +u3 and y = 3u1 +u2 −4u3

(a) Determine the value of 〈x, y〉.
(b) Determine the value of ‖x||.

9. Let A be a 7 × 5 matrix of rank 4. Let P and Q be the
projection matrices that project vectors in R

7 onto
R(A) and N(AT ), respectively.
(a) Show that PQ = O.
(b) Show that P + Q = I.

10. Given

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −3 −5
1 1 −2
1 −3 1
1 1 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−6

1
1
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
If the Gram-Schmidt process is applied to determine
an orthonormal basis for R(A), and a QR factoriza-
tion of A then, after the first two orthonormal vectors
q1 and q2 are computed, we have

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2

1
2

1
2

1
2 − 1

2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −2

0 4

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Finish the process. Determine q3 and fill in the

third columns of Q and R.
(b) Use the QR factorization to find the least

squares solution of Ax = b
11. The functions cos x and sin x are both unit vectors in

C[−π , π ] with inner product defined by

〈f , g〉 = 1

π

∫ π

−π

f (x)g(x)dx

(a) Show that cos x ⊥ sin x

(b) Determine the value of || cos x + sin x||2.
12. Consider the vector space C[−1, 1] with inner

product defined by

〈f , g〉 =
∫ 1

−1
f (x)g(x)dx

(a) Show that

u1(x) = 1√
2

and u2(x) =
√

6

2
x

form an orthonormal set of vectors.
(b) Use the result from part (a) to find the best least

squares approximation to h(x) = x1/3 + x2/3 by
a linear function.
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Eigenvalues
In Section 6.1 we will be concerned with the equation Ax = λx. This equation occurs
in many applications of linear algebra. If the equation has a nonzero solution x, then λ

is said to be an eigenvalue of A and x is said to be an eigenvector belonging to λ.
Eigenvalues are a common part of our life whether we realize it or not. Wherever

there are vibrations, there are eigenvalues, the natural frequencies of the vibrations. If
you have ever tuned a guitar, you have solved an eigenvalue problem. When engineers
design structures, they are concerned with the frequencies of vibration of the structure.
This concern is particularly important in earthquake-prone regions such as California.
The eigenvalues of a boundary value problem can be used to determine the energy
states of an atom or critical loads that cause buckling in a beam. This latter application
is presented in Section 6.1.

In Section 6.2, we will learn more about how to use eigenvalues and eigenvectors
to solve systems of linear differential equations. We will consider a number of applica-
tions, including mixture problems, the harmonic motion of a system of springs, and the
vibrations of a building. The motion of a building can be modeled by a second-order
system of differential equations of the form

MY′′(t) = KY(t)

where Y(t) is a vector whose entries are all functions of t and Y′′(t) is the vector of
functions formed by taking the second derivatives of each of the entries of Y(t). The
solution of the equation is determined by the eigenvalues and eigenvectors of the matrix
A = M−1K.

In general, we can view eigenvalues as natural frequencies associated with linear
operators. If A is an n×n matrix, we can think of A as representing a linear operator on
R

n. Eigenvalues and eigenvectors provide the key to understanding how the operator
works. For example, if λ > 0, the effect of the operator on any eigenvector belonging
to λ is simply a stretching or shrinking by a constant factor. Indeed, the effect of the
operator is easily determined on any linear combination of eigenvectors. In particular,
if it is possible to find a basis of eigenvectors for R

n, the operator can be represented

287
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by a diagonal matrix D with respect to that basis and the matrix A can be factored into
a product XDX−1. In Section 6.3, we see how this is done and look at a number of
applications.

In Section 6.4, we consider matrices with complex entries. In this setting, we will
be concerned with matrices whose eigenvectors can be used to form an orthonormal
basis for C

n (the vector space of all n-tuples of complex numbers). In Section 6.5, we
introduce the singular value decomposition of a matrix and show four applications.
Another important application of this factorization will be presented in Chapter 7.

Section 6.6 deals with the application of eigenvalues to quadratic equations in
several variables and also with applications involving maxima and minima of functions
of several variables. In Section 6.7, we consider symmetric positive definite matrices.
The eigenvalues of such matrices are real and positive. These matrices occur in a wide
variety of applications. Finally, in Section 6.8 we study matrices with nonnegative
entries and some applications to economics.

6.1 Eigenvalues and Eigenvectors

Many application problems involve applying a linear transformation repeatedly to a
given vector. The key to solving these problems is to choose a coordinate system
or basis that is in some sense natural for the operator and for which it will be sim-
pler to do calculations involving the operator. With respect to these new basis vectors
(eigenvectors) we associate scaling factors (eigenvalues) that represent the natural
frequencies of the operator. We illustrate with a simple example.

EXAMPLE 1 Let us recall Application 1 from Section 4 of Chapter 1. In a certain town, 30 per-
cent of the married women get divorced each year and 20 percent of the single women
get married each year. There are 8000 married women and 2000 single women, and the
total population remains constant. Let us investigate the long-range prospects if these
percentages of marriages and divorces continue indefinitely into the future.

To find the number of married and single women after one year, we multiply the
vector w0 = (8000, 2000)T by

A =
⎧⎪⎩ 0.7 0.2

0.3 0.8

⎫⎪⎭
The number of married and single women after one year is given by

w1 = Aw0 =
⎧⎪⎩ 0.7 0.2

0.3 0.8

⎫⎪⎭⎧⎪⎩ 8000
2000

⎫⎪⎭ =
⎧⎪⎩ 6000

4000

⎫⎪⎭
To determine the number of married and single women after two years, we compute

w2 = Aw1 = A2w0

and in general for n years we must compute wn = Anw0.
Let us compute w10, w20, w30 in this way and round the entries of each to the

nearest integer.

w10 =
⎧⎪⎩ 4004

5996

⎫⎪⎭ , w20 =
⎧⎪⎩ 4000

6000

⎫⎪⎭ , w30 =
⎧⎪⎩ 4000

6000

⎫⎪⎭
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After a certain point, we seem to always get the same answer. In fact, w12 =
(4000, 6000)T and since

Aw12 =
⎧⎪⎩ 0.7 0.2

0.3 0.8

⎫⎪⎭⎧⎪⎩ 4000
6000

⎫⎪⎭ =
⎧⎪⎩ 4000

6000

⎫⎪⎭
it follows that all the succeeding vectors in the sequence remain unchanged. The vector
(4000, 6000)T is said to be a steady-state vector for the process.

Suppose that initially we had different proportions of married and single women.
If, for example, we had started with 10,000 married women and 0 single women, then
w0 = (10,000, 0)T and we can compute wn as before by multiplying w0 by An. In this
case, it turns out that w14 = (4000, 6000)T , and hence we still end up with the same
steady-state vector.

Why does this process converge, and why do we seem to get the same steady-
state vector even when we change the initial vector? These questions are not difficult
to answer if we choose a basis for R

2 consisting of vectors for which the effect of
the linear operator A is easily determined. In particular, if we choose a multiple of the
steady-state vector, say, x1 = (2, 3)T , as our first basis vector, then

Ax1 =
⎧⎪⎩ 0.7 0.2

0.3 0.8

⎫⎪⎭⎧⎪⎩ 2
3

⎫⎪⎭ =
⎧⎪⎩ 2

3

⎫⎪⎭ = x1

Thus, x1 is also a steady-state vector. It is a natural basis vector to use since the effect
of A on x1 could not be simpler. Although it would be nice to use another steady-
state vector as the second basis vector, this is not possible, because all the steady-state
vectors turn out to be multiples of x1. However, if we choose x2 = (−1, 1)T , then the
effect of A on x2 is also very simple:

Ax2 =
⎧⎪⎪⎪⎪⎪⎩ 0.7 0.2

0.3 0.8

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩ −1

1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩ − 1

2
1
2

⎫⎪⎪⎪⎪⎪⎭ = 1
2 x2

Let us now analyze the process using x1 and x2 as our basis vectors. If we express the
initial vector w0 = (8000, 2000)T as a linear combination of x1 and x2, then

w0 = 2000
⎧⎪⎩ 2

3

⎫⎪⎭ − 4000
⎧⎪⎩ −1

1

⎫⎪⎭ = 2000x1 − 4000x2

and it follows that

w1 = Aw0 = 2000Ax1 − 4000Ax2 = 2000x1 − 4000

(
1

2

)
x2

w2 = Aw1 = 2000x1 − 4000

(
1

2

)2

x2

In general,

wn = Anw0 = 2000x1 − 4000

(
1

2

)n

x2

The first component of this sum is the steady-state vector and the second component
converges to the zero vector.
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Will we always end up with the same steady-state vector for any choice of w0?
Suppose that initially there are p married women. Since there are 10,000 women
altogether, the number of single women must be 10,000 − p. Our initial vector is then

w0 =
⎧⎪⎩ p

10,000 − p

⎫⎪⎭
If we express w0 as a linear combination c1x1 + c2x2, then, as before,

wn = Anw0 = c1x1 +
(

1

2

)n

c2x2

The steady-state vector will be c1x1. To determine c1, we write the equation

c1x1 + c2x2 = w0

as a linear system:

2c1 − c2 = p

3c1 + c2 = 10,000 − p

Adding the two equations, we see that c1 = 2000. Thus, for any integer p in the range
0 ≤ p ≤ 10,000, the steady-state vector turns out to be

2000x1 =
⎧⎪⎩ 4000

6000

⎫⎪⎭
The vectors x1 and x2 were natural vectors to use in analyzing the process in

Example 1, since the effect of the matrix A on each of these vectors was so simple:

Ax1 = x1 = 1x1 and Ax2 = 1
2 x2

For each of the two vectors, the effect of A was just to multiply the vector by a scalar.
The two scalars 1 and 1

2 can be thought of as the natural frequencies of the linear
transformation.

In general, if a linear transformation is represented by an n × n matrix A and
we can find a nonzero vector x so that Ax = λx, for some scalar λ, then, for this
transformation, x is a natural choice to use as a basis vector for R

n and the scalar λ

defines a natural frequency corresponding to that basis vector. More precisely, we use
the following terminology to refer to x and λ:

Definition Let A be an n × n matrix. A scalar λ is said to be an eigenvalue or a characteristic
value of A if there exists a nonzero vector x such that Ax = λx. The vector x is said
to be an eigenvector or a characteristic vector belonging to λ.

EXAMPLE 2 Let

A =
⎧⎪⎩ 4 −2

1 1

⎫⎪⎭ and x =
⎧⎪⎩ 2

1

⎫⎪⎭
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Since

Ax =
⎧⎪⎩ 4 −2

1 1

⎫⎪⎭⎧⎪⎩ 2
1

⎫⎪⎭ =
⎧⎪⎩ 6

3

⎫⎪⎭ = 3
⎧⎪⎩ 2

1

⎫⎪⎭ = 3x

it follows that λ = 3 is an eigenvalue of A and x = (2, 1)T is an eigenvector belonging
to λ. Actually, any nonzero multiple of x will be an eigenvector, because

A(αx) = αAx = αλx = λ(αx)

For example, (4, 2)T is also an eigenvector belonging to λ = 3.⎧⎪⎩ 4 −2
1 1

⎫⎪⎭⎧⎪⎩ 4
2

⎫⎪⎭ =
⎧⎪⎩ 12

6

⎫⎪⎭ = 3
⎧⎪⎩ 4

2

⎫⎪⎭
The equation Ax = λx can be written in the form

(A − λI)x = 0 (1)

Thus, λ is an eigenvalue of A if and only if (1) has a nontrivial solution. The set of
solutions to (1) is N(A − λI), which is a subspace of R

n. Hence, if λ is an eigenvalue
of A, then N(A − λI) �= {0}, and any nonzero vector in N(A − λI) is an eigenvector
belonging to λ. The subspace N(A − λI) is called the eigenspace corresponding to the
eigenvalue λ.

Equation (1) will have a nontrivial solution if and only if A − λI is singular, or,
equivalently,

det(A − λI) = 0 (2)

If the determinant in (2) is expanded, we obtain an nth-degree polynomial in the
variable λ:

p(λ) = det(A − λI)

This polynomial is called the characteristic polynomial, and equation (2) is called the
characteristic equation, for the matrix A. The roots of the characteristic polynomial
are the eigenvalues of A. If roots are counted according to multiplicity, then the char-
acteristic polynomial will have exactly n roots. Thus, A will have n eigenvalues, some
of which may be repeated and some of which may be complex numbers. To take care
of the latter case, it will be necessary to expand our field of scalars to the complex
numbers and to allow complex entries for our vectors and matrices.

We have now established a number of equivalent conditions for λ to be an
eigenvalue of A.

Let A be an n×n matrix and λ be a scalar. The following statements are equivalent:

(a) λ is an eigenvalue of A.
(b) (A − λI)x = 0 has a nontrivial solution.
(c) N(A − λI) �= {0}
(d) A − λI is singular.
(e) det(A − λI) = 0
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We will now use statement (e) to determine the eigenvalues in a number of
examples.

EXAMPLE 3 Find the eigenvalues and the corresponding eigenvectors of the matrix

A =
⎧⎪⎩ 3 2

3 −2

⎫⎪⎭
Solution
The characteristic equation is∣∣∣∣ 3 − λ 2

3 −2 − λ

∣∣∣∣ = 0 or λ2 − λ − 12 = 0

Thus, the eigenvalues of A are λ1 = 4 and λ2 = −3. To find the eigenvectors belonging
to λ1 = 4, we must determine the null space of A − 4I.

A − 4I =
⎧⎪⎩ −1 2

3 −6

⎫⎪⎭
Solving (A − 4I)x = 0, we get

x = (2x2, x2)T

Hence, any nonzero multiple of (2, 1)T is an eigenvector belonging to λ1, and {(2, 1)T}
is a basis for the eigenspace corresponding to λ1. Similarly, to find the eigenvectors for
λ2, we must solve

(A + 3I)x = 0

In this case, {(−1, 3)T} is a basis for N(A + 3I) and any nonzero multiple of (−1, 3)T

is an eigenvector belonging to λ2.

EXAMPLE 4 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 −3 1
1 −2 1
1 −3 2

⎫⎪⎪⎪⎪⎪⎭
Find the eigenvalues and the corresponding eigenspaces.

Solution ∣∣∣∣∣∣
2 − λ −3 1

1 −2 − λ 1
1 −3 2 − λ

∣∣∣∣∣∣ = −λ(λ − 1)2

Thus, the characteristic polynomial has roots λ1 = 0, λ2 = λ3 = 1. The eigenspace
corresponding to λ1 = 0 is N(A), which we determine in the usual manner:⎧⎪⎪⎪⎪⎪⎩

2 −3 1 0
1 −2 1 0
1 −3 2 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 0 −1 0
0 1 −1 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
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Setting x3 = α, we find that x1 = x2 = x3 = α. Consequently, the eigenspace corres-
ponding to λ1 = 0 consists of all vectors of the form α(1, 1, 1)T . To find the eigenspace
corresponding to λ = 1, we solve the system (A − I)x = 0:⎧⎪⎪⎪⎪⎪⎩

1 −3 1 0
1 −3 1 0
1 −3 1 0

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

1 −3 1 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎭
Setting x2 = α and x3 = β, we get x1 = 3α − β. Thus, the eigenspace corresponding
to λ = 1 consists of all vectors of the form⎧⎪⎪⎪⎪⎪⎩

3α − β

α

β

⎫⎪⎪⎪⎪⎪⎭ = α

⎧⎪⎪⎪⎪⎪⎩
3
1
0

⎫⎪⎪⎪⎪⎪⎭ + β

⎧⎪⎪⎪⎪⎪⎩
−1

0
1

⎫⎪⎪⎪⎪⎪⎭
EXAMPLE 5 Let

A =
⎧⎪⎩ 1 2

−2 1

⎫⎪⎭
Compute the eigenvalues of A and find bases for the corresponding eigenspaces.

Solution ∣∣∣∣ 1 − λ 2
−2 1 − λ

∣∣∣∣ = (1 − λ)2 + 4

The roots of the characteristic polynomial are λ1 = 1 + 2i, λ2 = 1 − 2i.

A − λ1I =
⎧⎪⎩ −2i 2

−2 −2i

⎫⎪⎭ = −2
⎧⎪⎩ i −1

1 i

⎫⎪⎭
It follows that {(1, i)T} is a basis for the eigenspace corresponding to λ1 = 1 + 2i.
Similarly,

A − λ2I =
⎧⎪⎩ 2i 2

−2 2i

⎫⎪⎭ = 2
⎧⎪⎩ i 1

−1 i

⎫⎪⎭
and {(1, −i)T} is a basis for N(A − λ2I).

APPLICATION 1 Structures—Buckling of a Beam

For an example of a physical eigenvalue problem, consider the case of a beam. If a
force or load is applied to one end of the beam, the beam will buckle when the load
reaches a critical value. If we continue increasing the load beyond the critical value,
we can expect the beam to buckle again when the load reaches a second critical value,
and so on. Assume that the beam has length L and that it is positioned along the x-
axis in the plane with the left support of the beam at x = 0. Let y(x) represent the
vertical displacement of the beam for any point x, and assume that the beam is simply
supported; that is, y(0) = y(L) = 0. (See Figure 6.1.1.)

The physical system for the beam is modeled by the boundary value problem

R
d2y

dx2
= −Py y(0) = y(L) = 0 (3)
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y

L
x

p

Figure 6.1.1.

where R is the flexural rigidity of the beam and P is the load placed on the beam. A
standard procedure to compute the solution y(x) is to use a finite difference method to
approximate the differential equation. Specifically, we partition the interval [0, L] into
n equal subintervals

0 = x0 < x1 < · · · < xn = L

(
xj = jL

n
, j = 0, . . . , n

)
and, for each j, we approximate y′′(xj) by a difference quotient. If we set h = L

n and use
the shorthand notation yk for y(xk), then the standard difference approximation is given
by

y′′(xj) ≈ yj+1 − 2yj + yj−1

h2
j = 1, . . . , n

Substituting these approximations into equation (3), we end up with a system of n

linear equations. If we multiply each equation through by − h2

R and set λ = Ph2

R , then
the system can be written as a matrix equation of the form Ay = λy, where

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The eigenvalues of this matrix will all be real and positive. (See MATLAB Exercise 24
at the end of the chapter.) For n sufficiently large, each eigenvalue λ of A can be used
to approximate a critical load P = Rλ

h2 under which buckling may occur. The most
important of these critical loads is the one corresponding to the smallest eigenvalue
since the beam may actually break after this load is exceeded.

APPLICATION 2 Aerospace: The Orientation of a Space Shuttle

In Section 2 of Chapter 4, we saw how to determine the matrix representation corres-
ponding to a yaw, pitch, or roll of an airplane in terms of 3 × 3 rotation matrices Y , P,
and R. Recall that a yaw is a rotation of an aircraft about the z-axis, a pitch is a rotation
about the y-axis, and a roll is a rotation about the x-axis. We also saw in the airplane
application that a combination of a yaw followed by a pitch and then a roll could be
represented by a product Q = YPR. The same terms—yaw, pitch, and roll are used to
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describe the rotations of a space shuttle from its initial position to a new orientation.
The only difference is that, for a space shuttle, it is customary to have the positive x
and z axes pointing in the opposite directions. Figure 6.1.2 shows the axis system for
the shuttle, compared with the axis system used for an airplane. The shuttle axes for
the yaw, pitch, and roll are denoted ZS, YS, and XS, respectively. The origin for the
axis system is at the center of mass of the space shuttle. We could use the yaw, pitch,
and roll transformations, to reorient the shuttle from its initial position; however, rather
than performing three separate rotations, it is more efficient to use only one rotation.
Given the angles for the yaw, pitch, and roll, it is desirable to have the shuttle computer
determine a new single axis of rotation R and an angle of rotation β about that axis.

ZS

YS

Y

Z

X

XS

+Yaw

Center
of gravity

+Roll

+Pitch

Figure 6.1.2.

In 2-space, a rotation in the plane of 45◦, followed by a 30◦ rotation, is equivalent
to a single 75◦ rotation from the initial position. Likewise, in 3-space, a combination
of two or more rotations is equivalent to a single rotation. In the case of the space
shuttle, we would like to accomplish the combined rotations of yaw, pitch, and roll by
performing a single rotation about a new axis R. The new axis can be determined by
computing the eigenvectors of the transformation matrix Q.

The matrix Q representing the combined yaw, pitch, and roll transformations is
a product of three orthogonal matrices, each having determinant equal to 1. So Q is
also orthogonal and det(Q) = 1. It follows that Q must have λ = 1 as an eigenvalue.
(See Exercise 23.) If z is a unit vector in the direction of the axis of rotation R, then
z should remain unchanged by the transformation and hence we should have Qz = z.
Thus, z is an unit eigenvector of Q belonging to the eigenvalue λ = 1. The eigenvector
z determines the axis of rotation.

To determine the angle of rotation about the new axis R, note that e1 represents
the initial direction of the XS axis and q1 = Qe1 represents the direction after the
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transformation. If we project e1 and q1 onto the R-axis, they both will project onto the
same vector

p = (zTe1)z = z1z

The vectors

v = e1 − p and w = q1 − p

have the same length and both are in the plane that is normal to the R-axis and passes
through the origin. As e1 rotates to q1, the vector v gets rotated to w. (See Figure 6.1.3.)
The angle of rotation β can be computed by finding the angle between v and w:

β = arccos

(
vTw
‖v‖2

)

R

e1

v

b
p

w

z q1

0

Figure 6.1.3.

Complex Eigenvalues
If A is an n × n matrix with real entries, then the characteristic polynomial of A will
have real coefficients, and hence all its complex roots must occur in conjugate pairs.
Thus, if λ = a + bi (b �= 0) is an eigenvalue of A, then λ = a − bi must also be an
eigenvalue of A. Here the symbol λ (read lambda bar) is used to denote the complex
conjugate of λ. A similar notation can be used for matrices. If A = (aij) is a matrix
with complex entries, then A = (aij) is the matrix formed from A by conjugating each
of its entries. We define a real matrix to be a matrix with the property that A = A.
In general, if A and B are matrices with complex entries and the multiplication AB is
possible, then AB = A B (see Exercise 20).

Not only do the complex eigenvalues of a real matrix occur in conjugate pairs, but
so do the eigenvectors. Indeed, if λ is a complex eigenvalue of a real n × n matrix A
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and z is an eigenvector belonging to λ, then

Az = A z = Az = λz = λ z

Thus, z is an eigenvector of A belonging to λ. In Example 5, the eigenvector computed
for the eigenvalue λ = 1 + 2i was z = (1, i)T , and the eigenvector computed for
λ = 1 − 2i was z = (1, −i)T .

The Product and Sum of the Eigenvalues
It is easy to determine the product and sum of the eigenvalues of an n × n matrix A. If
p(λ) is the characteristic polynomial of A, then

p(λ) = det(A − λI) =

∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ a2n
...

an1 an2 ann − λ

∣∣∣∣∣∣∣∣ (4)

Expanding along the first column, we get

det(A − λI) = (a11 − λ) det(M11) +
n∑

i=2

ai1(−1)i+1 det(Mi1)

where the minors Mi1, i = 2, . . . , n, do not contain the two diagonal elements (a11 −λ)
and (aii − λ). Expanding det(M11) in the same manner, we conclude that

(a11 − λ)(a22 − λ) · · · (ann − λ) (5)

is the only term in the expansion of det(A −λI) involving a product of more than n − 2
of the diagonal elements. When (5) is expanded, the coefficient of λn will be (−1)n.
Thus, the lead coefficient of p(λ) is (−1)n, and hence if λ1, . . . , λn are the eigenvalues
of A, then

p(λ) = (−1)n(λ − λ1)(λ − λ2) · · · (λ − λn)

= (λ1 − λ)(λ2 − λ) · · · (λn − λ)
(6)

It follows from (4) and (6) that

λ1 · λ2 · · · λn = p(0) = det(A)

From (5), we also see that the coefficient of (−λ)n−1 is
n∑

i=1

aii. If we use (6) to

determine this same coefficient, we obtain
n∑

i=1

λi. It follows that

n∑
i=1

λi =
n∑

i=1

aii

The sum of the diagonal elements of A is called the trace of A and is denoted by tr(A).
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EXAMPLE 6 If

A =
⎧⎪⎩ 5 −18

1 −1

⎫⎪⎭
then

det(A) = −5 + 18 = 13 and tr(A) = 5 − 1 = 4

The characteristic polynomial of A is given by∣∣∣∣ 5 − λ −18
1 −1 − λ

∣∣∣∣ = λ2 − 4λ + 13

and hence the eigenvalues of A are λ1 = 2 + 3i and λ2 = 2 − 3i. Note that

λ1 + λ2 = 4 = tr(A)

and

λ1λ2 = 13 = det(A)

In the examples we have looked at so far, n has always been less than 4. For larger
n, it is more difficult to find the roots of the characteristic polynomial. In Chapter 7, we
will learn numerical methods for computing eigenvalues. (These methods will not in-
volve the characteristic polynomial at all.) If the eigenvalues of A have been computed
by some numerical method, one way to check their accuracy is to compare their sum
with the trace of A.

Similar Matrices
We close this section with an important result about the eigenvalues of similar matrices.
Recall that a matrix B is said to be similar to a matrix A if there exists a nonsingular
matrix S such that B = S−1AS.

Theorem 6.1.1 Let A and B be n×n matrices. If B is similar to A, then the two matrices have the same
characteristic polynomial and, consequently, the same eigenvalues.

Proof Let pA(x) and pB(x) denote the characteristic polynomials of A and B, respectively. If B
is similar to A, then there exists a nonsingular matrix S such that B = S−1AS. Thus,

pB(λ) = det(B − λI)
= det(S−1AS − λI)
= det(S−1(A − λI)S)
= det(S−1) det(A − λI) det(S)
= pA(λ)

The eigenvalues of a matrix are the roots of the characteristic polynomial. Since
the two matrices have the same characteristic polynomial, they must have the same
eigenvalues.

EXAMPLE 7 Given

T =
⎧⎪⎩ 2 1

0 3

⎫⎪⎭ and S =
⎧⎪⎩ 5 3

3 2

⎫⎪⎭
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It is easily seen that the eigenvalues of T are λ1 = 2 and λ2 = 3. If we set A = S−1TS,
then the eigenvalues of A should be the same as those of T .

A =
⎧⎪⎩ 2 −3

−3 5

⎫⎪⎭⎧⎪⎩ 2 1
0 3

⎫⎪⎭⎧⎪⎩ 5 3
3 2

⎫⎪⎭ =
⎧⎪⎩ −1 −2

6 6

⎫⎪⎭
We leave it to the reader to verify that the eigenvalues of this matrix are λ1 = 2 and
λ2 = 3.

SECTION 6.1 EXERCISES
1. Find the eigenvalues and the corresponding eigen-

spaces for each of the following matrices:

(a)
⎧⎪⎩ 3 2

4 1

⎫⎪⎭ (b)
⎧⎪⎩ 6 −4

3 −1

⎫⎪⎭
(c)

⎧⎪⎩ 3 −1
1 1

⎫⎪⎭ (d)
⎧⎪⎩ 3 −8

2 3

⎫⎪⎭
(e)

⎧⎪⎩ 1 1
−2 3

⎫⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
0 1 0
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 2 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ (h)

⎧⎪⎪⎪⎪⎪⎩
1 2 1
0 3 1
0 5 −1

⎫⎪⎪⎪⎪⎪⎭
(i)

⎧⎪⎪⎪⎪⎪⎩
4 −5 1
1 0 −1
0 1 −1

⎫⎪⎪⎪⎪⎪⎭ (j)

⎧⎪⎪⎪⎪⎪⎩
−2 0 1

1 0 −1
0 1 −1

⎫⎪⎪⎪⎪⎪⎭
(k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (l)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 0 0 0
4 1 0 0
0 0 2 1
0 0 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
2. Show that the eigenvalues of a triangular matrix are

the diagonal elements of the matrix.

3. Let A be an n × n matrix. Prove that A is singular if
and only if λ = 0 is an eigenvalue of A.

4. Let A be a nonsingular matrix and let λ be an eigen-
value of A. Show that 1/λ is an eigenvalue of A−1.

5. Let A and B be n × n matrices. Show that if none of
the eigenvalues of A are equal to 1, then the matrix
equation

XA + B = X

will have a unique solution.

6. Let λ be an eigenvalue of A and let x be an eigen-
vector belonging to λ. Use mathematical induction
to show that, for m ≥ 1, λm is an eigenvalue of Am

and x is an eigenvector of Am belonging to λm.

7. Let A be an n × n matrix and let B = I − 2A + A2.
(a) Show that if x is an eigenvector of A belonging

to an eigenvalue λ, then x is also an eigenvector

of B belonging to an eigenvalue μ of B. How
are λ and μ related?

(b) Show that if λ = 1 is an eigenvalue of A, then
the matrix B will be singular.

8. An n × n matrix A is said to be idempotent if
A2 = A. Show that if λ is an eigenvalue of an
idempotent matrix, then λ must be either 0 or 1.

9. An n×n matrix is said to be nilpotent if Ak = O for
some positive integer k. Show that all eigenvalues
of a nilpotent matrix are 0.

10. Let A be an n × n matrix and let B = A − αI for
some scalar α. How do the eigenvalues of A and B
compare? Explain.

11. Let A be an n × n matrix and let B = A + I. Is it
possible for A and B to be similar? Explain.

12. Show that A and AT have the same eigenvalues.
Do they necessarily have the same eigenvectors?
Explain.

13. Show that the matrix

A =
⎧⎪⎩ cos θ −sin θ

sin θ cos θ

⎫⎪⎭
will have complex eigenvalues if θ is not a multiple
of π . Give a geometric interpretation of this result.

14. Let A be a 2 × 2 matrix. If tr(A) = 8 and det(A) =
12, what are the eigenvalues of A?

15. Let A = (aij) be an n × n matrix with eigenvalues
λ1, . . . , λn. Show that

λj = ajj +
∑
i �=j

(aii − λi) for j = 1, . . . , n

16. Let A be a 2 × 2 matrix and let p(λ) = λ2 + bλ + c
be the characteristic polynomial of A. Show that
b = − tr(A) and c = det(A).

17. Let λ be a nonzero eigenvalue of A and let x be an
eigenvector belonging to λ. Show that Amx is also
an eigenvector belonging to λ for m = 1, 2, . . . .
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18. Let A be an n × n matrix and let λ be an eigenvalue
of A. If A − λI has rank k, what is the dimension of
the eigenspace corresponding to λ? Explain.

19. Let A be an n × n matrix. Show that a vector x in
either R

n or C
n is an eigenvector belonging to A if

and only if the subspace S spanned by x and Ax has
dimension 1.

20. Let α = a + bi and β = c + di be complex scalars
and let A and B be matrices with complex entries.
(a) Show that

α + β = α + β and αβ = α β

(b) Show that the (i, j) entries of AB and A B are
equal and hence that

AB = A B

21. Let Q be an orthogonal matrix.
(a) Show that if λ is an eigenvalue of Q, then

|λ| = 1.

(b) Show that | det(Q)| = 1.
22. Let Q be an orthogonal matrix with an eigenvalue

λ1 = 1 and let x be an eigenvector belonging to λ1.
Show that x is also an eigenvector of QT .

23. Let Q be a 3 × 3 orthogonal matrix whose determ-
inant is equal to 1.
(a) If the eigenvalues of Q are all real and if they

are ordered so that λ1 ≥ λ2 ≥ λ3, determine
the values of all possible triples of eigenvalues
(λ1, λ2, λ3).

(b) In the case that the eigenvalues λ2 and λ3 are
complex, what are the possible values for λ1?
Explain.

(c) Explain why λ = 1 must be an eigenvalue of
Q.

24. Let x1, . . . , xr be eigenvectors of an n × n mat-
rix A and let S be the subspace of R

n spanned by
x1, x2, . . . , xr. Show that S is invariant under A (i.e.,
show that Ax ∈ S whenever x ∈ S).

25. Let A be an n × n matrix and let λ be an eigenvalue
of A. Show that if B is any matrix that commutes
with A, then the eigenspace N(A − λI) is invariant
under B.

26. Let B = S−1AS and let x be an eigenvector of B
belonging to an eigenvalue λ. Show that Sx is an
eigenvector of A belonging to λ.

27. Let A be an n × n matrix with an eigenvalue λ and
let x be an eigenvector belonging to λ. Let S be a
nonsingular n×n matrix and let α be a scalar. Show
that if

B = αI − SAS−1, y = Sx

then y is an eigenvector of B. Determine the eigen-
value of B corresponding to y?

28. Show that if two n × n matrices A and B have a
common eigenvector x (but not necessarily a com-
mon eigenvalue), then x will also be an eigenvector
of any matrix of the form C = αA + βB.

29. Let A be an n × n matrix and let λ be a nonzero
eigenvalue of A. Show that if x is an eigenvector
belonging to λ, then x is in the column space of
A. Hence the eigenspace corresponding to λ is a
subspace of the column space of A.

30. Let {u1, u2, . . . , un} be an orthonormal basis for R
n

and let A be a linear combination of the rank 1
matrices u1uT

1 , u2uT
2 , . . . , unuT

n . If

A = c1u1uT
1 + c2u2uT

2 + · · · + cnunuT
n

show that A is a symmetric matrix with eigen-
values c1, c2, . . . , cn and that ui is an eigenvector
belonging to ci for each i.

31. Let A be a matrix whose columns all add up to a
fixed constant δ. Show that δ is an eigenvalue of A.

32. Let λ1 and λ2 be distinct eigenvalues of A. Let x be
an eigenvector of A belonging to λ1 and let y be an
eigenvector of AT belonging to λ2. Show that x and
y are orthogonal.

33. Let A and B be n × n matrices. Show that
(a) If λ is a nonzero eigenvalue of AB, then it is

also an eigenvalue of BA.
(b) If λ = 0 is an eigenvalue of AB, then λ = 0 is

also an eigenvalue of BA.
34. Prove that there do not exist n × n matrices A and

B such that
AB − BA = I

[Hint: See Exercises 10 and 33.]
35. Let p(λ) = (−1)n(λn − an−1λ

n−1 − · · · − a1λ − a0)
be a polynomial of degree n ≥ 1, and let

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

an−1 an−2 · · · a1 a0

1 0 · · · 0 0
0 1 · · · 0 0
...
0 0 · · · 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that if λi is a root of p(λ) = 0, then λi

is an eigenvalue of C with eigenvector x =
(λn−1

i , λn−2
i , . . . , λi, 1)T .

(b) Use part (a) to show that if p(λ) has n distinct
roots then p(λ) is the characteristic polynomial
of C.

The matrix C is called the companion matrix of
p(λ).
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36. The result given in Exercise 35(b) holds even if all
the eigenvalues of p(λ) are not distinct. Prove this
as follows:
(a) Let

Dm(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
am am−1 · · · a1 a0

1 −λ · · · 0 0
...
0 0 · · · 1 −λ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and use mathematical induction to prove that

det(Dm(λ)) = (−1)m(amλm + am−1λ
m−1 + · · ·

+ a1λ + a0)

(b) Show that

det(C − λI)

= (an−1 − λ)(−λ)n−1 − det(Dn−2)

= p(λ)

6.2 Systems of Linear Differential Equations

Eigenvalues play an important role in the solution of systems of linear differential
equations. In this section, we see how they are used in the solution of systems of linear
differential equations with constant coefficients. We begin by considering systems of
first-order equations of the form

y′
1 = a11y1 + a12y2 + · · · + a1nyn

y′
2 = a21y1 + a22y2 + · · · + a2nyn
...

y′
n = an1y1 + an2y2 + · · · + annyn

where yi = fi(t) is a function in C1[a, b] for each i. If we let

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2
...

yn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and Y′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y′

1
y′

2
...

y′
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
then the system can be written in the form

Y′ = AY

Y and Y′ are both vector functions of t. Let us consider the simplest case first. When
n = 1, the system is simply

y′ = ay (1)

Clearly, any function of the form

y(t) = ceat (c an arbitrary constant)

satisfies equation (1). A natural generalization of this solution for the case n > 1 is to
take

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1eλt

x2eλt

...
xneλt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = eλtx
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where x = (x1, x2, . . . , xn)T . To verify that a vector function of this form does work, we
compute the derivative

Y′ = λeλtx = λY

Now, if we choose λ to be an eigenvalue of A and x to be an eigenvector belonging to
λ, then

AY = eλtAx = λeλtx = λY = Y′

Hence, Y is a solution of the system. Thus, if λ is an eigenvalue of A and x is an
eigenvector belonging to λ, then eλtx is a solution of the system Y′ = AY. This will
be true whether λ is real or complex. Note that if Y1 and Y2 are both solutions of
Y′ = AY, then αY1 + βY2 is also a solution, since

(αY1 + βY2)′ = αY′
1 + βY′

2

= αAY1 + βAY2

= A(αY1 + βY2)

It follows by induction that if Y1, . . . , Yn are solutions of Y′ = AY, then any linear
combination c1Y1 + · · · + cnYn will also be a solution.

In general, the solutions of an n × n first-order system of the form

Y′ = AY

will form an n-dimensional subspace of the vector space of all continuous vector-
valued functions. If, in addition, we require that Y(t) take on a prescribed value Y0

when t = 0 then a standard theorem from differential equations guarantees that the
problem will have a unique solution. A problem of the form

Y′ = AY, Y(0) = Y0

is called an initial value problem.

EXAMPLE 1 Solve the system

y′
1 = 3y1 + 4y2

y′
2 = 3y1 + 2y2

Solution

A =
⎧⎪⎩ 3 4

3 2

⎫⎪⎭
The eigenvalues of A are λ1 = 6 and λ2 = −1. Solving (A−λI)x = 0 with λ = λ1 and
λ = λ2, we see that x1 = (4, 3)T is an eigenvector belonging to λ1 and x2 = (1, −1)T

is an eigenvector belonging to λ2. Thus, any vector function of the form

Y = c1eλ1tx1 + c2eλ2tx2 =
⎧⎪⎪⎪⎩ 4c1e6t + c2e−t

3c1e6t − c2e−t

⎫⎪⎪⎪⎭
is a solution of the system.
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In Example 1, suppose that we require that y1 = 6 and y2 = 1 when t = 0. Then

Y(0) =
⎧⎪⎩ 4c1 + c2

3c1 − c2

⎫⎪⎭ =
⎧⎪⎩ 6

1

⎫⎪⎭
and it follows that c1 = 1 and c2 = 2. Hence the solution to the initial value problem
is given by

Y = e6tx1 + 2e−tx2 =
⎧⎪⎪⎪⎩ 4e6t + 2e−t

3e6t − 2e−t

⎫⎪⎪⎪⎭
APPLICATION 1 Mixtures

Two tanks are connected as shown in Figure 6.2.1. Initially, tank A contains 200 liters
of water in which 60 grams of salt has been dissolved and tank B contains 200 liters of
pure water. Liquid is pumped in and out of the two tanks at rates shown in the diagram.
Determine the amount of salt in each tank at time t.

Solution
Let y1(t) and y2(t) be the number of grams of salt in tanks A and B, respectively, at
time t. Initially,

Y(0) =
⎧⎪⎩ y1(0)

y2(0)

⎫⎪⎭ =
⎧⎪⎩ 60

0

⎫⎪⎭
The total amount of liquid in each tank will remain at 200 liters since the amount being
pumped in equals the amount being pumped out. The rate of change in the amount of
salt for each tank is equal to the rate at which it is being added minus the rate at which
it is being pumped out. For tank A, the rate at which the salt is added is given by

(5 L/min) ·
(

y2(t)

200
g/L

)
= y2(t)

40
g/min

and the rate at which the salt is being pumped out is

(20 L/min) ·
(

y1(t)

200
g/L

)
= y1(t)

10
g/min

Tank A Tank B

Mixture
5 L/min

Water
15 L/min

Mixture
20 L/min

Mixture
15 L/min

Figure 6.2.1.
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Thus, the rate of change for tank A is given by

y′
1(t) = y2(t)

40
− y1(t)

10

Similarly, for tank B, the rate of change is given by

y′
2(t) = 20y1(t)

200
− 20y2(t)

200
= y1(t)

10
− y2(t)

10

To determine y1(t) and y2(t), we must solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =
⎧⎪⎪⎪⎪⎪⎩ − 1

10
1

40
1

10 − 1
10

⎫⎪⎪⎪⎪⎪⎭, Y0 =
⎧⎪⎩ 60

0

⎫⎪⎭
The eigenvalues of A are λ1 = − 3

20 and λ2 = − 1
20 with corresponding eigenvectors

x1 =
⎧⎪⎩ 1

−2

⎫⎪⎭ and x2 =
⎧⎪⎩ 1

2

⎫⎪⎭
The solution must then be of the form

Y = c1e−3t/20x1 + c2e−t/20x2

When t = 0, Y = Y0. Thus,

c1x1 + c2x2 = Y0

and we can find c1 and c2 by solving

⎧⎪⎩ 1 1
−2 2

⎫⎪⎭ ⎧⎪⎩ c1

c2

⎫⎪⎭ =
⎧⎪⎩ 60

0

⎫⎪⎭
The solution of this system is c1 = c2 = 30. Therefore, the solution of the initial value
problem is

Y(t) =
⎧⎪⎩ y1(t)

y2(t)

⎫⎪⎭ =
⎧⎪⎪⎩ 30e−3t/20 + 30e−t/20

−60e−3t/20 + 60e−t/20

⎫⎪⎪⎭
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Complex Eigenvalues
Let A be a real n × n matrix with a complex eigenvalue λ = a + bi, and let x be an
eigenvector belonging to λ. The vector x can be split up into its real and imaginary
parts.

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Re x1 + i Im x1

Re x2 + i Im x2
...

Re xn + i Im xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Re x1

Re x2
...

Re xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ + i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Im x1

Im x2
...

Im xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = Re x + i Im x

Since the entries of A are all real, it follows that λ = a − bi is also an eigenvalue of A
with eigenvector

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Re x1 − i Im x1

Re x2 − i Im x2
...

Re xn − i Im xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = Re x − i Im x

and hence eλtx and eλtx are both solutions of the first-order system Y′ = AY. Any
linear combination of these two solutions will also be a solution. Thus, if we set

Y1 = 1

2
(eλtx + eλtx) = Re(eλtx)

and

Y2 = 1

2i
(eλtx − eλtx) = Im(eλtx)

then the vector functions Y1 and Y2 are real-valued solutions of Y′ = AY. Taking the
real and imaginary parts of

eλtx = e(a+ib)tx
= eat(cos bt + i sin bt)(Re x + i Im x)

we see that

Y1 = eat [(cos bt) Re x − (sin bt) Im x]
Y2 = eat [(cos bt) Im x + (sin bt) Re x]

EXAMPLE 2 Solve the system

y′
1 = y1 + y2

y′
2 = −2y1 + 3y2

Solution
Let

A =
⎧⎪⎩ 1 1

−2 3

⎫⎪⎭
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The eigenvalues of A are λ = 2 + i and λ = 2 − i, with eigenvectors x = (1, 1 + i)T

and x = (1, 1 − i)T , respectively.

eλtx =
⎧⎪⎪⎪⎩ e2t(cos t + i sin t)

e2t(cos t + i sin t)(1 + i)

⎫⎪⎪⎪⎭
=

⎧⎪⎪⎪⎩ e2t cos t + ie2t sin t
e2t(cos t − sin t) + ie2t(cos t + sin t)

⎫⎪⎪⎪⎭
Let

Y1 = Re(eλtx) =
⎧⎪⎪⎩ e2t cos t

e2t(cos t − sin t)

⎫⎪⎪⎭
and

Y2 = Im(eλtx) =
⎧⎪⎪⎩ e2t sin t

e2t(cos t + sin t)

⎫⎪⎪⎭
Any linear combination

Y = c1Y1 + c2Y2

will be a solution of the system.

If the n × n coefficient matrix A of the system Y′ = AY has n linearly independ-
ent eigenvectors, the general solution can be obtained by the methods that have been
presented. The case when A has fewer than n linearly independent eigenvectors is more
complicated; consequently we will defer discussion of this case to Section 6.3.

Higher Order Systems
Given a second-order system of the form

Y′′ = A1Y + A2Y′

we may translate it into a first-order system by setting

yn+1(t) = y′
1(t)

yn+2(t) = y′
2(t)

...
y2n(t) = y′

n(t)

If we let

Y1 = Y = (y1, y2, . . . , yn)T

and

Y2 = Y′ = (yn+1, . . . , y2n)T

then

Y′
1 = OY1 + IY2

and

Y′
2 = A1Y1 + A2Y2
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The equations can be combined to give the 2n × 2n first-order system⎧⎪⎪⎩ Y′
1

Y′
2

⎫⎪⎪⎭ =
⎧⎪⎪⎩ O I

A1 A2

⎫⎪⎪⎭⎧⎪⎪⎩ Y1

Y2

⎫⎪⎪⎭
If the values of Y1 = Y and Y2 = Y′ are specified when t = 0, then the initial value
problem will have a unique solution.

EXAMPLE 3 Solve the initial value problem

y′′
1 = 2y1 + y2 + y′

1 + y′
2

y′′
2 = −5y1 + 2y2 + 5y′

1 − y′
2

y1(0) = y2(0) = y′
1(0) = 4, y′

2(0) = −4

Solution
Set y3 = y′

1 and y4 = y′
2. This gives the first-order system

y′
1 = y3

y′
2 = y4

y′
3 = 2y1 + y2 + y3 + y4

y′
4 = −5y1 + 2y2 + 5y3 − y4

The coefficient matrix for this system,

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 1 0
0 0 0 1
2 1 1 1

−5 2 5 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
has eigenvalues

λ1 = 1, λ2 = −1, λ3 = 3, λ4 = −3

Corresponding to these eigenvalues are the eigenvectors

x1 = (1, −1, 1, −1)T , x2 = (1, 5, −1, −5)T

x3 = (1, 1, 3, 3)T , x4 = (1, −5, −3, 15)T

Thus, the solution will be of the form

c1x1et + c2x2e−t + c3x3e3t + c4x4e−3t

We can use the initial conditions to find c1, c2, c3, and c4. For t = 0, we have

c1x1 + c2x2 + c3x3 + c4x4 = (4, 4, 4, −4)T

or, equivalently, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1

−1 5 1 −5
1 −1 3 −3

−1 −5 3 15

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

c2

c3

c4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4
4
4

−4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The solution of this system is c = (2, 1, 1, 0)T , and hence the solution to the initial
value problem is

Y = 2x1et + x2e−t + x3e3t

Therefore, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
y1

y2

y′
1

y′
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2et + e−t + e3t

−2et + 5e−t + e3t

2et − e−t + 3e3t

−2et − 5e−t + 3e3t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In general, if we have an mth-order system of the form

Y(m) = A1Y + A2Y′ + · · · + AmY(m−1)

where each Ai is an n×n matrix, we can transform it into a first-order system by setting

Y1 = Y, Y2 = Y′
1, . . . , Ym = Y′

m−1

We will end up with a system of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y′
1

Y′
2

...

Y′
m−1

Y′
m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O I O · · · O

O O I · · · O
...

O O O · · · I

A1 A2 A3 · · · Am

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1

Y2

...

Ym−1

Ym

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If, in addition, we require that Y, Y′, . . . , Y(m−1) take on specific values when t = 0,
there will be exactly one solution to the problem.

If the system is simply of the form Y(m) = AY, it is usually not necessary to intro-
duce new variables. In this case, we need only calculate the mth roots of the eigenvalues
of A. If λ is an eigenvalue of A, x is an eigenvector belonging to λ, σ is an mth root of
λ, and Y = eσ tx, then

Y(m) = σ meσ tx = λY
and

AY = eσ tAx = λeσ tx = λY
Therefore, Y = eσ tx is a solution to the system.

APPLICATION 2 Harmonic Motion

In Figure 6.2.2, two masses are joined by springs and the ends A and B are fixed.
The masses are free to move horizontally. We will assume that the three springs are
uniform and that initially the system is in the equilibrium position. A force is exerted
on the system to set the masses in motion. The horizontal displacements of the masses
at time t will be denoted by x1(t) and x2(t), respectively. We will assume that there are
no retarding forces such as friction. Then the only forces acting on mass m1 at time t
will be from the springs 1 and 2. The force from spring 1 will be −kx1 and the force
from spring 2 will be k(x2 − x1). By Newton’s second law,

m1x′′
1(t) = −kx1 + k(x2 − x1)
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A B

x1 x2

m2m11 2 3

Figure 6.2.2.

Similarly, the only forces acting on the second mass will be from springs 2 and 3.
Using Newton’s second law again, we get

m2x′′
2(t) = −k(x2 − x1) − kx2

Thus, we end up with the second-order system

x′′
1 = − k

m1
(2x1 − x2)

x′′
2 = − k

m2
(−x1 + 2x2)

Suppose now that m1 = m2 = 1, k = 1, and the initial velocity of both masses is
+2 units per second. To determine the displacements x1 and x2 as functions of t, we
write the system in the form

X′′ = AX (2)

The coefficient matrix

A =
⎧⎪⎩ −2 1

1 −2

⎫⎪⎭
has eigenvalues λ1 = −1 and λ2 = −3. Corresponding to λ1, we have the eigenvector
v1 = (1, 1)T and σ1 = ±i. Thus, eitv1 and e−itv1 are both solutions of (2). It follows
that

1

2
(eit + e−it)v1 = (Re eit)v1 = (cos t)v1

and
1

2i
(eit − e−it)v1 = (Im eit)v1 = (sin t)v1

are also both solutions of (2). Similarly, for λ2 = −3, we have the eigenvector v2 =
(1, −1)T and σ2 = ±√

3i. It follows that

(Re e
√

3it)v2 = (cos
√

3t)v2

and

(Im e
√

3it)v2 = (sin
√

3t)v2

are also solutions of (2). Thus the general solution will be of the form

X(t) = c1(cos t)v1 + c2(sin t)v1 + c3(cos
√

3t)v2 + c4(sin
√

3t)v2

=
⎧⎪⎪⎪⎩ c1 cos t + c2 sin t + c3 cos

√
3t + c4 sin

√
3t

c1 cos t + c2 sin t − c3 cos
√

3t − c4 sin
√

3t

⎫⎪⎪⎪⎭
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At time t = 0, we have

x1(0) = x2(0) = 0 and x′
1(0) = x′

2(0) = 2

It follows that

c1 + c3 = 0
c1 − c3 = 0

and
c2 + √

3c4 = 2
c2 − √

3c4 = 2

and hence

c1 = c3 = c4 = 0 and c2 = 2

Therefore, the solution to the initial value problem is simply

X(t) =
⎧⎪⎩ 2 sin t

2 sin t

⎫⎪⎭
The masses will oscillate with frequency 1 and amplitude 2.

APPLICATION 3 Vibrations of a Building

For another example of a physical system, we consider the vibrations of a building. If
the building has k stories, we can represent the horizontal deflections of the stories at
time t by the vector function Y(t) = (y1(t), y2(t), . . . , yk(t))T . The motion of a building
can be modeled by a second-order system of differential equations of the form

MY′′(t) = KY(t)

The mass matrix M is a diagonal matrix whose entries correspond to the concentrated
weights at each story. The entries of the stiffness matrix K are determined by the spring
constants of the supporting structures. Solutions of the equation are of the form Y(t) =
eiσ tx, where x is an eigenvector of A = M−1K belonging to an eigenvalue λ and σ is a
square root of λ.

SECTION 6.2 EXERCISES
1. Find the general solution of each of the following

systems:

(a) y′
1 = y1 + y2

y′
2 = −2y1 + 4y2

(b) y′
1 = 2y1 + 4y2

y′
2 = −y1 − 3y2

(c) y′
1 = y1 − 2y2

y′
2 = −2y1 + 4y2

(d) y′
1 = y1 − y2

y′
2 = y1 + y2

(e) y′
1 = 3y1 − 2y2

y′
2 = 2y1 + 3y2

(f) y′
1 = y1 + y3

y′
2 = 2y2 + 6y3

y′
3 = y2 + 3y3

2. Solve each of the following initial value problems:

(a) y′
1 = −y1+ 2y2

y′
2 = 2y1− y2

y1(0) = 3, y2(0) = 1

(b) y′
1 = y1 − 2y2

y′
2 = 2y1 + y2

y1(0) = 1, y2(0) = −2

(c) y′
1 = 2y1 − 6y3

y′
2 = y1 − 3y3

y′
3 = y2 − 2y3

y1(0) = y2(0) = y3(0) = 2
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(d) y′
1 = y1 + 2y3

y′
2 = y2 − y3

y′
3 = y1 + y2 + y3

y1(0) = y2(0) = 1, y3(0) = 4
3. Given

Y = c1eλ1tx1 + c2eλ2tx2 + · · · + cneλntxn

is the solution to the initial value problem:

Y′ = AY, Y(0) = Y0

(a) show that

Y0 = c1x1 + c2x2 + · · · + cnxn

(b) let X = (x1, . . . , xn) and c = (c1, . . . , cn)T . As-
suming that the vectors x1, . . . , xn are linearly
independent, show that c = X−1Y0.

4. Two tanks each contain 100 liters of a mixture. Ini-
tially, the mixture in tank A contains 40 grams of
salt while tank B contains 20 grams of salt. Liquid
is pumped in and out of the tanks as shown in the
accompanying figure. Determine the amount of salt
in each tank at time t.

Mixture
16 L/min

Mixture
12 L/min

Mixture
4 L/min

Water
12 L/min

B
100 L

A
100 L

5. Find the general solution of each of the following
systems:
(a) y′′

1 = −2y2

y′′
2 = y1 + 3y2

(b) y′′
1 = 2y1 + y′

2

y′′
2 = 2y2 + y′

1

6. Solve the initial value problem

y′′
1 = −2y2 + y′

1 + 2y′
2

y′′
2 = 2y1 + 2y′

1 − y′
2

y1(0) = 1, y2(0) = 0, y′
1(0) = −3, y′

2(0) = 2

7. In Application 2, assume that the solutions are of
the form x1 = a1 sin σ t, x2 = a2 sin σ t. Substitute
these expressions into the system and solve for the
frequency σ and the amplitudes a1 and a2.

8. Solve the the problem in Application 2, using the
initial conditions

x1(0) = x2(0) = 1, x′
1(0) = 4, and x′

2(0) = 2

9. Two masses are connected by springs as shown in
the accompanying diagram. Both springs have the
same spring constant, and the end of the first spring
is fixed. If x1 and x2 represent the displacements
from the equilibrium position, derive a system of
second-order differential equations that describes
the motion of the system.

m1

m2

x1

x2

10. Three masses are connected by a series of springs
between two fixed points as shown in the accom-
panying figure. Assume that the springs all have
the same spring constant, and let x1(t), x2(t), and
x3(t) represent the displacements of the respective
masses at time t.

A B
m2 m3m1

(a) Derive a system of second-order differential
equations that describes the motion of this
system.

(b) Solve the system if m1 = m3 = 1
3 , m2 = 1

4 ,
k = 1, and

x1(0) = x2(0) = x3(0) = 1

x′
1(0) = x′

2(0) = x′
3(0) = 0

11. Transform the nth-order equation

y(n) = a0y + a1y′ + · · · + an−1y(n−1)

into a system of first-order equations by setting
y1 = y and yj = y′

j−1 for j = 2, . . . , n. Determ-
ine the characteristic polynomial of the coefficient
matrix of this system.
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6.3 Diagonalization

In this section, we consider the problem of factoring an n×n matrix A into a product of
the form XDX−1, where D is diagonal. We will give a necessary and sufficient condition
for the existence of such a factorization and look at a number of examples. We begin by
showing that eigenvectors belonging to distinct eigenvalues are linearly independent.

Theorem 6.3.1 If λ1, λ2, . . . , λk are distinct eigenvalues of an n × n matrix A with corresponding
eigenvectors x1, x2, . . . , xk, then x1, . . . , xk are linearly independent.

Proof Let r be the dimension of the subspace of R
n spanned by x1, . . . , xk and suppose that

r < k. We may assume (reordering the xi’s and λi’s if necessary) that x1, . . . , xr are lin-
early independent. Since x1, x2, . . . , xr, xr+1 are linearly dependent, there exist scalars
c1, . . . , cr, cr+1, not all zero, such that

c1x1 + · · · + crxr + cr+1xr+1 = 0 (1)

Note that cr+1 must be nonzero; otherwise, x1, . . . , xr would be dependent. So
cr+1xr+1 �= 0 and hence c1, . . . , cr cannot all be zero. Multiplying (1) by A, we get

c1Ax1 + · · · + crAxr + cr+1Axr+1 = 0

or

c1λ1x1 + · · · + crλrxr + cr+1λr+1xr+1 = 0 (2)

Subtracting λr+1 times (1) from (2) gives

c1(λ1 − λr+1)x1 + · · · + cr(λr − λr+1)xr = 0

This contradicts the independence of x1, . . . , xr. Therefore, r must equal k.

Definition An n × n matrix A is said to be diagonalizable if there exists a nonsingular matrix
X and a diagonal matrix D such that

X−1AX = D

We say that X diagonalizes A.

Theorem 6.3.2 An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

Proof Suppose that the matrix A has n linearly independent eigenvectors x1, x2, . . . , xn. Let
λi be the eigenvalue of A corresponding to xi for each i. (Some of the λi’s may be
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equal.) Let X be the matrix whose jth column vector is xj for j = 1, . . . , n. It follows
that Axj = λjxj is the jth column vector of AX. Thus,

AX = (Ax1, Ax2, . . . , Axn)

= (λ1x1, λ2x2, . . . , λnxn)

= (x1, x2, . . . , xn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2

. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= XD

Since X has n linearly independent column vectors, it follows that X is nonsingular and
hence

D = X−1XD = X−1AX

Conversely, suppose that A is diagonalizable. Then there exists a nonsingular matrix X
such that AX = XD. If x1, x2, . . . , xn are the column vectors of X, then

Axj = λjxj (λj = djj)

for each j. Thus, for each j, λj is an eigenvalue of A and xj is an eigenvector belonging
to λj. Since the column vectors of X are linearly independent, it follows that A has n
linearly independent eigenvectors.

Remarks

1. If A is diagonalizable, then the column vectors of the diagonalizing matrix X
are eigenvectors of A and the diagonal elements of D are the corresponding
eigenvalues of A.

2. The diagonalizing matrix X is not unique. Reordering the columns of a given
diagonalizing matrix X or multiplying them by nonzero scalars will produce a
new diagonalizing matrix.

3. If A is n × n and A has n distinct eigenvalues, then A is diagonalizable. If the
eigenvalues are not distinct, then A may or may not be diagonalizable depending
on whether A has n linearly independent eigenvectors.

4. If A is diagonalizable, then A can be factored into a product XDX−1.

It follows from remark 4 that

A2 = (XDX−1)(XDX−1) = XD2X−1

and, in general,

Ak = XDkX−1

= X

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(λ1)k

(λ2)k

. . .

(λn)k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
X−1

Once we have a factorization A = XDX−1, it is easy to compute powers of A.
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EXAMPLE 1 Let

A =
⎧⎪⎩ 2 −3

2 −5

⎫⎪⎭
The eigenvalues of A are λ1 = 1 and λ2 = −4. Corresponding to λ1 and λ2, we have
the eigenvectors x1 = (3, 1)T and x2 = (1, 2)T . Let

X =
⎧⎪⎩ 3 1

1 2

⎫⎪⎭ and D =
⎧⎪⎩ 1 0

0 −4

⎫⎪⎭
It follows that

X−1AX = 1

5

⎧⎪⎪⎪⎪⎩ 2 −1

−1 3

⎫⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 2 −3

2 −5

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 3 1

1 2

⎫⎪⎪⎪⎭
=

⎧⎪⎪⎪⎩ 1 0
0 −4

⎫⎪⎪⎪⎭ = D

and

XDX−1 =
⎧⎪⎩ 3 1

1 2

⎫⎪⎭⎧⎪⎩ 1 0
0 −4

⎫⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2
5 − 1

5

− 1
5

3
5

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ 2 −3

2 −5

⎫⎪⎭ = A

EXAMPLE 2 Let

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
2 0 −2
2 −1 −1

⎫⎪⎪⎪⎪⎪⎭
It is easily seen that the eigenvalues of A are λ1 = 0, λ2 = 1, and λ3 = 1. Correspond-
ing to λ1 = 0, we have the eigenvector (1, 1, 1)T , and corresponding to λ = 1, we have
the eigenvectors (1, 2, 0)T and (1, 0, 1)T . Let

X =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 2 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭
It follows that

XDX−1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1
1 2 0
1 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

−2 1 2
1 0 −1
2 −1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎩
3 −1 −2
2 0 −2
2 −1 −1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
= A

Even though λ = 1 is a multiple eigenvalue, the matrix can still be diagonalized since
there are three linearly independent eigenvectors. Note also that

Ak = XDkX−1 = XDX−1 = A

for any k ≥ 1.
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If an n × n matrix A has fewer than n linearly independent eigenvectors, we
say that A is defective. It follows from Theorem 6.3.2 that a defective matrix is not
diagonalizable.

EXAMPLE 3 Let

A =
⎧⎪⎩ 1 1

0 1

⎫⎪⎭
The eigenvalues of A are both equal to 1. Any eigenvector corresponding to λ = 1 must
be a multiple of x1 = (1, 0)T . Thus, A is defective and cannot be diagonalized.

EXAMPLE 4 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 0 0
0 4 0
1 0 2

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

2 0 0
−1 4 0
−3 6 2

⎫⎪⎪⎪⎪⎪⎭
A and B both have the same eigenvalues

λ1 = 4, λ2 = λ3 = 2

The eigenspace of A corresponding to λ1 = 4 is spanned by e2, and the eigenspace
corresponding to λ = 2 is spanned by e3. Since A has only two linearly independ-
ent eigenvectors, it is defective. On the other hand, the matrix B has eigenvector
x1 = (0, 1, 3)T corresponding to λ1 = 4 and eigenvectors x2 = (2, 1, 0)T and e3

corresponding to λ = 2. Thus, B has three linearly independent eigenvectors and con-
sequently is not defective. Even though λ = 2 is an eigenvalue of multiplicity 2, the
matrix B is nondefective, since the corresponding eigenspace has dimension 2.

Geometrically, the matrix B has the effect of stretching two linearly independent
vectors by a factor of 2. We can think of the eigenvalue λ = 2 as having geometric
multiplicity 2, since the dimension of the eigenspace N(B−2I) is 2. On the other hand,
the matrix A stretches only vectors along the z-axis, by a factor of 2. In this case, the
eigenvalue λ = 2 has algebraic multiplicity 2, but dim N(A − 2I) = 1, so its geometric
multiplicity is only 1 (see Figure 6.3.1).

z

x

y

e3

z

x

y

2e3

A
z

x

y y

e3

x2

2e3

2x2

B 
z

x

Figure 6.3.1.
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APPLICATION 1 Markov Chains

In Section 6.1, we studied a simple matrix model for predicting the number of mar-
ried and single women in a certain town each year. Given an initial vector x0 whose
coordinates represent the current number of married and single women, we were able
to predict the number of married and single women in future years by computing

x1 = Ax0, x2 = Ax1, x3 = Ax2, . . .

If we scale the initial vector so that its entries indicate the proportions of the population
that are married and single, then the coordinates of xn will indicate the proportions of
married and single women after n years. The sequence of vectors that we generate in
this manner is an example of a Markov chain. Markov chain models occur in a wide
variety of applied fields.

Definition A stochastic process is any sequence of experiments for which the outcome at
any stage depends on chance. A Markov process is a stochastic process with the
following properties:

I. The set of possible outcomes or states is finite.
II. The probability of the next outcome depends only on the previous outcome.

III. The probabilities are constant over time.

The following is an example of a Markov process:

EXAMPLE 5 Automobile Leasing An automobile dealer leases four types of vehicles: four-door
sedans, sports cars, minivans, and sport utility vehicles. The term of the lease is 2
years. At the end of the term, customers must renegotiate the lease and choose a new
vehicle.

The automobile leasing can be viewed as a process with four possible outcomes.
The probability of each outcome can be estimated by reviewing records of previous
leases. The records indicate that 80 percent of the customers currently leasing sedans
will continue doing so in the next lease. Furthermore, 10 percent of the customers cur-
rently leasing sports cars will switch to sedans. In addition, 5 percent of the customers
driving minivans or sport utility vehicles will also switch to sedans. These results are
summarized in the first row of Table 1. The second row indicates the percentages of
customers that will lease sports cars the next time, and the final two rows give the
percentages that will lease minivans and sport utility vehicles, respectively.

Table 1 Transition Probabilities for Vehicle Leasing

Current Lease

Sedan Sports Car Minivan SUV Next Lease

0.80 0.10 0.05 0.05 Sedan
0.10 0.80 0.05 0.05 Sports Car
0.05 0.05 0.80 0.10 Minivan
0.05 0.05 0.10 0.80 SUV
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Suppose that initially there are 200 sedans leased and 100 of each of the other three
types of vehicles. If we set

A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0.80 0.10 0.05 0.05
0.10 0.80 0.05 0.05
0.05 0.05 0.80 0.10
0.05 0.05 0.10 0.80

⎫⎪⎪⎪⎪⎪⎪⎪⎭ x0 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

200
100
100
100

⎫⎪⎪⎪⎪⎪⎪⎪⎭
then we can determine how many people will lease each type of vehicle two years later
by setting

x1 = Ax0 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0.80 0.10 0.05 0.05
0.10 0.80 0.05 0.05
0.05 0.05 0.80 0.10
0.05 0.05 0.10 0.80

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

200
100
100
100

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

180
110
105
105

⎫⎪⎪⎪⎪⎪⎪⎪⎭
We can predict the numbers for future leases by setting

xn+1 = Axn for n = 1, 2, . . .

The vectors xi produced in this manner are referred to as state vectors, and the sequence
of state vectors is called a Markov chain. The matrix A is referred to as a transition
matrix. The entries of each column of A are nonnegative numbers that add up to 1.
Such vectors are referred to as probability vectors. Thus each column vector of A is
a probability vector. For example, the first column of A corresponds to individuals
currently leasing sedans. The entries in this column are the probabilities of choosing
each type of vehicle when the lease is renewed.

In general, a matrix is said to be stochastic if its entries are nonnegative and the
entries in each column add up to 1. Thus a matrix is stochastic if its column vectors are
all probability vectors.

If we divide the entries of the initial vector by 500 (the total number of customers),
then the entries of the new initial state vector

x0 = (0.40, 0.20, 0.20, 0.20)T

represent the proportions of the population that rent each type of vehicle. The entries
of x1 will represent the proportions for the next lease. Thus x0 and x1 are probability
vectors, and it is easily seen that the succeeding state vectors in the chain will all be
probability vectors.

The long-range behavior of the process is determined by the eigenvalues and ei-
genvectors of the transition matrix A. The eigenvalues of A are λ1 = 1, λ2 = 0.8, and
λ3 = λ4 = 0.7. Even though A has a multiple eigenvalue, it does have four linearly
independent eigenvectors and hence it can be diagonalized. If the eigenvectors are used
to form a diagonalizing matrix Y , then

A = YDY−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 0 1

1 −1 0 −1

1 1 1 0

1 1 −1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0

0 8
10 0 0

0 0 7
10 0

0 0 0 7
10

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

1
4

1
4

1
4

− 1
4 − 1

4
1
4

1
4

0 0 1
2 − 1

2
1
2 − 1

2 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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The state vectors are computed by setting

xn = YDnY−1x0

= YDn(0.25, −0.05, 0, 0.10)T

= Y(0.25, −0.05(0.8)n, 0, 0.10(0.7)n)T

= 0.25

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
1
1
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ − 0.05(0.8)n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−1
−1

1
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ + 0.10(0.7)n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
As n increases, xn approaches the steady-state vector

x = (0.25, 0.25, 0.25, 0.25)T

Thus the Markov chain model predicts that, in the long run, the leases will be divided
equally among the four types of vehicles.

In general, we will assume that the initial vector x0 in a Markov chain is a probab-
ility vector, and this in turn implies that all of the state vectors are probability vectors.
One would expect, then, that if the chain converges to a steady-state vector x, then the
steady-state vector must also be a probability vector. This is indeed the case, as we see
in the next theorem.

Theorem 6.3.3 If a Markov chain with an n × n transition matrix A converges to a steady-state vector
x, then

(i) x is a probability vector.
(ii) λ1 = 1 is an eigenvalue of A and x is an eigenvector belonging to λ1.

Proof of (i) Let us denote the kth state vector in the chain by xk = (x(k)
1 , x(k)

2 , . . . , x(k)
n )T . The entries

of each xk are nonnegative and sum to 1. For each j, the jth entry of the limit vector x
satisfies

xj = lim
k→∞

x(k)
j ≥ 0

and

x1 + x2 + · · · + xn = lim
k→∞

(x(k)
1 + x(k)

2 + · · · + x(k)
n ) = 1

Therefore the steady-state vector x is a probability vector.

Proof of (ii) We leave it for the reader to prove that λ1 = 1, is an eigenvalue of A. (See Exercise 27.)
It follows that x is an eigenvector belonging to λ1 = 1 since

Ax = A( lim
k→∞

xk) = lim
k→∞

(Axk) = lim
k→∞

xk+1 = x

In general, if A is a n × n stochastic matrix then λ1 = 1 is an eigenvalue of A and
the remaining eigenvalues satisfy

|λj| ≤ 1 j = 2, 3, . . . , n
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The existence of a steady state for a Markov chain is guaranteed whenever λ1 = 1 is a
dominant eigenvalue of the transition matrix A. An eigenvalue λ1 of a matrix A is said
to be a dominant eigenvalue if the remaining eigenvalues of A satisfy

|λj| < |λ1| for j = 2, 3, . . . , n

Theorem 6.3.4 If λ1 = 1 is a dominant eigenvalue of a stochastic matrix A, then the Markov chain
with transition A will converge to a steady-state vector.

Proof In the case that A is diagonalizable, let y1 be an eigenvector belonging to λ1 = 1 and
let Y = (y1, y2, . . . , yn) be a matrix that diagonalizes A. If E is the n × n matrix whose
(1, 1) entry is 1 and whose remaining entries are all 0, then as k → ∞

Dk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λk

1
λk

2
. . .

λk
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

0
. . .

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = E

If x0 is any initial probability vector and c = Y−1x0, then

xk = Akx0 = YDkY−1x0 = YDkc → YEc = Y(c1e1) = c1y1

Thus the vector c1y1 is the steady-state vector for the Markov chain.
In the case that the transition matrix A is defective with dominant eigenvalue

λ1 = 1, one can still prove the result by using a special matrix J that is referred to
as the Jordan canonical form of A. This topic is covered in detail in the supplemental
Web chapter (Chapter 9) that accompanies this book. In that chapter, it is shown that
any n × n matrix A can be factored into a product A = Y JY−1, where J is an upper
bidiagonal matrix with the eigenvalues of A on its main diagonal and 0’s and 1’s on
the diagonal directly above the main diagonal. It turns out that if A is stochastic with
dominant eigenvalue λ1 = 1, then Jk will converge to E as k → ∞. So the proof in
the case where A is defective is the same as before, but with the diagonal matrix D
replaced by the bidiagonal matrix J.

Not all Markov chains converge to a steady-state vector. However, it can be shown
if all the entries of the transition matrix A are positive, then that there is a unique
steady-state vector x and that Anx0 will converge to x for any initial probability vector
x0. In fact, this result will hold if Ak has strictly positive entries even though A may
have some 0 entries. A Markov process with transition matrix A is said to be regular if
all the entries of some power of A are positive.

In Section 6.8, we will study positive matrices, that is, matrices whose entries are
all positive. One of the main results in that section is a theorem due to Perron. The
Perron theorem can be used to show that if the transition matrix A of a Markov process
is positive, then λ1 = 1 is a dominant eigenvalue of A.
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APPLICATION 2 Web Searches and Page Ranking

A common way to locate information on the Web is to do a key word search using one
of the many search engines available. Generally the search engine will find all pages
that contain the key search words and rank the pages in order of importance. Typically,
there are more than 4 billion pages being searched and it is not uncommon to find as
many as 20,000 pages that match all of the key words. Often in such cases the page
ranked first or second by the search engine is exactly the one with the information you
are seeking. How do the search engines rank the pages? In this application we will
describe the technique used by the search engine GoogleTM.

The Google PageRankTM algorithm for ranking pages is actually a gigantic
Markov process based on the link structure of the Web. The algorithm was initially
conceived by two graduate students at Stanford University. The students, Larry Page
and Sergey Brin, used the algorithm to develop the most successful and widely used
search engine on the Internet.

The PageRank algorithm views Web surfing as a random process. The transition
matrix A for the Markov process will be n × n, where n is the total number of sites
that are searched. The page rank computation has been referred to as the “world’s
largest matrix computation” since current values of n are greater than 4 billion. (See
Reference 1.) The (i, j) entry of A represents the probability that a random Web surfer
will link from Web site j to Web site i. The page rank model assumes that the surfer will
always follow a link on the current page a certain percentage of the time and otherwise
will randomly link to another page.

For example, assume that the current page is numbered j and it has links to five
other pages. Assume also that the user will follow these five links 85 percent of the
time and will randomly link to another page 15 percent of the time. If there is no link
from page j to page i, then

aij = 0.15
1

n

If page j does contain a link to page i, then one could follow that link, or one could get
to page i doing a random surf. In this case,

aij = 0.85
1

5
+ 0.15

1

n

In the case that the current page j has no hyperlinks to any other pages, it is considered
to be a dangling page. In this case, we assume that the Web surfer will connect to any
page on the Web with equal probability and we set

aij = 1

n
for 1 ≤ i ≤ n (3)

More generally, let k(j) denote the number of links from page j to other pages on
the Web. If k( j) �= 0 and the person surfing the Web follows only links on the current
Web page and always follows one of the links, then the probability of linking from
page j to i is given by

mij =
{

1
k(j) if there is a link from page j to page i

0 otherwise
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In the case that page j is a dangling Web page, we assume that the Web surfer will link
to page i with probability

mij = 1

n

If we make the added assumption that the surfer will follow a link on the current page
with probability p and randomly link to any other page with probability 1 − p, then the
probability of linking from page j to i is given by

aij = pmij + (1 − p)
1

n
(4)

Note that in the case that page j is a dangling Web page, equation (4) simplifies to
equation (3).

Because of the random surfing, each entry in the jth column of A is strictly positive.
Since A has strictly positive entries, the Perron theory (Section 6.8) can be used to show
that the Markov process will converge to a unique steady-state vector x. The kth entry
of x corresponds to the probability that, in the long run, a random surfer will end up
at Web site k. The entries of the steady-state vector provide the page rankings. The
value of xk determines the overall ranking of Web site k. For example, if xk is the third
largest entry of the vector x, then Web site k will have the third highest overall page
rank. When a Web search is conducted, the search engine first finds all sites that match
all of the key words. It then lists them in decreasing order of their page ranks.

Let M = (mij) and let e be a vector in R
n whose entries are all equal to 1. The

matrix M is sparse; that is, most of its entries are equal to 0. If we set E = eeT , then E
is an n × n matrix of rank 1 and we can write Equation (4) in matrix form:

A = pM + 1 − p

n
eeT = pM + 1 − p

n
E (5)

Thus, A is a sum of two matrices with special structure. To compute the steady-state
vector, we must perform a sequence of multiplications

xj+1 = Axj, j = 0, 1, 2, . . .

These computations can be simplified dramatically if we take advantage of the special
structure of M and E. (See Exercise 29.)

References
1. Moler, Cleve, “The World’s Largest Matrix Computation,” MATLAB News &

Notes, The Mathworks, Natick, MA, October 2002.
2. Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd, “The

PageRank Citation Ranking: Bringing Order to the Web,” November 1999.
(dbpubs.stanford.edu/pub/1999-66)

APPLICATION 3 Sex-Linked Genes
Sex-linked genes are genes that are located on the X chromosome. For example, the
gene for blue-green color blindness is a recessive sex-linked gene. To devise a mathem-
atical model to describe color blindness in a given population, it is necessary to divide
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the population into two classes: males and females. Let x(0)
1 be the proportion of genes

for color blindness in the male population, and let x(0)
2 be the proportion in the female

population. [Since color blindness is recessive, the actual proportion of color-blind fe-
males will be less than x(0)

2 .] Because the male receives one X chromosome from the
mother and none from the father, the proportion x(1)

1 of color-blind males in the next
generation will be the same as the proportion of recessive genes in the present genera-
tion of females. Because the female receives an X chromosome from each parent, the
proportion x(1)

2 of recessive genes in the next generation of females will be the average
of x(0)

1 and x(0)
2 . Thus,

x(0)
2 = x(1)

1
1
2 x(0)

1 + 1
2 x(0)

2 = x(1)
2

If x(0)
1 = x(0)

2 , the proportion will not change in future generations. Let us assume that
x(0)

1 �= x(0)
2 and write the system as a matrix equation.⎧⎪⎪⎪⎩ 0 1

1
2

1
2

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ x(0)

1

x(0)
2

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ x(1)

1

x(1)
2

⎫⎪⎪⎪⎭
Let A denote the coefficient matrix, and let x(n) = (x(n)

1 , x(n)
2 )T denote the proportion of

color-blind genes in the male and female populations of the (n + 1)st generation. Then

x(n) = Anx(0)

To compute An, we note that A has eigenvalues 1 and − 1
2 and consequently can be

factored into a product:

A =
⎧⎪⎩ 1 −2

1 1

⎫⎪⎭⎧⎪⎪⎪⎩ 1 0

0 − 1
2

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 1

3
2
3

− 1
3

1
3

⎫⎪⎪⎪⎭
Thus,

x(n) =
⎧⎪⎪⎪⎩ 1 −2

1 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 1 0

0 − 1
2

⎫⎪⎪⎪⎭
n ⎧⎪⎪⎪⎩ 1

3
2
3

− 1
3

1
3

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎩ x(0)

1

x(0)
2

⎫⎪⎪⎪⎪⎭
= 1

3

⎧⎪⎪⎪⎩ 1 − (− 1
2 )n−1 2 + (− 1

2 )n−1

1 − (− 1
2 )n 2 + (− 1

2 )n

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎩ x(0)

1

x(0)
2

⎫⎪⎪⎪⎪⎭
and hence

lim
n→∞ x(n) = 1

3

⎧⎪⎪⎪⎩ 1 2
1 2

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩ x(0)

1

x(0)
2

⎫⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x(0)

1 + 2x(0)
2

3

x(0)
1 + 2x(0)

2

3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The proportions of genes for color blindness in the male and female populations will
tend to the same value as the number of generations increases. If the proportion of
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color-blind men is p and, over a number of generations, no outsiders have entered the
population, there is justification for assuming that the proportion of genes for color
blindness in the female population is also p. Since color blindness is recessive, we
would expect the proportion of color-blind women to be about p2. Thus, if 1 percent of
the male population is color blind, we would expect about 0.01 percent of the female
population to be color blind.

The Exponential of a Matrix
Given a scalar a, the exponential ea can be expressed in terms of a power series

ea = 1 + a + 1

2!a
2 + 1

3!a
3 + · · ·

Similarly, for any n × n matrix A, we can define the matrix exponential eA in terms of
the convergent power series

eA = I + A + 1

2!A
2 + 1

3!A
3 + · · · (6)

The matrix exponential (6) occurs in a wide variety of applications. In the case of a
diagonal matrix

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2
. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
the matrix exponential is easy to compute:

eD = lim
m→∞

(
I + D + 1

2!D
2 + · · · + 1

m!D
m

)

= lim
m→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
k=0

1

k!λ
k
1

. . .
m∑

k=0

1

k!λ
k
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
eλ1

eλ2

. . .

eλn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is more difficult to compute the matrix exponential for a general n × n matrix A. If,
however, A is diagonalizable, then

Ak = XDkX−1 for k = 1, 2, . . .

eA = X

(
I + D + 1

2!D
2 + 1

3!D
3 + · · ·

)
X−1

= XeDX−1

EXAMPLE 6 Compute eA for

A =
⎧⎪⎩ −2 −6

1 3

⎫⎪⎭
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Solution
The eigenvalues of A are λ1 = 1 and λ2 = 0 with eigenvectors x1 = (−2, 1)T and
x2 = (−3, 1)T . Thus

A = XDX−1 =
⎧⎪⎩ −2 −3

1 1

⎫⎪⎭⎧⎪⎩ 1 0
0 0

⎫⎪⎭⎧⎪⎩ 1 3
−1 −2

⎫⎪⎭
and

eA = XeDX−1 =
⎧⎪⎪⎪⎩ −2 −3

1 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ e1 0

0 e0

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 1 3

−1 −2

⎫⎪⎪⎪⎭
=

⎧⎪⎪⎪⎩ 3 − 2e 6 − 6e
e − 1 3e − 2

⎫⎪⎪⎪⎭
The matrix exponential can be applied to the initial value problem

Y′ = AY, Y(0) = Y0 (7)

studied in Section 6.2. In the case of one equation in one unknown,

y′ = ay, y(0) = y0

the solution is

y = eaty0 (8)

We can generalize this and express the solution of (7) in terms of the matrix exponential
etA. In general, a power series can be differentiated term by term within its radius of
convergence. Since the expansion of etA has infinite radius of convergence, we have

d

dt
etA = d

dt

(
I + tA + 1

2! t
2A2 + 1

3! t
3A3 + · · ·

)

=
(

A + tA2 + 1

2! t
2A3 + · · ·

)

= A

(
I + tA + 1

2! t
2A2 + · · ·

)
= AetA

If, as in (8), we set

Y(t) = etAY0

then

Y′ = AetAY0 = AY

and

Y(0) = Y0

Thus, the solution of

Y′ = AY, Y(0) = Y0

is simply

Y = etAY0 (9)
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Although the form of this solution looks different from the solutions in Section 6.2,
there is really no difference. In Section 6.2 the solution was expressed in the form

c1eλ1tx1 + c2eλ2tx2 + · · · + cneλntxn

where xi was an eigenvector belonging to λi for i = 1, . . . , n. The ci’s that satisfied the
initial conditions were determined by solving a system

Xc = Y0

with coefficient matrix X = (x1, . . . , xn).
If A is diagonalizable, we can write (9) in the form

Y = XetDX−1Y0

Thus,

Y = XetDc

= (x1, x2, . . . , xn)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c1eλ1t

c2eλ2t

...
cneλnt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= c1eλ1tx1 + · · · + cneλntxn

To summarize, the solution to the initial value problem (7) is given by

Y = etAY0

If A is diagonalizable, this solution can be written in the form

Y = XetDX−1Y0

= c1eλ1tx1 + c2eλ2tx2 + · · · + cneλntxn (c = X−1Y0)

EXAMPLE 7 Use the matrix exponential to solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =
⎧⎪⎩ 3 4

3 2

⎫⎪⎭ , Y0 =
⎧⎪⎩ 6

1

⎫⎪⎭
(This problem was solved in Example 1 of Section 6.2.)

Solution
The eigenvalues of A are λ1 = 6 and λ2 = −1, with eigenvectors x1 = (4, 3)T and
x2 = (1, −1)T . Thus,

A = XDX−1 =
⎧⎪⎩ 4 1

3 −1

⎫⎪⎭⎧⎪⎩ 6 0
0 −1

⎫⎪⎭⎧⎪⎪⎪⎩ 1
7

1
7

3
7 − 4

7

⎫⎪⎪⎪⎭
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and the solution is given by

Y = etAY0

= XetDX−1Y0

=
⎧⎪⎪⎪⎩ 4 1

3 −1

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ e6t 0

0 e−t

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 1

7
1
7

3
7 − 4

7

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 6

1

⎫⎪⎪⎪⎭
=

⎧⎪⎪⎪⎩ 4e6t + 2e−t

3e6t − 2e−t

⎫⎪⎪⎪⎭
Compare this to Example 1 in Section 6.2.

EXAMPLE 8 Use the matrix exponential to solve the initial value problem

Y′ = AY, Y(0) = Y0

where

A =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎪⎪⎪⎪⎩

2
1
4

⎫⎪⎪⎪⎪⎪⎭
Solution
Since the matrix A is defective, we will use the definition of the matrix exponential to
compute etA. Note that A3 = O, so

etA = I + tA + 1

2! t
2A2

=
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 t t2/2
0 1 t
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The solution to the initial value problem is given by

Y = etAY0

=
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 t t2/2
0 1 t
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2
1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭

=
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 + t + 2t2

1 + 4t
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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SECTION 6.3 EXERCISES
1. In each of the following, factor the matrix A into a

product XDX−1, where D is diagonal:

(a) A =
⎧⎪⎩ 0 1

1 0

⎫⎪⎭ (b) A =
⎧⎪⎩ 5 6

−2 −2

⎫⎪⎭
(c) A =

⎧⎪⎩ 2 −8
1 −4

⎫⎪⎭ (d) A =
⎧⎪⎪⎪⎪⎪⎩

2 2 1
0 1 2
0 0 −1

⎫⎪⎪⎪⎪⎪⎭
(e) A =

⎧⎪⎪⎪⎪⎪⎩
1 0 0

−2 1 3
1 1 −1

⎫⎪⎪⎪⎪⎪⎭
(f) A =

⎧⎪⎪⎪⎪⎪⎩
1 2 −1
2 4 −2
3 6 −3

⎫⎪⎪⎪⎪⎪⎭
2. For each of the matrices in Exercise 1, use the

XDX−1 factorization to compute A6.

3. For each of the nonsingular matrices in Exercise 1,
use the XDX−1 factorization to compute A−1.

4. For each of the following, find a matrix B such that
B2 = A.

(a) A =
⎧⎪⎩ 2 1

−2 −1

⎫⎪⎭(b) A =
⎧⎪⎪⎪⎪⎪⎩

9 −5 3
0 4 3
0 0 1

⎫⎪⎪⎪⎪⎪⎭
5. Let A be a nondefective n × n matrix with diagon-

alizing matrix X. Show that the matrix Y = (X−1)T

diagonalizes AT .

6. Let A be a diagonalizable matrix whose eigenvalues
are all either 1 or −1. Show that A−1 = A.

7. Show that any 3 × 3 matrix of the form⎧⎪⎪⎪⎪⎪⎩
a 1 0
0 a 1
0 0 b

⎫⎪⎪⎪⎪⎪⎭
is defective.

8. For each of the following, find all possible values
of the scalar α that make the matrix defective or
show that no such values exist.

(a)

⎧⎪⎪⎪⎪⎪⎩
1 1 0
1 1 0
0 0 α

⎫⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 1 1
0 0 α

⎫⎪⎪⎪⎪⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 2 0
2 1 0
2 −1 α

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
4 6 −2

−1 −1 1
0 0 α

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
3α 1 0
0 α 0
0 0 α

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
3α 0 0
0 α 1
0 0 α

⎫⎪⎪⎪⎪⎪⎭

(g)

⎧⎪⎪⎪⎪⎪⎩
α + 2 1 0

0 α + 2 0
0 0 2α

⎫⎪⎪⎪⎪⎪⎭
(h)

⎧⎪⎪⎪⎪⎪⎩
α + 2 0 0

0 α + 2 1
0 0 2α

⎫⎪⎪⎪⎪⎪⎭
9. Let A be a 4×4 matrix and let λ be an eigenvalue of

multiplicity 3. If A − λI has rank 1, is A defective?
Explain.

10. Let A be an n × n matrix with positive real ei-
genvalues λ1 > λ2 > · · · > λn. Let xi be an
eigenvector belonging to λi for each i, and let x =
α1x1 + · · · + αnxn.

(a) Show that Amx =
n∑

i=1

αiλ
m
i xi.

(b) Show that if λ1 = 1, then lim
m→∞ Amx = α1x1.

11. Let A be a n × n matrix with real entries and let
λ1 = a + bi (where a and b are real and b �= 0) be
an eigenvalue of A. Let z1 = x + i y (where x and y
both have real entries) be an eigenvector belonging
to λ1 and let z2 = x − i y.

(a) Explain why z1 and z2 must be linearly inde-
pendent.

(b) Show that y �= 0 and that x and y are linearly
independent.

12. Let A be an n × n matrix with an eigenvalue λ of
multiplicity n. Show that A is diagonalizable if and
only if A = λI.

13. Show that a nonzero nilpotent matrix is defective.
14. Let A be a diagonalizable matrix and let X be the

diagonalizing matrix. Show that the column vec-
tors of X that correspond to nonzero eigenvalues of
A form a basis for R(A).

15. It follows from Exercise 14 that for a diagonal-
izable matrix the number of nonzero eigenvalues
(counted according to multiplicity) equals the rank
of the matrix. Give an example of a defective
matrix whose rank is not equal to the number of
nonzero eigenvalues.

16. Let A be an n × n matrix and let λ be an eigenvalue
of A whose eigenspace has dimension k, where
1 < k < n. Any basis {x1, . . . , xk} for the eigen-
space can be extended to a basis {x1, . . . , xn} for
R

n. Let X = (x1, . . . , xn) and B = X−1AX.
(a) Show that B is of the form⎧⎪⎩ λI B12

O B22

⎫⎪⎭
where I is the k × k identity matrix.
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(b) Use Theorem 6.1.1 to show that λ is an eigen-
value of A with multiplicity at least k.

17. Let x, y be nonzero vectors in R
n, n ≥ 2, and let

A = xyT . Show that
(a) λ = 0 is an eigenvalue of A with n − 1

linearly independent eigenvectors and con-
sequently has multiplicity at least n − 1 (see
Exercise 16).

(b) the remaining eigenvalue of A is

λn = tr A = xT y

and x is an eigenvector belonging to λn.

(c) if λn = xTy �= 0, then A is diagonalizable.

18. Let A be a diagonalizable n × n matrix. Prove that
if B is any matrix that is similar to A, then B is
diagonalizable.

19. Show that if A and B are two n × n matrices with
the same diagonalizing matrix X, then AB = BA.

20. Let T be an upper triangular matrix with distinct
diagonal entries (i.e., tii �= tjj whenever i �= j).
Show that there is an upper triangular matrix R that
diagonalizes T .

21. Each year, employees at a company are given the
option of donating to a local charity as part of a
payroll deduction plan. In general, 80 percent of
the employees enrolled in the plan in any one year
will choose to sign up again the following year,
and 30 percent of the unenrolled will choose to
enroll the following year. Determine the transition
matrix for the Markov process and find the steady-
state vector. What percentage of employees would
you expect to find enrolled in the program in the
long run?

22. The city of Mawtookit maintains a constant pop-
ulation of 300,000 people from year to year. A
political science study estimated that there were
150,000 Independents, 90,000 Democrats, and
60,000 Republicans in the town. It was also estim-
ated that each year 20 percent of the Independents
become Democrats and 10 percent become Re-
publicans. Similarly, 20 percent of the Democrats
become Independents and 10 percent become Re-
publicans, while 10 percent of the Republicans
defect to the Democrats and 10 percent become
Independents each year. Let

x =
⎧⎪⎪⎪⎪⎪⎩

150,000
90,000
60,000

⎫⎪⎪⎪⎪⎪⎭

and let x(1) be a vector representing the number of
people in each group after one year.

(a) Find a matrix A such that Ax = x(1).

(b) Show that λ1 = 1.0, λ2 = 0.5, and λ3 = 0.7
are the eigenvalues of A, and factor A into a
product XDX−1, where D is diagonal.

(c) Which group will dominate in the long run?
Justify your answer by computing lim

n→∞ Anx.

23. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2

1
3

1
5

1
4

1
3

2
5

1
4

1
3

2
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
be a transition matrix for a Markov process.
(a) Compute det(A) and trace(A) and make use of

those values to determine the eigenvalues of A.

(b) Explain why the Markov process must con-
verge to a steady-state vector.

(c) Show that y = (16, 15, 15)T is an eigenvector
of A. How is the steady-state vector related
to y?

24. Let A be a 3 × 2 matrix whose column vectors a1

and a2 are both probability vectors. Show that if p
is a probability vector in R

2 and y = Ap, then y is
a probability vector in R

3.

25. Generalize the result from Exercise 24. Show that
if A is an m × n matrix whose column vectors are
all probability vectors and p is a probability vector
in R

n, then the vector y = Ax will be probability
vector in R

m.

26. Consider a Web network consisting of only four
sites that are linked together as shown in the ac-
companying diagram. If the Google PageRank al-
gorithm is used to rank these pages, determine the
transition matrix A. Assume that the Web surfer
will follow a link on the current page 85 percent
of the time.

S1

S4

S2

S3
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27. Let A be an n × n stochastic matrix and let e be
the vector in R

n whose entries are all equal to 1.
Show that e is an eigenvector of AT . Explain why
a stochastic matrix must have λ = 1 as an eigen-
value.

28. The transition matrix in Example 5 has the prop-
erty that both its rows and its columns add up to 1.
In general, a matrix A is said to be doubly stochastic
if both A and AT are stochastic. Let A be an
n × n doubly stochastic matrix whose eigenvalues
satisfy

λ1 = 1 and |λj| < 1 for j = 2, 3, . . . , n

Show that if e is the vector in R
n whose entries

are all equal to 1, then the Markov chain will
converge to the steady-state vector x = 1

n e
for any starting vector x0. Thus, for a doubly
stochastic transition matrix, the steady-state vec-
tor will assign equal probabilities to all possible
outcomes.

29. Let A be the PageRank transition matrix and let
xk be a vector in the Markov chain with start-
ing probability vector x0. Since n is very large,
the direct multiplication xk+1 = Axk is computa-
tionally intensive. However, the computation can
be simplified dramatically if we take advantage
of the structured components of A given in equa-
tion (5). Because M is sparse, the multiplication
wk = Mxk is computationally much simpler. Show
that if we set

b = 1 − p

n
e

then

Exk = e and xk+1 = pwk + b

where M, E, e, and p are as defined in equation (5).
30. Use the definition of the matrix exponential to

compute eA for each of the following matrices:

(a) A =
⎧⎪⎩ 1 1

−1 −1

⎫⎪⎭ (b) A =
⎧⎪⎩ 1 1

0 1

⎫⎪⎭

(c) A =
⎧⎪⎪⎪⎪⎪⎩

1 0 −1
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭

31. Compute e A for each of the following matrices:

(a) A =
⎧⎪⎩ −2 −1

6 3

⎫⎪⎭ (b) A =
⎧⎪⎩ 3 4

−2 −3

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1

−1 −1 −1
1 1 1

⎫⎪⎪⎪⎪⎪⎭
32. In each of the following, solve the initial value

problem Y′ = AY, Y(0) = Y0 by computing etAY0:

(a) A =
⎧⎪⎩ 1 −2

0 −1

⎫⎪⎭ , Y0 =
⎧⎪⎩ 1

1

⎫⎪⎭
(b) A =

⎧⎪⎩ 2 3
−1 −2

⎫⎪⎭ , Y0 =
⎧⎪⎩ −4

2

⎫⎪⎭
(c) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 0 1
0 0 −1

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭
(d) A =

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 0 1

−1 −1 −1

⎫⎪⎪⎪⎪⎪⎭ , Y0 =
⎧⎪⎪⎪⎪⎪⎩

1
1

−1

⎫⎪⎪⎪⎪⎪⎭
33. Let λ be an eigenvalue of an n × n matrix A and let

x be an eigenvector belonging to λ. Show that eλ is
an eigenvalue of eA and x is an eigenvector of eA

belonging to eλ.

34. Show that e A is nonsingular for any diagonalizable
matrix A.

35. Let A be a diagonalizable matrix with characteristic
polynomial

p(λ) = a1λ
n + a2λ

n−1 + · · · + an+1

(a) Show that if D is a diagonal matrix whose
diagonal entries are the eigenvalues of A,
then

p(D) = a1Dn + a2Dn−1 + · · · + an+1I = O

(b) Show that p(A) = O.

(c) Show that if an+1 �= 0, then A is nonsingu-
lar and A−1 = q(A) for some polynomial q of
degree less than n.
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6.4 Hermitian Matrices

Let C
n denote the vector space of all n-tuples of complex numbers. The set C of all

complex numbers will be taken as our field of scalars. We have already seen that a
matrix A with real entries may have complex eigenvalues and eigenvectors. In this
section, we study matrices with complex entries and look at the complex analogues of
symmetric and orthogonal matrices.

Complex Inner Products
If α = a + bi is a complex scalar, the length of α is given by

|α| = √
αα =

√
a2 + b2

The length of a vector z = (z1, z2, . . . , zn)T in C
n is given by

‖z‖ = (|z1|2 + |z2|2 + · · · + |zn|2
)1/2

= (z1z1 + z2z2 + · · · + znzn)
1/2

= (
zTz

)1/2

As a notational convenience, we write zH for the transpose of z. Thus

zT = zH and ‖z‖ = (zHz)1/2

Definition Let V be a vector space over the complex numbers. An inner product on V is an
operation that assigns to each pair of vectors z and w in V a complex number 〈z, w〉
satisfying the following conditions.

I. 〈z, z〉 ≥ 0, with equality if and only if z = 0.
II. 〈z, w〉 = 〈w, z〉 for all z and w in V .

III. 〈αz + βw, u〉 = α〈z, u〉 + β〈w, u〉.

Note that for a complex inner product space, 〈z, w〉 = 〈w, z〉, rather than 〈w, z〉. If
we make the proper modifications to allow for this difference, the theorems on real
inner product spaces in Chapter 5, Section 5.5, will all be valid for complex in-
ner product spaces. In particular, let us recall Theorem 5.5.2: If {u1, . . . , un} is an
orthonormal basis for a real inner product space V and

x =
n∑

i=1

ciui

then

ci = 〈ui, x〉 = 〈x, ui〉 and ‖x‖2 =
n∑

i=1

c2
i

In the case of a complex inner product space, if {w1, . . . , wn} is an orthonormal basis
and

z =
n∑

i=1

ciwi
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then

ci = 〈z, wi〉 , ci = 〈wi, z〉 and ‖z‖2 =
n∑

i=1

cici

We can define an inner product on C
n by

〈z, w〉 = wHz (1)

for all z and w in C
n. We leave it to the reader to verify that (1) actually does define an

inner product on C
n. The complex inner product space C

n is similar to the real inner
product space R

n. The main difference is that in the complex case it is necessary to
conjugate before transposing when taking an inner product.

R
n

C
n

〈x, y〉 = yTx 〈z, w〉 = wHz

xTy = yTx zHw = wHz

‖x‖2 = xTx ‖z‖2 = zHz

EXAMPLE 1 If

z =
⎧⎪⎩ 5 + i

1 − 3i

⎫⎪⎭ and w =
⎧⎪⎩ 2 + i

−2 + 3i

⎫⎪⎭
then

wHz = (2 − i, −2 − 3i)

⎧⎪⎪⎪⎩ 5 + i
1 − 3i

⎫⎪⎪⎪⎭ = (11 − 3i) + (−11 + 3i) = 0

zHz = |5 + i|2 + |1 − 3i|2 = 36
wHw = |2 + i|2 + | − 2 + 3i|2 = 18

It follows that z and w are orthogonal and

‖z‖ = 6, ‖w‖ = 3
√

2

Hermitian Matrices
Let M = (mij) be an m × n matrix with mij = aij + ibij for each i and j. We may write
M in the form

M = A + iB

where A = (aij) and B = (bij) have real entries. We define the conjugate of M by

M = A − iB

Thus, M is the matrix formed by conjugating each of the entries of M. The transpose of
M will be denoted by MH . The vector space of all m × n matrices with complex entries
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is denoted by C
m×n. If A and B are elements of C

m×n and C ∈ C
n×r, then the following

rules are easily verified (see Exercise 9):

I. (AH)H = A
II. (αA + βB)H = αAH + βBH

III. (AC)H = CHAH

Definition A matrix M is said to be Hermitian if M = MH .

EXAMPLE 2 The matrix

M =
⎧⎪⎩ 3 2 − i

2 + i 4

⎫⎪⎭
is Hermitian, since

MH =
⎧⎪⎪⎩ 3 2 − i

2 + i 4

⎫⎪⎪⎭T

=
⎧⎪⎩ 3 2 − i

2 + i 4

⎫⎪⎭ = M

If M is a matrix with real entries, then MH = MT . In particular, if M is a real
symmetric matrix, then M is Hermitian. Thus we may view Hermitian matrices as
the complex analogue of real symmetric matrices. Hermitian matrices have many nice
properties, as we shall see in the next theorem.

Theorem 6.4.1 The eigenvalues of a Hermitian matrix are all real. Furthermore, eigenvectors
belonging to distinct eigenvalues are orthogonal.

Proof Let A be a Hermitian matrix. Let λ be an eigenvalue of A and let x be an eigenvector
belonging to λ. If α = xHAx, then

α = αH = (xHAx)H = xHAx = α

Thus, α is real. It follows that

α = xHAx = xHλx = λ‖x‖2

and hence

λ = α

‖x‖2

is real. If x1 and x2 are eigenvectors belonging to distinct eigenvalues λ1 and λ2,
respectively, then

(Ax1)Hx2 = xH
1 AHx2 = xH

1 Ax2 = λ2xH
1 x2

and

(Ax1)Hx2 = (xH
2 Ax1)H = (λ1xH

2 x1)H = λ1xH
1 x2

Consequently,

λ1xH
1 x2 = λ2xH

1 x2
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and since λ1 �= λ2, it follows that

〈x2, x1〉 = xH
1 x2 = 0

Definition An n × n matrix U is said to be unitary if its column vectors form an orthonormal
set in C

n.

Thus U is unitary if and only if UHU = I. If U is unitary, then, since the column
vectors are orthonormal, U must have rank n. It follows that

U−1 = IU−1 = UHUU−1 = UH

A real unitary matrix is an orthogonal matrix.

Corollary 6.4.2 If the eigenvalues of a Hermitian matrix A are distinct, then there exists a unitary
matrix U that diagonalizes A.

Proof Let xi be an eigenvector belonging to λi for each eigenvalue λi of A. Let ui =
(1/‖xi‖)xi. Thus ui is a unit eigenvector belonging to λi for each i. It follows from
Theorem 6.4.1 that {u1, . . . , un} is an orthonormal set in C

n. Let U be the matrix whose
ith column vector is ui for each i; then U is unitary and U diagonalizes A.

EXAMPLE 3 Let

A =
⎧⎪⎩ 2 1 − i

1 + i 1

⎫⎪⎭
Find a unitary matrix U that diagonalizes A.

Solution
The eigenvalues of A are λ1 = 3 and λ2 = 0, with corresponding eigenvectors x1 =
(1 − i, 1)T and x2 = (−1, 1 + i)T . Let

u1 = 1

‖x1‖x1 = 1√
3

(1 − i, 1)T

and

u2 = 1

‖x2‖x2 = 1√
3

(−1, 1 + i)T

Thus

U = 1√
3

⎧⎪⎩ 1 − i −1
1 1 + i

⎫⎪⎭
and

UHAU = 1

3

⎧⎪⎪⎪⎩ 1 + i 1
−1 1 − i

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 2 1 − i

1 + i 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 1 − i −1

1 1 + i

⎫⎪⎪⎪⎭
=

⎧⎪⎪⎪⎩ 3 0
0 0

⎫⎪⎪⎪⎭
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Actually, Corollary 6.4.2 is valid even if the eigenvalues of A are not distinct. To
show this, we will first prove the following theorem.

Theorem 6.4.3 Schur’s Theorem
For each n × n matrix A, there exists a unitary matrix U such that UHAU is upper
triangular.

Proof The proof is by induction on n. The result is obvious if n = 1. Assume that the hy-
pothesis holds for k × k matrices, and let A be a (k + 1) × (k + 1) matrix. Let λ1 be
an eigenvalue of A, and let w1 be a unit eigenvector belonging to λ1. Using the Gram–
Schmidt process, construct w2, . . . , wk+1 such that {w1, . . . , wk+1} is an orthonormal
basis for C

k+1. Let W be the matrix whose ith column vector is wi for i = 1, . . . , k + 1.
Then, by construction, W is unitary. The first column of WHAW will be WHAw1.

WHAw1 = λ1WHw1 = λ1e1

Thus WHAW is a matrix of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 × × · · · ×
0
... M
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where M is a k × k matrix. By the induction hypothesis, there exists a k × k unitary
matrix V1 such that VH

1 MV1 = T1, where T1 is triangular. Let

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 · · · 0
0
... V1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Here V is unitary and

VHWHAWV =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 × · · · ×
0
... VH

1 MV1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1 × · · · ×
0
... T1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = T

Let U = WV . The matrix U is unitary, since

UHU = (WV)HWV = VHWHWV = I

and UHAU = T .

The factorization A = UTUH is often referred to as the Schur decomposition of A.
In the case that A is Hermitian, the matrix T will be diagonal.
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Theorem 6.4.4 Spectral Theorem
If A is Hermitian, then there exists a unitary matrix U that diagonalizes A.

Proof By Theorem 6.4.3, there is a unitary matrix U such that UHAU = T , where T is upper
triangular. Furthermore,

TH = (UHAU)H = UHAHU = UHAU = T

Therefore, T is Hermitian and consequently must be diagonal.

EXAMPLE 4 Given

A =
⎧⎪⎪⎪⎪⎪⎩

0 2 −1
2 3 −2

−1 −2 0

⎫⎪⎪⎪⎪⎪⎭
find an orthogonal matrix U that diagonalizes A.

Solution
The characteristic polynomial

p(λ) = −λ3 + 3λ2 + 9λ + 5 = (1 + λ)2(5 − λ)

has roots λ1 = λ2 = −1, and λ3 = 5. Computing eigenvectors in the usual way, we see
that x1 = (1, 0, 1)T and x2 = (−2, 1, 0)T form a basis for the eigenspace N(A + I). We
can apply the Gram–Schmidt process to obtain an orthonormal basis for the eigenspace
corresponding to λ1 = λ2 = −1:

u1 = 1

‖x1‖x1 = 1√
2

(1, 0, 1)T

p = (
xT

2 u1
)

u1 = −√
2u1 = (−1, 0, −1)T

x2 − p = (−1, 1, 1)T

u2 = 1

‖x2 − p‖ (x2 − p) = 1√
3

(−1, 1, 1)T

The eigenspace corresponding to λ3 = 5 is spanned by x3 = (−1, −2, 1)T . Since x3

must be orthogonal to u1 and u2 (Theorem 6.4.1), we need only normalize

u3 = 1

‖x3‖x3 = 1√
6

(−1, −2, 1)T

Thus {u1, u2, u3} is an orthonormal set and

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

− 1√
3

− 1√
6

0
1√
3

− 2√
6

1√
2

1√
3

1√
6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
diagonalizes A.
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It follows from Theorem 6.4.4 that each Hermitian matrix A can be factored into
a product UDUH , where U is unitary and D is diagonal. Since U diagonalizes A, it
follows that the diagonal elements of D are the eigenvalues of A and the column vec-
tors of U are eigenvectors of A. Thus, A cannot be defective. It has a complete set of
eigenvectors that form an orthonormal basis for C

n. This is, in a sense, the ideal situ-
ation. We have seen how to express a vector as a linear combination of orthonormal
basis elements (Theorem 5.5.2), and the action of A on any linear combination of ei-
genvectors can easily be determined. Thus, if A has an orthonormal set of eigenvectors
{u1, . . . , un} and x = c1u1 + · · · + cnun, then

Ax = c1λ1u1 + · · · + cnλnun

Furthermore,

ci = 〈x, ui〉 = uH
i x

or, equivalently, c = UHx. Hence,

Ax = λ1(uH
1 x)u1 + · · · + λn(uH

n x)un

The Real Schur Decomposition
If A is a real n × n matrix, then it is possible to obtain a factorization that resembles
the Schur decomposition of A, but involves only real matrices. In this case, A = QTQT

where Q is an orthogonal matrix and T is a real matrix of the form

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
B1 × · · · ×

B2 ×
O

. . .
Bj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (2)

where the Bi’s are either 1 × 1 or 2 × 2 matrices. Each 2 × 2 block will correspond
to a pair of complex conjugate eigenvalues of A. The matrix T is referred to as the
real Schur form of A. The proof that every real n × n matrix A has such a factorization
depends on the property that, for each pair of complex conjugate eigenvalues of A,
there is a two-dimensional subspace of R

n that is invariant under A.

Definition A subspace S of R
n is said to be invariant under a matrix A if, for each x ∈ S,

Ax ∈ S.

Lemma 6.4.5 Let A be a real n × n matrix with eigenvalue λ1 = a + bi (where a and b are real
and b �= 0), and let z1 = x + iy (where x and y are vectors in R

n) be an eigenvector
belonging to λ1. If S = Span(x, y), then dim S = 2 and S is invariant under A.

Proof Since λ is complex, y must be nonzero; otherwise we would have Az = Ax (a real
vector) equal to λz = λx (a complex vector). Since A is real, λ2 = a − bi is also
an eigenvalue of A and z2 = x − iy is an eigenvector belonging λ2. If there were a
scalar c such that x = cy, then z1 and z2 would both be multiples of y and could not
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be independent. However, z1 and z2 belong to distinct eigenvalues, so they must be
linearly independent. Therefore, x cannot be a multiple of y and hence S = Span(x, y)
has dimension 2.

To show the invariance of S, note that since Az1 = λ1z1, the real and imaginary
parts of both sides must agree. Thus,

Az1 = Ax + iAy
λ1z1 = (a + bi)(x + iy) = (ax − by) + i(bx + ay)

and it follows that

Ax = ax − by and Ay = bx + ay

If w = c1x + c2y is any vector in S, then

Aw = c1Ax + c2Ay = c1(ax − by) + c2(bx + ay) = (c1a + c2b)x + (c2a − c1b)y

So Aw is in S, and hence S is invariant under A.

Using this lemma, we can a prove version of Schur’s theorem for matrices with
real entries. As before, the proof will be by induction.

Theorem 6.4.6 The Real Schur Decomposition
If A is an n × n matrix with real entries, then A can be factored into a product QTQT,
where Q is an orthogonal matrix and T is in Schur form (2).

Proof In the case that n = 2, if the eigenvalues of A are real, we can take q1 to be a unit
eigenvector belonging to the first eigenvalue λ1 and let q2 be any unit vector that is
orthogonal to q1. If we set Q = (q1, q2), then Q is an orthogonal matrix. If we set
T = QTAQ, then the first column of T is

QTAq1 = λ1QTq1 = λ1e1

So T is upper triangular and A = QTQT . If the eigenvalues of A are complex then
we simply set T = A and Q = I. So every 2 × 2 real matrix has a real Schur
decomposition.

Now let A be a k × k matrix where k ≥ 3 and assume that, for 2 ≤ m < k,
every m × m real matrix has a Schur decomposition of the form (2). Let λ1 be an
eigenvalue of A. If λ1 is real, let q1 be a unit eigenvector belonging to λ1 and choose
q2, q3,. . . ,qn so that Q1 = (q1, q2, . . . , qn) is an orthogonal matrix. As in the proof
of Schur’s theorem, it follows that the first column of QT

1 AQ1 will be λ1e1. In the
case that λ1 is complex, let z = x + iy (where x and y are real) be an eigenvector
belonging to λ1 and let S = Span(x, y). By Lemma 6.4.5, dim S = 2 and S is invariant
under A. Let {q1, q2} be an orthonormal basis for S. Choose q3, q4,. . . ,qn so that Q1 =
(q1, q2, . . . , qn) is an orthogonal matrix. Since S is invariant under A, it follows that

Aq1 = b11q1 + b21q2 and Aq2 = b12q1 + b22q2

for some scalars b11, b21, b12, b22 and hence the first two columns of QT
1 AQ1 will be

(QT
1 Aq1, QT

1 Aq2) = (b11e1 + b21e2, b12e1 + b22e2)
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So, in general, QT
1 AQ1 will be a matrix of block form

QT
1 AQ1 =

⎧⎪⎩ B1 X
O A1

⎫⎪⎭
where

B1 = (λ1) and A1 is (k − 1) × (k − 1) if λ1 is real

B1 is 2 × 2 and A1 is (k − 2) × (k − 2) if λ1 is complex.

In either case, we can apply our induction hypothesis to A1 and obtain a Schur decom-
position A1 = UT1UT . Let us assume that the Schur form T1 has j − 1 diagonal blocks
B2, B3, . . . , Bj. If we set

Q2 =
⎧⎪⎩ I O

O Q1

⎫⎪⎭ and Q = Q1Q2

then both Q2 and Q are k × k orthogonal matrices. If we then set T = QTAQ, we
will obtain a matrix in the Schur form (2) and it follows that A will have Schur
decomposition QTQT .

In the case that all of the eigenvalues of A are real, the real Schur form T will
be upper triangular. In the case that A is real and symmetric, then, since all of the
eigenvalues of A are real, T must be upper triangular; however, in this case T must
also be symmetric. So we end up with a diagonalization of A. Thus, for real symmetric
matrices, we have the following version of the Spectral Theorem:

Corollary 6.4.7 Spectral Theorem for Real Symmetric Matrices
If A is a real symmetric matrix, then there is an orthogonal matrix Q that diagonalizes
A; that is, QTAQ = D, where D is diagonal.

Normal Matrices
There are non-Hermitian matrices that possess complete orthonormal sets of ei-
genvectors. For example, skew-symmetric and skew-Hermitian matrices have this
property. (A is skew Hermitian if AH = −A.) If A is any matrix with a complete
orthonormal set of eigenvectors, then A = UDUH , where U is unitary and D is a
diagonal matrix (whose diagonal elements may be complex). In general, DH �= D and,
consequently,

AH = UDHUH �= A

However,

AAH = UDUHUDHUH = UDDHUH

and

AHA = UDHUHUDUH = UDHDUH
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Since

DHD = DDH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
|λ1|2

|λ2|2
. . .

|λn|2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
it follows that

AAH = AHA

Definition A matrix A is said to be normal if AAH = AHA.

We have shown that if a matrix has a complete orthonormal set of eigenvectors,
then it is normal. The converse is also true.

Theorem 6.4.8 A matrix A is normal if and only if A possesses a complete orthonormal set of
eigenvectors.

Proof In view of the preceding remarks, we need only show that a normal matrix A has a
complete orthonormal set of eigenvectors. By Theorem 6.4.3, there exists a unitary
matrix U and a triangular matrix T such that T = UHAU. We claim that T is also
normal. To see this, note that

THT = UHAHUUHAU = UHAHAU

and

TTH = UHAUUHAHU = UHAAHU

Since AHA = AAH , it follows that THT = TTH . Comparing the diagonal elements of
TTH and THT , we see that

|t11|2 + |t12|2 + |t13|2 + · · · + |t1n|2 = |t11|2
|t22|2 + |t23|2 + · · · + |t2n|2 = |t12|2 + |t22|2

...
|tnn|2 = |t1n|2 + |t2n|2 + |t3n|2 + · · · + |tnn|2

It follows that tij = 0 whenever i �= j. Thus U diagonalizes A and the column vectors
of U are eigenvectors of A.

SECTION 6.4 EXERCISES
1. For each of the following pairs of vectors z and

w, compute (i) ‖z‖, (ii) ‖w‖, (iii) 〈z, w〉, and
(iv) 〈w, z〉:

(a) z =
⎧⎪⎩ 4 + 2i

4i

⎫⎪⎭ , w =
⎧⎪⎩ −2

2 + i

⎫⎪⎭
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(b) z =
⎧⎪⎪⎪⎪⎪⎩

1 + i
2i

3 − i

⎫⎪⎪⎪⎪⎪⎭ , w =
⎧⎪⎪⎪⎪⎪⎩

2 − 4i
5
2i

⎫⎪⎪⎪⎪⎪⎭
2. Let

z1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 + i

2

1 − i

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and z2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that {z1, z2} is an orthonormal set in C

2.

(b) Write the vector z =
⎧⎪⎩ 2 + 4i

−2i

⎫⎪⎭ as a linear

combination of z1 and z2.
3. Let {u1, u2} be an orthonormal basis for C

2, and let
z = (4 + 2i)u1 + (6 − 5i)u2.
(a) What are the values of uH

1 z, zHu1, uH
2 z, and

zHu2?

(b) Determine the value of ‖z‖.
4. Which of the matrices that follow are Hermitian?

Normal?

(a)
⎧⎪⎩ 1 − i 2

2 3

⎫⎪⎭ (b)
⎧⎪⎩ 1 2 − i

2 + i −1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

i
1√
2

1√
2

− 1√
2

i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
0 i 1
i 0 −2 + i

−1 2 + i 0

⎫⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
3 1 + i i

1 − i 1 3
−i 3 1

⎫⎪⎪⎪⎪⎪⎭
5. Find an orthogonal or unitary diagonalizing matrix

for each of the following:

(a)
⎧⎪⎩ 2 1

1 2

⎫⎪⎭ (b)
⎧⎪⎩ 1 3 + i

3 − i 4

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2 i 0

−i 2 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
1 3 −2
1 −2 3

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 1 1
1 1 1

⎫⎪⎪⎪⎪⎪⎭

(g)

⎧⎪⎪⎪⎪⎪⎩
4 2 −2
2 1 −1

−2 −1 1

⎫⎪⎪⎪⎪⎪⎭
6. Show that the diagonal entries of a Hermitian

matrix must be real.
7. Let A be an n × n Hermitian matrix and let x be a

vector in C
n. Show that if c = xHAx, then c is real.

8. Let A be an Hermitian matrix and let B = iA. Show
that B is skew Hermitian.

9. Let A and C be matrices in C
m×n and let B ∈ C

n×r.
Prove each of the following rules:
(a) (AH)H = A

(b) (αA + βC)H = αAH + βCH

(c) (AB)H = BHAH

10. Let A and B be Hermitian matrices. Answer true or
false for each of the statements that follow. In each
case, explain or prove your answer.
(a) The eigenvalues of AB are all real.
(b) The eigenvalues of ABA are all real.

11. Show that

〈z, w〉 = wHz

defines an inner product on C
n.

12. Let x, y, and z be vectors in C
n and let α and β be

complex scalars. Show that
〈z, αx + βy〉 = α 〈z, x〉 + β 〈z, y〉

13. Let {u1, . . . , un} be an orthonormal basis for a
complex inner product space V , and let

z = a1u1 + a2u2 + · · · + anun

w = b1u1 + b2u2 + · · · + bnun

Show that

〈z, w〉 =
n∑

i=1

biai

14. Given that

A =
⎧⎪⎪⎪⎪⎪⎩

4 0 0
0 1 i
0 −i 1

⎫⎪⎪⎪⎪⎪⎭
find a matrix B such that BHB = A.

15. Let U be a unitary matrix. Prove that
(a) U is normal.
(b) ‖Ux‖ = ‖x‖ for all x ∈ C

n.
(c) if λ is an eigenvalue of U, then |λ| = 1.

16. Let u be a unit vector in C
n and define U = I −

2uuH . Show that U is both unitary and Hermitian
and, consequently, is its own inverse.

17. Show that if a matrix U is both unitary and Her-
mitian then any eigenvalue of U must equal either
1 or −1.



6.4 Hermitian Matrices 341

18. Let A be a 2 × 2 matrix with Schur decomposition
UTUH and suppose that t12 �= 0. Show that
(a) the eigenvalues of A are λ1 = t11 and λ2 = t22.
(b) u1 is an eigenvector of A belonging to λ1 = t11.
(c) u2 is not an eigenvector of A belonging to

λ2 = t22.
19. Let A be a 5 × 5 matrix with real entries. Let A =

QTQT be the real Schur decomposition of A, where
T is a block matrix of the form given in equa-
tion (2). What are the possible block structures for
T in each of the following cases?
(a) All of the eigenvalues of A are real.
(b) A has three real eigenvalues and two complex

eigenvalues.
(c) A has one real eigenvalue and four complex

eigenvalues.
20. Let A be a n × n matrix with Schur decomposition

UTUH . Show that if the diagonal entries of T are
all distinct, then there is an upper triangular matrix
R such that X = UR diagonalizes A.

21. Show that M = A + iB (where A and B are real
matrices) is skew Hermitian if and only if A is skew
symmetric and B is symmetric.

22. Show that if A is skew Hermitian and λ is an eigen-
value of A then λ is purely imaginary (i.e., λ = bi,
where b is real).

23. Show that if A is a normal matrix then each of the
following matrices must also be normal.
(a) AH (b) I + A (c) A2

24. Let A be a real 2 × 2 matrix with the property that
a21a12 > 0, and let

r = √
a21/a12 and S =

⎧⎪⎩ r 0
0 1

⎫⎪⎭
Compute B = SAS−1. What can you conclude
about the eigenvalues and eigenvectors of B? What
can you conclude about the eigenvalues and eigen-
vectors of A? Explain.

25. Let p(x) = −x3 + cx2 + (c + 3)x + 1, where c is a
real number. Let

C =
⎧⎪⎪⎪⎪⎪⎩

c c + 3 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
and let

A =
⎧⎪⎪⎪⎪⎪⎩

−1 2 −c − 3
1 −1 c + 2

−1 1 −c − 1

⎫⎪⎪⎪⎪⎪⎭
(a) Compute A−1CA.
(b) Show that C is the companion matrix of p(x)

and use the result from part (a) to prove that

p(x) will have only real roots regardless of the
value of c.

26. Let A be a Hermitian matrix with eigen-
values λ1, . . . , λn and orthonormal eigenvectors
u1, . . . , un. Show that

A = λ1u1uH
1 + λ2u2uH

2 + · · · + λnunuH
n

27. Let

A =
⎧⎪⎩ 0 1

1 0

⎫⎪⎭
Write A as a sum λ1u1uT

1 + λ2u2uT
2 , where λ1 and

λ2 are eigenvalues and u1 and u2 are orthonormal
eigenvectors.

28. Let A be a Hermitian matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn and orthonormal eigenvectors
u1, . . . , un. For any nonzero vector x in R

n, the
Rayleigh quotient ρ(x) is defined by

ρ(x) = 〈Ax, x〉
〈x, x〉 = xHAx

xHx

(a) If x = c1u1 + · · · + cnun, show that

ρ(x) = |c1|2λ1 + |c2|2λ2 + · · · + |cn|2λn

‖c‖2

(b) Show that

λn ≤ ρ(x) ≤ λ1

(c) Show that

max
x �=0

ρ(x) = λ1 and min
x�=0

ρ(x) = λn

29. Given A ∈ R
m×m, B ∈ R

n×n, C ∈ R
m×n, the

equation

AX − XB = C (3)

is known as Sylvester’s equation. An m × n matrix
X is said to be a solution if it satisfies (3).
(a) Show that if B has Schur decomposition B =

UTUH , then Sylvester’s equation can be trans-
formed into an equation of the form AY−YT =
G, where Y = XU and G = CU.

(b) Show that

(A − t11I)y1 = g1

(A − tjjI)yj = gj +
j−1∑
i=1

tijyj, j = 2, . . . , n

(c) Show that if A and B have no common ei-
genvalues, then Sylvester’s equation has a
solution.
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6.5 The Singular Value Decomposition

In many applications, it is necessary either to determine the rank of a matrix or to
determine whether the matrix is deficient in rank. Theoretically, we can use Gaussian
elimination to reduce the matrix to row echelon form and then count the number of
nonzero rows. However, this approach is not practical in finite-precision arithmetic. If
A is rank deficient and U is the computed echelon form, then, because of rounding
errors in the elimination process, it is unlikely that U will have the proper number of
nonzero rows. In practice, the coefficient matrix A usually involves some error. This
may be due to errors in the data or to the finite number system. Thus, it is generally
more practical to ask whether A is “close” to a rank-deficient matrix. However, it may
well turn out that A is close to being rank deficient and the computed row echelon form
U is not.

In this section, we assume throughout that A is an m × n matrix with m ≥ n. (This
assumption is made for convenience only; all the results will also hold if m < n.) We
will present a method for determining how close A is to a matrix of smaller rank. The
method involves factoring A into a product U
VT , where U is an m × m orthogonal
matrix, V is an n × n orthogonal matrix, and 
 is an m × n matrix whose off-diagonal
entries are all 0’s and whose diagonal elements satisfy

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0


 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2
. . .

σn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The σi’s determined by this factorization are unique and are called the singular values
of A. The factorization U
VT is called the singular value decomposition of A, or, for
short, the svd of A. We will show that the rank of A equals the number of nonzero sin-
gular values, and that the magnitudes of the nonzero singular values provide a measure
of how close A is to a matrix of lower rank.

We begin by showing that such a decomposition is always possible.

Theorem 6.5.1 The SVD Theorem
If A is an m × n matrix, then A has a singular value decomposition.

Proof ATA is a symmetric n × n matrix. Therefore, its eigenvalues are all real and it has an
orthogonal diagonalizing matrix V . Furthermore, its eigenvalues must all be nonnegat-
ive. To see this, let λ be an eigenvalue of ATA and x be an eigenvector belonging to λ.
It follows that

‖Ax‖2 = xTATAx = λxTx = λ‖x‖2

Hence,

λ = ‖Ax‖2

‖x‖2
≥ 0
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We may assume that the columns of V have been ordered so that the corresponding
eigenvalues satisfy

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

The singular values of A are given by

σj = √
λj j = 1, . . . , n

Let r denote the rank of A. The matrix ATA will also have rank r. Since ATA is
symmetric, its rank equals the number of nonzero eigenvalues. Thus,

λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λr+1 = λr+2 = · · · = λn = 0

The same relation holds for the singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σr+1 = σr+2 = · · · = σn = 0

Now let

V1 = (v1, . . . , vr) , V2 = (vr+1, . . . , vn)

and


1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
σ1

σ2
. . .

σr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (1)

Hence, 
1 is an r × r diagonal matrix whose diagonal entries are the nonzero singular
values σ1, . . . , σr. The m × n matrix 
 is then given by


 =
⎧⎪⎩ 
1 O

O O

⎫⎪⎭
The column vectors of V2 are eigenvectors of ATA belonging to λ = 0. Thus

ATAvj = 0 j = r + 1, . . . , n

and, consequently, the column vectors of V2 form an orthonormal basis for N(ATA) =
N(A). Therefore,

AV2 = O

and since V is an orthogonal matrix, it follows that

I = VVT = V1VT
1 + V2VT

2

A = AI = AV1VT
1 + AV2VT

2 = AV1VT
1 (2)

So far we have shown how to construct the matrices V and 
 of the singular value
decomposition. To complete the proof, we must show how to construct an m × m
orthogonal matrix U such that

A = U
VT

or, equivalently,

AV = U
 (3)
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Comparing the first r columns of each side of (3), we see that

Avj = σjuj j = 1, . . . , r

Thus, if we define

uj = 1

σj
Avj j = 1, . . . , r (4)

and

U1 = (u1, . . . , ur)

then it follows that

AV1 = U1
1 (5)

The column vectors of U1 form an orthonormal set since

uT
i uj =

(
1

σi
vT

i AT

)(
1

σj
Avj

)
1 ≤ i ≤ r, 1 ≤ j ≤ r

= 1

σiσj
vT

i

(
ATAvj

)
= σj

σi
vT

i vj

= δij

It follows from (4) that each uj, 1 ≤ j ≤ r, is in the column space of A. The dimension
of the column space is r, so u1, . . . , ur form an orthonormal basis for R(A). The vector
space R(A)⊥ = N(AT ) has dimension m−r. Let {ur+1, ur+2, . . . , um} be an orthonormal
basis for N(AT ) and set

U2 = (ur+1, ur+2, . . . , um)

U =
⎧⎩ U1 U2

⎫⎭
It follows from Theorem 5.2.2 that u1, . . . , um form an orthonormal basis for R

m.
Hence, U is an orthogonal matrix. We still must show that U
VT actually equals A.
This follows from (5) and (2) since

U
VT =
⎧⎩ U1 U2

⎫⎭⎧⎪⎪⎪⎩ 
1 O
O O

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ VT

1

VT
2

⎫⎪⎪⎪⎭
= U1
1VT

1

= AV1VT
1

= A

Observations

Let A be an m × n matrix with a singular value decomposition U
VT .

1. The singular values σ1, . . . , σn of A are unique; however, the matrices U and V
are not unique.
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2. Since V diagonalizes ATA, it follows that the vj’s are eigenvectors of ATA.
3. Since AAT = U

TUT , it follows that U diagonalizes AAT and that the uj’s

are eigenvectors of AAT .
4. Comparing the jth columns of each side of the equation

AV = U


we get

Avj = σjuj j = 1, . . . , n

Similarly,

ATU = V
T

and hence

ATuj = σjvj for j = 1, . . . , n

ATuj = 0 for j = n + 1, . . . , m

The vj’s are called the right singular vectors of A, and the uj’s are called the left
singular vectors of A.

5. If A has rank r, then
(i) v1, . . . , vr form an orthonormal basis for R(AT ).

(ii) vr+1, . . . , vn form an orthonormal basis for N(A).
(iii) u1, . . . , ur form an orthonormal basis for R(A).
(iv) ur+1, . . . , um form an orthonormal basis for N(AT ).

6. The rank of the matrix A is equal to the number of its nonzero singular val-
ues (where singular values are counted according to multiplicity). The reader
should be careful not to make a similar assumption about eigenvalues. The
matrix

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
for example, has rank 3 even though all of its eigenvalues are 0.

7. In the case that A has rank r < n, if we set

U1 = (u1, u2, . . . , ur) V1 = (v1, v2, . . . , vr)

and define 
1 as in equation (1), then

A = U1
1VT
1 (6)

The factorization (6) is called the compact form of the singular value decom-
position of A. This form is useful in many applications.
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EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
1 1
0 0

⎫⎪⎪⎪⎪⎪⎭
Compute the singular values and the singular value decomposition of A.

Solution
The matrix

ATA =
⎧⎪⎩ 2 2

2 2

⎫⎪⎭
has eigenvalues λ1 = 4 and λ2 = 0. Consequently, the singular values of A are σ1 =√

4 = 2 and σ2 = 0. The eigenvalue λ1 has eigenvectors of the form α(1, 1)T , and λ2

has eigenvectors β(1, −1)T . Therefore, the orthogonal matrix

V = 1√
2

⎧⎪⎩ 1 1
1 −1

⎫⎪⎭
diagonalizes ATA. From observation 4, it follows that

u1 = 1

σ1
Av1 = 1

2

⎧⎪⎪⎪⎪⎪⎩
1 1
1 1
0 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The remaining column vectors of U must form an orthonormal basis for N(AT ). We
can compute a basis {x2, x3} for N(AT ) in the usual way.

x2 = (1, −1, 0)T and x3 = (0, 0, 1)T

Since these vectors are already orthogonal, it is not necessary to use the Gram–Schmidt
process to obtain an orthonormal basis. We need only set

u2 = 1

‖x2‖x2 =
(

1√
2

, − 1√
2

, 0

)T

u3 = x3 = (0, 0, 1)T

It then follows that

A = U
VT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

0

1√
2

− 1√
2

0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 0
0 0
0 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

1√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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If A is an m × n matrix of rank r and 0 < k < r, we can use the singular value
decomposition to find a matrix in R

m×n of rank k that is closest to A with respect to
the Frobenius norm. Let M be the set of all m × n matrices of rank k or less. It can be
shown that there is a matrix X in M such that

‖A − X‖F = min
S∈M

‖A − S‖F (7)

We will not prove this result, since the proof is beyond the scope of this book. Assum-
ing that the minimum is achieved, we will show how such a matrix X can be derived
from the singular value decomposition of A. The following lemma will be useful.

Lemma 6.5.2 If A is an m × n matrix and Q is an m × m orthogonal matrix, then

‖QA‖F = ‖A‖F

Proof

‖QA‖2
F = ‖(Qa1, Qa2, . . . , Qan)‖2

F

=
n∑

i=1

‖Qai‖2
2

=
n∑

i=1

‖ai‖2
2

= ‖A‖2
F

If A has singular value decomposition U
VT , then it follows from the lemma that

‖A‖F = ‖
VT‖F

Since

‖
VT‖F = ‖(
VT )T‖F = ‖V
T‖F = ‖
T‖F

it follows that

‖A‖F = (
σ 2

1 + σ 2
2 + · · · + σ 2

n

)1/2

Theorem 6.5.3 Let A = U
VT be an m × n matrix, and let M denote the set of all m × n matrices of
rank k or less, where 0 < k < rank(A). If X is a matrix in M satisfying (7), then

‖A − X‖F = (
σ 2

k+1 + σ 2
k+2 + · · · + σ 2

n

)1/2

In particular, if A′ = U
′VT, where


′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
σ1

. . . O
σk

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ 
k O

O O

⎫⎪⎭
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then

‖A − A′‖F = (
σ 2

k+1 + · · · + σ 2
n

)1/2 = min
S∈M

‖A − S‖F

Proof Let X be a matrix in M satisfying (7). Since A′ ∈ M, it follows that

‖A − X‖F ≤ ‖A − A′‖F = (
σ 2

k+1 + · · · + σ 2
n

)1/2
(8)

We will show that

‖A − X‖F ≥ (
σ 2

k+1 + · · · + σ 2
n

)1/2

and hence that equality holds in (8). Let Q�PT be the singular value decomposition of
X, where

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1

ω2
. . . O

ωk

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎩ �k O
O O

⎫⎪⎭

If we set B = QTAP, then A = QBPT , and it follows that

‖A − X‖F = ‖Q(B − �)PT‖F = ‖B − �‖F

Let us partition B in the same manner as �.

B =
⎧⎪⎪⎪⎪⎪⎩

k×k︷ ︸︸ ︷
B11

k×(n−k)︷ ︸︸ ︷
B12

B21︸ ︷︷ ︸
(m−k)×k

B22︸ ︷︷ ︸
(m−k)×(n−k)

⎫⎪⎪⎪⎪⎪⎭
It follows that

‖A − X‖2
F = ‖B11 − �k‖2

F + ‖B12‖2
F + ‖B21‖2

F + ‖B22‖2
F

We claim that B12 = O. If not, then define

Y = Q
⎧⎪⎩ B11 B12

O O

⎫⎪⎭ PT

The matrix Y is in M and

‖A − Y‖2
F = ‖B21‖2

F + ‖B22‖2
F < ‖A − X‖2

F

But this contradicts the definition of X. Therefore, B12 = O. In a similar manner it can
be shown that B21 must equal O. If we set

Z = Q
⎧⎪⎩ B11 O

O O

⎫⎪⎭ PT
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then Z ∈ M and

‖A − Z‖2
F = ‖B22‖2

F ≤ ‖B11 − �k‖2
F + ‖B22‖2

F = ‖A − X‖2
F

It follows from the definition of X that B11 must equal �k. If B22 has singular value
decomposition U1VT

1 , then

‖A − X‖F = ‖B22‖F = ‖‖F

Let

U2 =
⎧⎪⎩ Ik O

O U1

⎫⎪⎭ and V2 =
⎧⎪⎩ Ik O

O V1

⎫⎪⎭
Now,

UT
2 QTAPV2 =

⎧⎪⎪⎪⎩ �k O
O 

⎫⎪⎪⎪⎭
A = (QU2)

⎧⎪⎪⎪⎩ �k O
O 

⎫⎪⎪⎪⎭ (PV2)T

and hence it follows that the diagonal elements of  are singular values of A. Thus

‖A − X‖F = ‖‖F ≥ (
σ 2

k+1 + · · · + σ 2
n

)1/2

It then follows from (8) that

‖A − X‖F = (
σ 2

k+1 + · · · + σ 2
n

)1/2 = ‖A − A′‖F

If A has singular value decomposition U
VT , then we can think of A as the product
of U
 times VT . If we partition U
 into columns and VT into rows, then

U
 = (σ1u1, σ2u2, . . . , σun)

and we can represent A by an outer product expansion

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n (9)

If A is of rank n, then

A′ = U

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

. . .

σn−1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
VT

= σ1u1vT
1 + σ2u2vT

2 + · · · + σn−1un−1vT
n−1

will be the matrix of rank n − 1 that is closest to A with respect to the Frobenius norm.
Similarly,

A′′ = σ1u1vT
1 + σ2u2vT

2 · · · + σn−2un−2vT
n−2
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will be the nearest matrix of rank n − 2, and so on. In particular, if A is a nonsingular
n × n matrix, then A′ is singular and ‖A − A′‖F = σn. Thus σn may be taken as a
measure of how close a square matrix is to being singular.

The reader should be careful not to use the value of det(A) as a measure of how
close A is to being singular. If, for example, A is the 100 × 100 diagonal matrix whose
diagonal entries are all 1

2 , then det(A) = 2−100; however, σ100 = 1
2 . By contrast, the

matrix in the next example is very close to being singular even though its determinant
is 1 and all its eigenvalues are equal to 1.

EXAMPLE 2 Let A be an n × n upper triangular matrix whose diagonal elements are all 1 and whose
entries above the main diagonal are all −1:

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1
0 0 1 · · · −1 −1
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Notice that det(A) = det(A−1) = 1 and all the eigenvalues of A are 1. However, if n is
large, then A is close to being singular. To see this, let

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1
0 0 1 · · · −1 −1
...
0 0 0 · · · 1 −1

−1

2n−2
0 0 · · · 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix B must be singular, since the system Bx = 0 has a nontrivial solution
x = (2n−2, 2n−3, . . . , 20, 1)T . Since the matrices A and B differ only in the (n, 1)
position, we have

‖A − B‖F = 1

2n−2

It follows from Theorem 6.5.3 that

σn = min
X singular

‖A − X‖F ≤ ‖A − B‖F = 1

2n−2

Thus, if n = 100, then σn ≤ 1/298 and, consequently, A is very close to singular.

APPLICATION 1 Numerical Rank

In most practical applications, matrix computations are carried out by computers using
finite-precision arithmetic. If the computations involve a nonsingular matrix that is
very close to be being singular, then the matrix will behave computationally exactly
like a singular matrix. In this case, computed solutions of linear systems may have no
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digits of accuracy whatsoever. More generally, if an m × n matrix A is close enough
to a matrix of rank r, where r < min(m, n), then A will behave like a rank r matrix in
finite-precision arithmetic. The singular values provide a way of measuring how close
a matrix is to matrices of lower rank; however, we must clarify what we mean by “very
close”. We must decide how close is close enough. The answer depends on the machine
precision of the computer that is being used.

Machine precision can be measured in terms of the unit round off error for the ma-
chine. Another name for unit round off is machine epsilon. To understand this concept,
we need to know how computers represent numbers. If the computer uses the number
base β and keeps track of n digits, then it will represent a real number x by a floating-
point number, denoted fl(x), of the form ±0.d1d2 . . . dn × βk, where the digits di are
integers with 0 ≤ di < β. For example, −0.54321469 × 1025 is an 8-digit, base 10,
floating-point number, and 0.110100111001 × 2−9 is a 12-digit, base 2 floating-point
number. In Section 1 of Chapter 7 we will discuss floating-point numbers in more de-
tail and give a precise definition of the machine epsilon. It turns out that the machine
epsilon, ε, is the smallest floating-point number that will serve as a bound for the relat-
ive error whenever we approximate a real number by a floating-point number; that is,
for any real number x, ∣∣∣∣fl(x) − x

x

∣∣∣∣ < ε (10)

For 8-digit, base 10, floating-point arithmetic, the machine epsilon is 5×10−8. For 12-
digit, base 2, floating-point arithmetic, the machine epsilon is ( 1

2 )−12, and, in general,
for n-digit base β arithmetic, the machine epsilon is 1

2 × β−n+1.
In light of (10), the machine epsilon is the natural choice as a basic unit for meas-

uring rounding errors. Suppose that A is a matrix of rank n, but k of its singular values
are less than a “small” multiple of the machine epsilon. Then A is close enough to
matrices of rank n − k, so that for floating point computations it is impossible to tell
the difference. In this case, we would say that A has numerical rank n − k. The mul-
tiple of the machine epsilon that we use to determine numerical rank depends on the
dimensions of the matrix and on its largest singular value. The definition of numerical
rank that follows is one that is commonly used.

Definition The numerical rank of an m × n matrix is the number of singular values of the
matrix that are greater than σ1 max(m, n)ε, where σ1 is the largest singular value of
A and ε is the machine epsilon.

Often in the context of finite precision computations, the term rank will be used
with the understanding that it actually refers to the numerical rank. For example, the
MATLAB command rank(A) will compute the numerical rank of A, rather than the
exact rank.

EXAMPLE 3 Suppose that A is a 5 × 5 matrix with singular values

σ1 = 4, σ2 = 1, σ3 = 10−12, σ4 = 3.1 × 10−14, σ5 = 2.6 × 10−15
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and suppose that the machine epsilon is 5 × 10−15. To determine the numerical rank,
we compare the singular values to

σ1 max(m, n)ε = 4 · 5 · 5 × 10−15 = 10−13

Since three of the singular values are greater than 10−13, the matrix has numerical
rank 3.

APPLICATION 2 Digital Image Processing

A video image or photograph can be digitized by breaking it up into a rectangular
array of cells (or pixels) and measuring the gray level of each cell. This information
can be stored and transmitted as an m × n matrix A. The entries of A are nonnegative
numbers corresponding to the measures of the gray levels. Because the gray levels of
any one cell generally turn out to be close to the gray levels of its neighboring cells,
it is possible to reduce the amount of storage necessary from mn to a relatively small
multiple of m + n + 1. Generally, the matrix A will have many small singular values.
Consequently, A can be approximated by a matrix of much lower rank.

Original 176 by 260 Image Rank 5 Approximation to Image

Rank 15 Approximation to Image Rank 30 Approximation to Image

Figure 6.5.1. Courtesy Oakridge National Laboratory
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If A has singular value decomposition U
VT , then A can be represented by the
outer product expansion

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σnunvT
n

The closest matrix of rank k is obtained by truncating this sum after the first k terms:

Ak = σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k

The total storage for Ak is k(m + n + 1). We can choose k to be considerably less than
n and still have the digital image corresponding to Ak very close to the original. For
typical choices of k, the storage required for Ak will be less than 20 percent of the
amount of storage necessary for the entire matrix A.

Figure 6.5.1 shows an image corresponding to a 176 × 260 matrix A and three
images corresponding to lower rank approximations of A. The gentlemen in the picture
are (left to right) James H. Wilkinson, Wallace Givens, and George Forsythe (three
pioneers in the field of numerical linear algebra).

APPLICATION 3 Information Retrieval—Latent Semantic Indexing

We return again to the information retrieval application discussed in Sections 1.3 and
5.1. In this application a database of documents is represented by a database matrix Q.
To search the database, we form a unit search vector x and set y = QTx. The documents
that best match the search criteria are those corresponding to the entries of y that are
closest to 1.

Because of the problems of polysemy and synonymy, we can think of our data-
base as an approximation. Some of the entries of the database matrix may contain
extraneous components due to multiple meanings of words, and some may miss in-
cluding components because of synonymy. Suppose that it were possible to correct for
these problems and come up with a perfect database matrix P. If we set E = Q − P,
then, since Q = P + E, we can think of E as a matrix representing the errors in our
database matrix Q. Unfortunately, E is unknown, so we cannot determine P exactly.
However, if we can find a simpler approximation Q1 for Q, then Q1 will also be an
approximation for P. Thus Q1 = P + E1 for some error matrix E1. In the method of
latent semantic indexing (LSI), the database matrix Q is approximated by a matrix Q1

with lower rank. The idea behind the method is that the lower rank matrix may still
provide a good approximation to P and, because of its simpler structure, may actually
involve less error; that is, ‖E1‖ < ‖E‖.

The lower rank approximation can be obtained by truncating the outer product
expansion of the singular value decomposition of Q. This is equivalent to setting

σr+1 = σr+2 = · · · = σn = 0

and then setting Q1 = U1
1VT
1 , the compact form of the singular value decomposi-

tion of the rank r matrix. Furthermore, if r < min(m, n)/2, then this factorization is
computationally more efficient to use and the searches will be speeded up. The speed
of computation is proportional to the amount of arithmetic involved. The matrix vector
multiplication QTx requires a total of mn scalar multiplications (m multiplications for
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each of the n entries of the product). In contrast, QT
1 = V1
1UT

1 , and the multiplica-
tion QT

1 x = V1(
1(U1xT )) requires a total of r(m + n + 1) scalar multiplications. For
example, if m = n = 1000 and r = 200, then

mn = 106 and r(m + n + 1) = 200 · 2001 = 400,200

The search with the lower rank matrix should be more than twice as fast.

APPLICATION 4 Psychology—Principal Component Analysis

In Section 1 of Chapter 5, we saw how psychologist Charles Spearman used a correla-
tion matrix to compare scores on a series of aptitude tests. On the basis of the observed
correlations, Spearman concluded that the test results provided evidence of common
basic underlying functions. Further work by psychologists to identify the common
factors that make up intelligence has led to development of an area of study known
as factor analysis.

Predating Spearman’s work by a few years is a 1901 paper by Karl Pearson analyz-
ing a correlation matrix derived from measuring seven physical variables for each of
3000 criminals. This study contains the roots of a method popularized by Harold Ho-
telling in a well-known paper published in 1933. The method is known as principal
component analysis.

To see the basic idea of this method, assume that a series of n aptitude tests is
administered to a group of m individuals and that the deviations from the mean for the
tests form the columns of an m × n matrix X. Although, in practice, column vectors of
X are positively correlated, the hypothetical factors that account for the scores should
be uncorrelated. Thus, we wish to introduce mutually orthogonal vectors y1, y2, . . . , yr
corresponding to the hypothetical factors. We require that the vectors span R(X), and
hence the number of vectors, r, should be equal to the rank of X. Furthermore, we wish
to number these vectors in decreasing order of variance.

The first principal component vector, y1, should account for the most variance.
Since y1 is in the column space of X, we can represent it as a product Xv1 for some
v1 ∈ R

n. The covariance matrix is

S = 1

n − 1
XTX

and the variance of y1 is given by

var(y1) = (Xv1)TXv1

n − 1
= vT

1 Sv1

The vector v1 is chosen to maximize vTSv over all unit vectors v. This can be
accomplished by choosing v1 to be a unit eigenvector of XTX belonging to its max-
imum eigenvalue λ1. (See Exercise 28 of Section 6.4.) The eigenvectors of XTX are the
right singular vectors of X. Thus v1 is the right singular vector of X corresponding to
the largest singular value σ1 = √

λ1. If u1 is the corresponding left singular vector, then

y1 = Xv1 = σ1u1

The second principal component vector must be of the form y2 = Xv2. It can be
shown that the vector which maximizes vTSv over all unit vectors that are orthogonal
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to v1 is just the second right singular vector v2 of X. If we choose v2 in this way and
u2 is the corresponding left singular vector, then

y2 = Xv2 = σ2u2

and since

yT
1 y2 = σ1σ2uT

1 u2 = 0

it follows that y1 and y2 are orthogonal. The remaining yi’s are determined in a similar
manner.

In general, the singular value decomposition solves the principal component prob-
lem. If X has rank r and singular value decomposition X = U1
1VT

1 (in compact form),
then the principal component vectors are given by

y1 = σ1u1, y2 = σ2u2, . . . , yr = σrur

The left singular vectors u1, . . . , un are the normalized principal component vectors. If
we set W = 
1VT

1 , then

X = U1
1VT
1 = U1W

The columns of the matrix U1 correspond to the hypothetical intelligence factors. The
entries in each column measure how well the individual students exhibit that particular
intellectual ability. The matrix W measures to what extent each test depends on the
hypothetical factors.

SECTION 6.5 EXERCISES
1. Show that A and AT have the same nonzero singular

values. How are their singular value decomposi-
tions related?

2. Use the method of Example 1 to find the singu-
lar value decomposition of each of the following
matrices:

(a)
⎧⎪⎩ 1 1

2 2

⎫⎪⎭ (b)
⎧⎪⎩ 2 −2

1 2

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 3
3 1
0 0
0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0
0 2 1
0 1 2
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. For each of the matrices in Exercise 2:

(a) determine the rank.

(b) find the closest (with respect to the Frobenius
norm) matrix of rank 1.

4. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
−2 8 20

14 19 10

2 −2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 − 4

5 0

4
5

3
5 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30 0 0

0 15 0

0 0 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

2
3

2
3

2
3

1
3 − 2

3

2
3 − 2

3
1
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Find the closest (with respect to the Frobenius norm) matrices of rank 1 and rank 2 to A.
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5. The matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 5 4

6 3 0

6 3 0

2 5 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
has singular value decomposition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2

1
2

1
2 − 1

2 − 1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
12 0 0

0 6 0

0 0 0

0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3

2
3

1
3

− 2
3

1
3

2
3

1
3 − 2

3
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use the singular value decomposition to find orthonormal bases for R(AT ) and N(A).
(b) Use the singular value decomposition to find orthonormal bases for R(A) and N(AT ).

6. Prove that if A is a symmetric matrix with eigenval-
ues λ1, λ2, . . . , λn, then the singular values of A are
|λ1|, |λ2|, . . . , |λn|.

7. Let A be an m × n matrix with singular value de-
composition U
VT , and suppose that A has rank
r, where r < n. Show that {v1, . . . , vr} is an
orthonormal basis for R(AT ).

8. Let A be an n × n matrix. Show that AT A and AAT

are similar.
9. Let A be an n × n matrix with singular values σ1,

σ2, . . . , σn and eigenvalues λ1, λ2, . . . , λn. Show
that

|λ1λ2 · · · λn| = σ1σ2 · · · σn

10. Let A be an n × n matrix with singular value
decomposition U
VT and let

B =
⎧⎪⎩ O AT

A O

⎫⎪⎭
Show that if

xi =
⎧⎪⎩ vi

ui

⎫⎪⎭ , yi =
⎧⎪⎩ −vi

ui

⎫⎪⎭ , i = 1, . . . , n

then the xi’s and yi’s are eigenvectors of B. How
do the eigenvalues of B relate to the singular values
of A?

11. Show that if σ is a singular value of A then there
exists a nonzero vector x such that

σ = ‖Ax‖2

‖x‖2

12. Let A be an m × n matrix of rank n with singu-
lar value decomposition U
VT . Let 
+ denote the
n × m matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ1
1

σ2
. . .

1

σn

O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and define A+ = V
+UT . Show that x̂ = A+b
satisfies the normal equations ATAx = AT b.

13. Let A+ be defined as in Exercise 12 and let P =
AA+. Show that P2 = P and PT = P.

6.6 Quadratic Forms

By this time, the reader should be well aware of the important role that matrices play
in the study of linear equations. In this section, we will see that matrices also play
an important role in the study of quadratic equations. With each quadratic equation,
we can associate a vector function f (x) = xTAx. Such a vector function is called a
quadratic form. Quadratic forms arise in a wide variety of applied problems. They are
particularly important in the study of optimization theory.
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Definition A quadratic equation in two variables x and y is an equation of the form

ax2 + 2bxy + cy2 + dx + ey + f = 0 (1)

Equation (1) may be rewritten in the form⎧⎩ x y
⎫⎭⎧⎪⎩ a b

b c

⎫⎪⎭⎧⎪⎩ x
y

⎫⎪⎭ +
⎧⎩ d e

⎫⎭⎧⎪⎩ x
y

⎫⎪⎭ + f = 0 (2)

Let

x =
⎧⎪⎩ x

y

⎫⎪⎭ and A =
⎧⎪⎩ a b

b c

⎫⎪⎭
The term

xTAx = ax2 + 2bxy + cy2

is called the quadratic form associated with (1).

Conic Sections
The graph of an equation of the form (1) is called a conic section. [If there are no
ordered pairs (x, y) which satisfy (1), we say that the equation represents an imaginary
conic.] If the graph of (1) consists of a single point, a line, or a pair of lines, we say
that (1) represents a degenerate conic. Of more interest are the nondegenerate conics.
Graphs of nondegenerate conics turn out to be circles, ellipses, parabolas, or hyperbolas
(see Figure 6.6.1). The graph of a conic is particularly easy to sketch when its equation
can be put into one of the following standard forms:

(i) x2 + y2 = r2 (circle)

(ii)
x2

α2
+ y2

β2
= 1 (ellipse)

(iii)
x2

α2
− y2

β2
= 1 or

y2

α2
− x2

β2
= 1 (hyperbola)

(iv) x2 = αy or y2 = αx (parabola)

Here α, β, and r are nonzero real numbers. Note that the circle is a special case of the
ellipse (α = β = r). A conic section is said to be in standard position if its equation
can be put into one of these four standard forms. The graphs of (i), (ii), and (iii) in
Figure 6.6.1 will all be symmetric to both coordinate axes and the origin. We say that
these curves are centered at the origin. A parabola in standard position will have its
vertex at the origin and will be symmetric to one of the axes.

What about the conics that are not in standard position? Let us consider the
following cases:

Case 1. The conic section has been translated horizontally from the standard position.
This occurs when the x2 and x terms in (1) both have nonzero coefficients.

Case 2. The conic section has been translated vertically from the standard position.
This occurs when the y2 and y terms in (1) have nonzero coefficients (i.e., c �= 0 and
e �= 0).
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Figure 6.6.1.

Case 3. The conic section has been rotated from the standard position by an angle θ

that is not a multiple of 90◦. This occurs when the coefficient of the xy term is nonzero
(i.e., b �= 0).

In general, we may have any one or any combination of these three cases. To graph
a conic section that is not in standard position, we usually find a new set of axes x′ and
y′ such that the conic section is in standard position with respect to the new axes. This
is not difficult if the conic has only been translated horizontally or vertically, in which
case the new axes can be found by completing the squares. The following example
illustrates how this is done:

EXAMPLE 1 Sketch the graph of the equation

9x2 − 18x + 4y2 + 16y − 11 = 0

Solution
To see how to choose our new axis system, we complete the squares.

9(x2 − 2x + 1) + 4(y2 + 4y + 4) − 11 = 9 + 16

This equation can be simplified to the form

(x − 1)2

22
+ (y + 2)2

32
= 1

If we let

x′ = x − 1 and y′ = y + 2

the equation becomes

(x′)2

22
+ (y′)2

32
= 1

which is in standard form with respect to the variables x′ and y′. Thus, the graph, as
shown in Figure 6.6.2, will be an ellipse that is in standard position in the x′y′-axis
system. The center of the ellipse will be at the origin of the x′y′-plane [i.e., at the point
(x, y) = (1, −2)]. The equation of the x′-axis is simply y′ = 0, which is the equation of
the line y = −2 in the xy-plane. Similarly, the y′-axis coincides with the line x = 1.
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There is little problem if the center or vertex of the conic section has been trans-
lated. If, however, the conic section has also been rotated from the standard position,
it is necessary to change coordinates so that the equation in terms of the new coordin-
ates x′ and y′ involves no x′y′ term. Let x = (x, y)T and x′ = (x′, y′)T . Since the new
coordinates differ from the old coordinates by a rotation, we have

x = Qx′ or x′ = QTx

where

Q =
⎧⎪⎩ cos θ sin θ

−sin θ cos θ

⎫⎪⎭ or QT =
⎧⎪⎩ cos θ −sin θ

sin θ cos θ

⎫⎪⎭
If 0 < θ < π , then the matrix Q corresponds to a rotation of θ radians in the clockwise
direction and QT corresponds to a rotation of θ radians in the counterclockwise direc-
tion (see Example 2 in Section 4.2 of Chapter 4). With this change of variables, (2)
becomes

(x′)T(QTAQ)x′ +
⎧⎩ d′ e′

⎫⎭ x′ + f = 0 (3)

where
⎧⎩ d′ e′

⎫⎭ =
⎧⎩ d e

⎫⎭ Q. This equation will involve no x′y′ term if and only

if QTAQ is diagonal. Since A is symmetric, it is possible to find a pair of orthonormal
eigenvectors q1 = (x1, −y1)T and q2 = (y1, x1)T . Thus, if we set cos θ = x1 and
sin θ = y1, then

Q =
⎧⎩ q1 q2

⎫⎭ =
⎧⎪⎩ x1 y1

−y1 x1

⎫⎪⎭
diagonalizes A and (3) simplifies to

λ1(x′)2 + λ2(y′)2 + d′x′ + e′y′ + f = 0

EXAMPLE 2 Consider the conic section

3x2 + 2xy + 3y2 − 8 = 0

This equation can be written in the form⎧⎩ x y
⎫⎭⎧⎪⎩ 3 1

1 3

⎫⎪⎭⎧⎪⎩ x
y

⎫⎪⎭ = 8
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The matrix ⎧⎪⎩ 3 1
1 3

⎫⎪⎭
has eigenvalues λ = 2 and λ = 4 with corresponding unit eigenvectors(

1√
2

, − 1√
2

)T

and

(
1√
2

,
1√
2

)T

Let

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎩ cos 45◦ sin 45◦

−sin 45◦ cos 45◦
⎫⎪⎭

and set

⎧⎪⎩ x
y

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩ x′

y′
⎫⎪⎭

Thus,

QTAQ =
⎧⎪⎩ 2 0

0 4

⎫⎪⎭
and the equation of the conic becomes

2(x′)2 + 4(y′)2 = 8

or

(x′)2

4
+ (y′)2

2
= 1

In the new coordinate system the direction of the x′-axis is determined by the point
x′ = 1, y′ = 0. To translate this to the xy coordinate system, we multiply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎩ 1

0

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = q1

The x′-axis will be in the direction of q1. Similarly, to find the direction of the y′-axis,
we multiply

Q e2 = q2

The eigenvectors that form the columns of Q tell us the directions of the new coordinate
axes (see Figure 6.6.3).
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Figure 6.6.3.

EXAMPLE 3 Given the quadratic equation

3x2 + 2xy + 3y2 + 8
√

2y − 4 = 0

find a change of coordinates so that the resulting equation represents a conic in standard
position.

Solution
The xy term is eliminated in the same manner as in Example 2. In this case, we use the
rotation matrix

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
to rotate the axis system. The equation with repect to the new axis system is

2(x′)2 + 4(y′)2 +
⎧⎩ 0 8

√
2

⎫⎭ Q
⎧⎪⎩ x′

y′
⎫⎪⎭ = 4

or

(x′)2 − 4x′ + 2(y′)2 + 4y′ = 2

If we complete the square, we get

(x′ − 2)2 + 2(y′ + 1)2 = 8

If we set x′′ = x′ − 2 and y′′ = y′ + 1 (see Figure 6.6.4), the equation simplifies to

(x′′)2

8
+ (y′′)2

4
= 1

To summarize, a quadratic equation in the variables x and y can be written in the
form

xTAx + Bx + f = 0
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Figure 6.6.4.

where x = (x, y)T , A is a 2 × 2 symmetric matrix, B is a 1 × 2 matrix, and f is a scalar.
If A is nonsingular, then, by rotating and translating the axes, it is possible to rewrite
the equation in the form

λ1(x′)2 + λ2(y′)2 + f ′ = 0 (4)

where λ1 and λ2 are the eigenvalues of A. If (4) represents a real nondegenerate conic,
it will be either an ellipse or a hyperbola, depending on whether λ1 and λ2 agree in sign
or differ in sign. If A is singular and exactly one of its eigenvalues is zero, the quadratic
equation can be reduced to either

λ1(x′)2 + e′y′ + f ′ = 0 or λ2(y′)2 + d′x′ + f ′ = 0

These equations will represent parabolas, provided that e′ and d′ are nonzero.
There is no reason to limit ourselves to two variables. We could just as well

have quadratic equations and quadratic forms in any number of variables. Indeed, a
quadratic equation in n variables x1, . . . , xn is one of the form

xTAx + Bx + α = 0 (5)

where x = (x1, . . . , xn)T , A is an n × n symmetric matrix, B is a 1 × n matrix, and α is
a scalar. The vector function

f (x) = xTAx =
n∑

i=1

⎛
⎝ n∑

j=1

aijxj

⎞
⎠ xi

is the quadratic form in n variables associated with the quadratic equation.
In the case of three unknowns, if

x =
⎧⎪⎪⎪⎪⎪⎩

x
y
z

⎫⎪⎪⎪⎪⎪⎭ , A =
⎧⎪⎪⎪⎪⎪⎩

a d e
d b f
e f c

⎫⎪⎪⎪⎪⎪⎭ , B =
⎧⎪⎪⎪⎪⎪⎩

g
h
i

⎫⎪⎪⎪⎪⎪⎭
then (5) becomes

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + gx + hy + iz + α = 0

The graph of a quadratic equation in three variables is called a quadric surface.
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There are four basic types of nondegenerate quadric surfaces:

1. Ellipsoids
2. Hyperboloids (of one or two sheets)
3. Cones
4. Paraboloids (either elliptic or hyperbolic)

As in the two-dimensional case, we can use translations and rotations to transform the
equation into the standard form

λ1(x′)2 + λ2(y′)2 + λ3(z′)2 + α = 0

where λ1, λ2, λ3 are the eigenvalues of A. For the general n-dimensional case, the
quadratic form can always be translated to a simpler diagonal form. More precisely,
we have the following theorem:

Theorem 6.6.1 Principal Axes Theorem
If A is a real symmetric n × n matrix, then there is a change of variables u = QTx such
that xTAx = uTDu, where D is a diagonal matrix.

Proof If A is a real symmetric matrix, then by Corollary 6.4.7 there is an orthogonal matrix
Q that diagonalizes A; that is, QTAQ = D (diagonal). If we set u = QTx, then x = Qu
and

xTAx = uTQTAQu = uTDu

Optimization: An Application to the Calculus
Let us consider the problem of maximizing and minimizing functions of several vari-
ables. In particular, we would like to determine the nature of the critical points of a
real-valued vector function w = F(x). If the function is a quadratic form, w = xTAx,
then 0 is a critical point. Whether it is a maximum, minimum, or saddle point depends
on the eigenvalues of A. More generally, if the function to be maximized or minimized
is sufficiently differentiable, it behaves locally like a quadratic form. Thus each critical
point can be tested by determining the signs of the eigenvalues of the matrix of an
associated quadratic form.

Definition Let F(x) be a real-valued vector function on R
n. A point x0 in R

n is said to be a
stationary point of F if all the first partial derivatives of F at x0 exist and are zero.

If F(x) has either a local maximum or a local minimum at a point x0 and the first
partials of F exist at x0, they will all be zero. Thus, if F(x) has first partials everywhere,
its local maxima and minima will occur at stationary points.

Consider the quadratic form

f (x, y) = ax2 + 2bxy + cy2
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The first partials of f are

fx = 2ax + 2by
fy = 2bx + 2cy

Setting these equal to zero, we see that (0, 0) is a stationary point. Moreover, if the
matrix

A =
⎧⎪⎩ a b

b c

⎫⎪⎭
is nonsingular, this will be the only critical point. Thus, if A is nonsingular, f will have
either a global minimum, a global maximum, or a saddle point at (0, 0).

Let us write f in the form

f (x) = xTAx where x =
⎧⎪⎩ x

y

⎫⎪⎭
Since f (0) = 0, it follows that f will have a global minimum at 0 if and only if

xTAx > 0 for all x �= 0

and f will have a global maximum at 0 if and only if

xTAx < 0 for all x �= 0

If xTAx changes sign, then 0 is a saddle point.
In general, if f is a quadratic form in n variables, then, for each x ∈ R

n,

f (x) = xTAx

where A is a symmetric n × n matrix.

Definition A quadratic form f (x) = xTAx is said to be definite if it takes on only one sign as
x varies over all nonzero vectors in R

n. The form is positive definite if xTAx > 0
for all nonzero x in R

n and negative definite if xTAx < 0 for all nonzero x in R
n.

A quadratic form is said to be indefinite if it takes on values that differ in sign. If
f (x) = xTAx ≥ 0 and assumes the value 0 for some x �= 0, then f (x) is said to be
positive semidefinite. If f (x) ≤ 0 and assumes the value 0 for some x �= 0, then
f (x) is said to be negative semidefinite.

Whether the quadratic form is positive definite or negative definite depends on the
matrix A. If the quadratic form is positive definite, we say simply that A is positive
definite. The preceding definition can then be restated as follows.

Definition A real symmetric matrix A is said to be

I. positive definite if xTAx > 0 for all nonzero x in R
n.

II. negative definite if xTAx < 0 for all nonzero x in R
n.

III. positive semidefinite if xTAx ≥ 0 for all nonzero x in R
n.

IV. negative semidefinite if xTAx ≤ 0 for all nonzero x in R
n.

V. indefinite if xTAx takes on values that differ in sign.
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If A is nonsingular, then 0 will be the only stationary point of f (x) = xTAx. It will
be a global minimum if A is positive definite and a global maximum if A is negative
definite. If A is indefinite, then 0 is a saddle point. To classify the stationary point, we
must then classify the matrix A. There are a number of ways of determining whether
a matrix is positive definite. We will study some of these methods in the next section.
The following theorem gives perhaps the most important characterization of positive
definite matrices:

Theorem 6.6.2 Let A be a real symmetric n × n matrix. Then A is positive definite if and only if all its
eigenvalues are positive.

Proof If A is positive definite and λ is an eigenvalue of A, then, for any eigenvector x
belonging to λ,

xTAx = λxTx = λ‖x‖2

Hence,

λ = xTAx
‖x‖2

> 0

Conversely, suppose that all the eigenvalues of A are positive. Let {u1, . . . , un} be an
orthonormal set of eigenvectors of A. If x is any nonzero vector in R

n, then x can be
written in the form

x = c1u1 + c2u2 + · · · + cnun

where

ci = xTui for i = 1, . . . , n and
n∑

i=1

c2
i = ‖x‖2 > 0

It follows that

xTAx = xT (c1λ1u1 + · · · + cnλnun)

=
n∑

i=1

c2
i λi

≥ (min λi)‖x‖2 > 0

and hence A is positive definite.

If the eigenvalues of A are all negative, then −A must be positive definite and,
consequently, A must be negative definite. If A has eigenvalues that differ in sign, then
A is indefinite. Indeed, if λ1 is a positive eigenvalue of A and x1 is an eigenvector
belonging to λ1, then

xT
1 Ax1 = λ1xT

1 x1 = λ1‖x1‖2 > 0

and if λ2 is a negative eigenvalue with eigenvector x2, then

xT
2 Ax2 = λ2xT

2 x2 = λ2‖x2‖2 < 0
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EXAMPLE 4 The graph of the quadratic form f (x, y) = 2x2 − 4xy + 5y2 is pictured in Figure 6.6.5.
It is not entirely clear from the graph if the stationary point (0, 0) is a global minimum
or a saddle point. We can use the matrix A of the quadratic form to decide the issue:

A =
⎧⎪⎩ 2 −2

−2 5

⎫⎪⎭
The eigenvalues of A are λ1 = 6 and λ2 = 1. Since both eigenvalues are positive,
it follows that A is positive definite and hence the stationary point (0, 0) is a global
minimum.
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Figure 6.6.5.

Suppose now that we have a function F(x, y) with a stationary point (x0, y0). If
F has continuous third partials in a neighborhood of (x0, y0), it can be expanded in a
Taylor series about that point.

F(x0 + h, y0 + k) = F(x0, y0) + [
hFx(x0, y0) + kFy(x0, y0)

]
+ 1

2

[
h2Fxx(x0, y0) + 2hkFxy(x0, y0) + k2Fyy(x0, y0)

] + R
= F(x0, y0) + 1

2 (ah2 + 2bhk + ck2) + R

where

a = Fxx(x0, y0), b = Fxy(x0, y0), c = Fyy(x0, y0)

and the remainder R is given by

R = 1
6

[
h3Fxxx(z) + 3h2kFxxy(z) + 3hk2Fxyy(z) + k3Fyyy(z)

]
z = (x0 + θh, y0 + θk), 0 < θ < 1

If h and k are sufficiently small, |R| will be less than 1
2 |ah2 + 2bhk + ck2|, and hence

[F(x0 + h, y0 + k) − F(x0, y0)] will have the same sign as (ah2 + 2bhk + ck2). The
expression

f (h, k) = ah2 + 2bhk + ck2
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is a quadratic form in the variables h and k. Thus, F(x, y) will have a local minimum
(maximum) at (x0, y0) if and only if f (h, k) has a minimum (maximum) at (0, 0). Let

H =
⎧⎪⎩ a b

b c

⎫⎪⎭ =
⎧⎪⎩ Fxx(x0, y0) Fxy(x0, y0)

Fxy(x0, y0) Fyy(x0, y0)

⎫⎪⎭
and let λ1 and λ2 be the eigenvalues of H. If H is nonsingular, then λ1 and λ2 are
nonzero and we can classify the stationary points as follows:

(i) F has a minimum at (x0, y0) if λ1 > 0, λ2 > 0.
(ii) F has a maximum at (x0, y0) if λ1 < 0, λ2 < 0.

(iii) F has a saddle point at (x0, y0) if λ1 and λ2 differ in sign.

EXAMPLE 5 The graph of the function

F(x, y) = 1
3 x3 + xy2 − 4xy + 1

is pictured in Figure 6.6.6. Although all the stationary points lie in the region shown, it
is difficult to distinguish them just by looking at the graph. However, we can solve for
the stationary points analytically and then classify each stationary point by examining
the corresponding matrix of second partial derivatives.
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Figure 6.6.6.

Solution
The first partials of F are

Fx = x2 + y2 − 4y
Fy = 2xy − 4x = 2x(y − 2)

Setting Fy = 0, we get x = 0 or y = 2. Setting Fx = 0, we see that if x = 0, then y
must either be 0 or 4, and if y = 2, then x = ±2. Thus, (0, 0), (0, 4), (2, 2), and (−2, 2)
are the stationary points of F. To classify the stationary points, we compute the second
partials:

Fxx = 2x, Fxy = 2y − 4, Fyy = 2x
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Table 1 Stationary points of F(x, y)

Stationary Point (x0, y0) λ1 λ2 Description

(0, 0) 4 −4 Saddle point

(0, 4) 4 −4 Saddle point

(2, 2) 4 4 Local minimum

(−2, 2) −4 −4 Local maximum

For each stationary point (x0, y0), we determine the eigenvalues of⎧⎪⎩ 2x0 2y0 − 4
2y0 − 4 2x0

⎫⎪⎭
These values are summarized in Table 1.

We can now generalize our method of classifying stationary points to functions
of more than two variables. Let F(x) = F(x1, . . . , xn) be a real-valued function whose
third partial derivatives are all continuous. Let x0 be a stationary point of F and define
the matrix H = H(x0) by

hij = Fxixj(x0)

H(x0) is called the Hessian of F at x0.
The stationary point can be classified as follows:

(i) x0 is a local minimum of F if H(x0) is positive definite.
(ii) x0 is a local maximum of F if H(x0) is negative definite.

(iii) x0 is a saddle point of F if H(x0) is indefinite.

EXAMPLE 6 Find the local minima of the function

F(x, y, z) = x2 + xz − 3 cos y + z2

Solution
The first partials of F are

Fx = 2x + z
Fy = 3 sin y
Fz = x + 2z

It follows that (x, y, z) is a stationary point of F if and only if x = z = 0 and y = nπ ,
where n is an integer. Let x0 = (0, 2kπ , 0)T . The Hessian of F at x0 is given by

H(x0) =
⎧⎪⎪⎪⎪⎪⎩

2 0 1
0 3 0
1 0 2

⎫⎪⎪⎪⎪⎪⎭
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The eigenvalues of H(x0) are 3, 3, and 1. Since the eigenvalues are all positive, it
follows that H(x0) is positive definite and hence F has a local minimum at x0. At a
stationary point of the form x1 = (0, (2k − 1)π , 0)T , the Hessian will be

H(x1) =
⎧⎪⎪⎪⎪⎪⎩

2 0 1
0 −3 0
1 0 2

⎫⎪⎪⎪⎪⎪⎭
The eigenvalues of H(x1) are −3, 3, and 1. It follows that H(x1) is indefinite and hence
x1 is a saddle point of F.

SECTION 6.6 EXERCISES
1. Find the matrix associated with each of the follow-

ing quadratic forms:
(a) 3x2 − 5xy + y2

(b) 2x2 + 3y2 + z2 + xy − 2xz + 3yz

(c) x2 + 2y2 + z2 + xy − 2xz + 3yz

2. Reorder the eigenvalues in Example 2 so that λ1 =
4 and λ2 = 2 and rework the example. In what
quadrants will the positive x′ and y′ axes lie? Sketch
the graph and compare it to Figure 6.6.3.

3. In each of the following, (i) find a suitable change
of coordinates (i.e., a rotation and/or a translation)
so that the resulting conic section is in standard
form, (ii) identify the curve, and (iii) sketch the
graph.
(a) x2 + xy + y2 − 6 = 0

(b) 3x2 + 8xy + 3y2 + 28 = 0

(c) −3x2 + 6xy + 5y2 − 24 = 0

(d) x2 + 2xy + y2 + 3x + y − 1 = 0
4. Let λ1 and λ2 be the eigenvalues of

A =
⎧⎪⎩ a b

b c

⎫⎪⎭
What kind of conic section will the equation

ax2 + 2bxy + cy2 = 1

represent if λ1λ2 < 0? Explain.

5. Let A be a symmetric 2 × 2 matrix and let α be a
nonzero scalar for which the equation xTAx = α

is consistent. Show that the corresponding conic
section will be nondegenerate if and only if A is
nonsingular.

6. Which of the matrices that follow are positive
definite? Negative definite? Indefinite?

(a)
⎧⎪⎩ 3 2

2 2

⎫⎪⎭ (b)
⎧⎪⎩ 3 4

4 1

⎫⎪⎭

(c)

⎧⎪⎪⎩ 3
√

2√
2 4

⎫⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
−2 0 1

0 −1 0
1 0 −2

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
1 2 1
2 1 1
1 1 2

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
2 0 0
0 5 3
0 3 5

⎫⎪⎪⎪⎪⎪⎭
7. For each of the following functions, determine

whether the given stationary point corresponds to
a local minimum, local maximum, or saddle point:
(a) f (x, y) = 3x2 − xy + y2 (0, 0)

(b) f (x, y) = sin x + y3 + 3xy + 2x − 3y (0, −1)

(c) f (x, y) = 1
3 x3 − 1

3 y3 + 3xy + 2x − 2y (1, −1)

(d) f (x, y) = y

x2
+ x

y2
+ xy (1, 1)

(e) f (x, y, z) = x3 + xyz + y2 − 3x (1, 0, 0)

(f) f (x, y, z) = − 1
4 (x−4 +y−4 +z−4)+yz−x−2y−

2z (1, 1, 1)
8. Show that if A is symmetric positive definite, then

det(A) > 0. Give an example of a 2×2 matrix with
positive determinant that is not positive definite.

9. Show that if A is a symmetric positive definite mat-
rix, then A is nonsingular and A−1 is also positive
definite.

10. Let A be a singular n × n matrix. Show that ATA is
positive semidefinite, but not positive definite.

11. Let A be a symmetric n×n matrix with eigenvalues
λ1, . . . , λn. Show that there exists an orthonormal
set of vectors {x1, . . . , xn} such that

xTAx =
n∑

i=1

λi

(
xT xi

)2

for each x ∈ R
n.

12. Let A be a symmetric positive definite matrix. Show
that the diagonal elements of A must all be positive.
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13. Let A be a symmetric positive definite n × n matrix
and let S be a nonsingular n × n matrix. Show that
STAS is positive definite.

14. Let A be a symmetric positive definite n×n matrix.
Show that A can be factored into a product QQT ,
where Q is an n × n matrix whose columns are
mutually orthogonal. [Hint: See Corollary 6.4.7.]

6.7 Positive Definite Matrices

In Section 6.6, we saw that a symmetric matrix is positive definite if and only if its
eigenvalues are all positive. These types of matrices occur in a wide variety of applic-
ations. They frequently arise in the numerical solution of boundary value problems by
finite difference methods or by finite element methods. Because of their importance in
applied mathematics, we devote this section to studying their properties.

Recall that a symmetric n × n matrix A is positive definite if xTAx > 0 for
all nonzero vectors x in R

n. In Theorem 6.6.2, symmetric positive definite matrices
were characterized by the condition that all their eigenvalues are positive. This
characterization can be used to establish the following properties.

Property I If A is a symmetric positive definite matrix, then A is nonsingular.
Property II If A is a symmetric positive definite matrix, then det(A) > 0.

If A were singular, λ = 0 would be an eigenvalue of A. However, since all the
eigenvalues of A are positive, A must be nonsingular. The second property also follows
from Theorem 6.6.2, since

det(A) = λ1 · · · λn > 0

Given an n × n matrix A, let Ar denote the matrix formed by deleting the last n − r
rows and columns of A. Ar is called the leading principal submatrix of A of order r.
We can now state a third property of positive definite matrices:

Property III If A is a symmetric positive definite matrix, then the leading
principal submatrices A1, A2, . . . , An of A are all positive definite.

Proof To show that Ar is positive definite, 1 ≤ r ≤ n, let xr = (x1, . . . , xr)T be any nonzero
vector in R

r and set

x = (x1, . . . , xr, 0, . . . , 0)T

Since

xT
r Arxr = xTAx > 0

it follows that Ar is positive definite.

An immediate consequence of properties I, II, and III is that if Ar is a leading
principal submatrix of a symmetric positive definite matrix A, then Ar is nonsingular
and det(Ar) > 0. This has significance in relation to the Gaussian elimination process.
In general, if A is an n × n matrix whose leading principal submatrices are all nonsin-
gular, then A can be reduced to upper triangular form using only row operation III; that
is, the diagonal elements will never be 0 in the elimination process, so the reduction
can be completed without interchanging rows.



6.7 Positive Definite Matrices 371

a11

x
x
x

x
a22

x
x

x
x

a33

x

x
x
x

a44

A

1

a11

0
0
0

x
a22

x
x

x
x

a33

x

x
x
x

a44
(1)

(1)

(1) a22

a33

a44
(2)

(2)

(1) a22

a33

a44
(3)

(2)

(1)

A(1) A(2)

2

a11

0
0
0

x

0
0

A(3) = U

x
x

x

x
x
x

3

a11

0
0
0

x

0
0

x
x

0

x
x
x

Figure 6.7.1.

Property IV If A is a symmetric positive definite matrix, then A can be reduced
to upper triangular form using only row operation III, and the pivot elements will
all be positive.

Let us illustrate property IV in the case of a 4 × 4 symmetric positive definite
matrix A. Note first that

a11 = det(A1) > 0

so a11 can be used as a pivot element and row 1 is the first pivot row. Let a(1)
22 denote

the entry in the (2, 2) position after the last three elements of column 1 have been
eliminated (see Figure 6.7.1). At this step, the submatrix A2 has been transformed into
a matrix: ⎧⎪⎪⎪⎩ a11 a12

0 a(1)
22

⎫⎪⎪⎪⎭
Since the transformation was accomplished using only row operation III, the value of
the determinant remains unchanged. Thus,

det(A2) = a11a(1)
22

and hence

a(1)
22 = det(A2)

a11
= det(A2)

det(A1)
> 0

Since a(1)
22 �= 0, it can be used as a pivot in the second step of the elimination process.

After step 2, the matrix A3 has been transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
a11 a12 a13

0 a(1)
22 a(1)

23

0 0 a(2)
33

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Because only row operation III was used,

det(A3) = a11a(1)
22 a(2)

33

and hence

a(2)
33 = det(A3)

a11a(1)
22

= det(A3)

det(A2)
> 0
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Thus, a(2)
33 can be used as a pivot in the last step. After step 3, the remaining diagonal

entry will be

a(3)
44 = det(A4)

det(A3)
> 0

In general, if an n × n matrix A can be reduced to an upper triangular form U
without any interchanges of rows, then A can be factored into a product LU, where L
is lower triangular with 1’s on the diagonal. The (i, j) entry of L below the diagonal
will be the multiple of the ith row that was subtracted from the jth row during the
elimination process. We illustrate with a 3 × 3 example:

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭
The matrix L is determined as follows: At the first step of the elimination process
1
2 times the first row is subtracted from the second row and − 1

2 times the first row
is subtracted from the third. Corresponding to these operations, we set l21 = 1

2 and
l31 = − 1

2 . After step 1, we obtain the matrix

A(1) =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 3 4

⎫⎪⎪⎪⎪⎪⎭
The final elimination is carried out by subtracting 1

3 times the second row from the
third row. Corresponding to this step, we set l32 = 1

3 . After step 2, we end up with the
upper triangular matrix

U = A(2) =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭
The matrix L is given by

L =
⎧⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎭
and we can verify that the product LU = A.

⎧⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭
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To see why this factorization works, let us view that process in terms of elementary
matrices. Row operation III was applied three times during the process. This is equi-
valent to multiplying A on the left by three elementary matrices E1, E2, E3. Thus,
E3E2E1A = U:⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 1

3 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
1
2 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
− 1

2 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭
Since the elementary matrices are nonsingular, it follows that

A = (E−1
1 E−1

2 E−1
3 )U

When the inverse elementary matrices are multiplied in this order, the result is a lower
triangular matrix L with 1’s on the diagonal. The entries below the diagonal of L will
just be the multiples that were subtracted during the elimination process.

E−1
1 E−1

2 E−1
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0

− 1
2 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 1

3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Given an LU factorization of a matrix A, it is possible to go one step further and

factor U into a product DU1, where D is diagonal and U1 is upper triangular with 1’s
on the diagonal:

DU1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
u11

u22
. . .

unn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
u12

u11

u13

u11
· · · u1n

u11

1
u23

u22
· · · u2n

u22

...
1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It follows, then, that A = LDU1. The matrices L and U1 are referred to as unit trian-
gular matrices since they are triangular and their diagonal entries are all equal to 1.
The representation of a square matrix A as a product of the form LDU, where L is a
unit lower triangular matrix, D is diagonal, and U is a unit upper triangular matrix, is
referred to as an LDU factorization of A. In general if A has an LDU factorization, then
it is unique (see Exercise 8 at the end of this section).

If A is a symmetric positive definite matrix, then A can be factored into a product
LU = LDU1. The diagonal elements of D are the entries u11, . . . , unn, which were
the pivot elements in the elimination process. By property IV, these elements are all
positive. Furthermore, since A is symmetric,

LDU1 = A = AT = (LDU1)T = UT
1DTLT
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It follows from the uniqueness of the LDU factorization that LT = U1. Thus

A = LDLT

This important factorization is often used in numerical computations. There are effi-
cient algorithms that make use of the LDLT factorization in solving symmetric positive
definite linear systems.

Property V If A is a symmetric positive definite matrix, then A can be factored
into a product LDLT , where L is lower triangular with 1’s along the diagonal and
D is a diagonal matrix whose diagonal entries are all positive.

EXAMPLE 2 We saw in Example 1 that

A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

4 2 −2
0 9 3
0 0 3

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = LU

Factoring out the diagonal entries of U, we get

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

4 0 0
0 9 0
0 0 3

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1
2 − 1

2

0 1 1
3

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ = LDLT

Since the diagonal elements u11, . . . , unn are positive, it is possible to go one step
further with the factorization. Let

D1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
√

u11 √
u22

. . . √
unn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and set L1 = LD1/2. Then

A = LDLT = LD1/2(D1/2)TLT = L1LT
1

This factorization is known as the Cholesky decomposition of A.

Property VI (Cholesky Decomposition) If A is a symmetric positive definite
matrix, then A can be factored into a product LLT , where L is lower triangular
with positive diagonal elements.
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The Cholesky decomposition of a symmetric positive definite matrix A can also be
represented in terms of an upper triangular matrix. Indeed, if A has Cholesky decom-
position LLT where L is lower triangular with positive diagonal entries, then the matrix
R = LT is upper triangular with positive diagonal entries and

A = LLT = RTR

EXAMPLE 3 Let A be the matrix from Examples 1 and 2. If we set

L1 = LD1/2 =
⎧⎪⎪⎪⎪⎪⎪⎩

1 0 0
1
2 1 0

− 1
2

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

2 0 0
0 3 0
0 0

√
3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

2 0 0
1 3 0

−1 1
√

3

⎫⎪⎪⎪⎪⎪⎭
then

L1LT
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
2 0 0
1 3 0

−1 1
√

3

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 1 −1
0 3 1
0 0

√
3

⎫⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎩
4 2 −2
2 10 2

−2 2 5

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = A

The Cholesky factorization of the symmetric positive definite matrix A in
Example 3 could also have been written in terms of the upper triangular matrix
R = LT

1 .

A = L1LT
1 = RTR

More generally, it is not difficult to show that any product of the BTB will be positive
definite, provided that B is nonsingular. Putting all these results together, we have the
following theorem:

Theorem 6.7.1 Let A be a symmetric n × n matrix. The following are equivalent.

(a) A is positive definite.
(b) The leading principal submatrices A1, . . . , An all have positive determinants.
(c) A can be reduced to upper triangular form using only row operation III, and the

pivot elements will all be positive.
(d) A has a Cholesky factorization LLT (where L is lower triangular with positive

diagonal entries).
(e) A can be factored into a product BTB for some nonsingular matrix B.

Proof We have already shown that (a) implies (b), (b) implies (c), and (c) implies (d). To see
that (d) implies (e), assume that A = LLT . If we set B = LT , then B is nonsingular and

A = LLT = BTB
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Finally, to show that (e) ⇒ (a), assume that A = BTB, where B is nonsingular. Let x be
any nonzero vector in R

n and set y = Bx. Since B is nonsingular, y �= 0 and it follows
that

xTAx = xTBTBx = yTy = ‖y‖2 > 0

Thus, A is positive definite.

Analogous results to Theorem 6.7.1 are not valid for positive semidefiniteness. For
example, consider the matrix

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 −3
1 1 −3

−3 −3 5

⎫⎪⎪⎪⎪⎪⎭
The leading principal submatrices all have nonnegative determinants:

det(A1) = 1, det(A2) = 0, det(A3) = 0

However, A is not positive semidefinite, since it has a negative eigenvalue λ = −1.
Indeed, x = (1, 1, 1)T is an eigenvector belonging to λ = −1 and

xTAx = −3

SECTION 6.7 EXERCISES
1. For each of the following matrices, compute the de-

terminants of all the leading principal submatrices
and use them to determine whether the matrix is
positive definite:

(a)
⎧⎪⎩ 2 −1

−1 2

⎫⎪⎭ (b)
⎧⎪⎩ 3 4

4 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
6 4 −2
4 5 3

−2 3 6

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
4 2 1
2 3 −2
1 −2 5

⎫⎪⎪⎪⎪⎪⎭
2. Let A be a 3 × 3 symmetric positive definite matrix

and suppose that det(A1) = 3, det(A2) = 6, and
det(A3) = 8. What would the pivot elements be
in the reduction of A to triangular form, assuming
that only row operation III is used in the reduction
process?

3. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Compute the LU factorization of A.
(b) Explain why A must be positive definite.

4. For each of the following, factor the given matrix
into a product LDLT , where L is lower triangular
with 1’s on the diagonal and D is a diagonal matrix:

(a)
⎧⎪⎩ 4 2

2 10

⎫⎪⎭ (b)
⎧⎪⎩ 9 −3

−3 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
16 8 4

8 6 0
4 0 7

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
9 3 −6
3 4 1

−6 1 9

⎫⎪⎪⎪⎪⎪⎭
5. Find the Cholesky decomposition LLT for each of

the matrices in Exercise 4.

6. Let A be an n×n symmetric positive definite matrix.
For each x, y ∈ R

n, define

〈x, y〉 = xTAy

Show that 〈 , 〉 defines an inner product on R
n.

7. Prove each of the following:
(a) If U is a unit upper triangular matrix, then

U is nonsingular and U−1 is also unit upper
triangular.

(b) If U1 and U2 are both unit upper triangular
matrices, then the product U1U2 is also a unit
upper triangular matrix.
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8. Let A be a nonsingular n × n matrix, and suppose
that A = L1D1U1 = L2D2U2, where L1 and L2 are
lower triangular, D1 and D2 are diagonal, U1 and U2

are upper triangular, and L1, L2, U1, U2 all have 1’s
along the diagonal. Show that L1 = L2, D1 = D2,
and U1 = U2. [Hint: L−1

2 is lower triangular and
U−1

1 is upper triangular. Compare both sides of the
equation D−1

2 L−1
2 L1D1 = U2U−1

1 .]

9. Let A be a symmetric positive definite matrix with
Cholesky decomposition A = LLT = RT R. Prove
that the lower triangular matrix L (or that the upper
triangular matrix R) in the factorization is unique.

10. Let A be an m × n matrix with rank n. Show that
the matrix AT A is symmetric positive definite.

11. Let A be an m × n matrix with rank n and let QR be
the factorization obtained when the Gram–Schmidt
process is applied to the column vectors of A.
Show that if AT A has Cholesky factorization RT

1 R1,
then R1 = R. Thus the upper triangular factors in
the Gram–Schmidt QR factorization of A and the
Cholesky decomposition of AT A are identical.

12. Let A be a symmetric positive definite matrix and
let Q be an orthogonal diagonalizing matrix. Use
the factorization A = QDQT to find a nonsingular
matrix B such that BTB = A.

13. Let A be a symmetric n × n matrix. Show that eA is
symmetric and positive definite.

14. Show that if B is a symmetric nonsingular matrix,
then B2 is positive definite.

15. Let

A =
⎧⎪⎪⎪⎪⎩ 1 − 1

2

− 1
2 1

⎫⎪⎪⎪⎪⎭ and B =
⎧⎪⎩ 1 −1

0 1

⎫⎪⎭
(a) Show that A is positive definite and that xTAx =

xTBx for all x ∈ R
2.

(b) Show that B is positive definite, but B2 is not
positive definite.

16. Let A be an n × n symmetric negative definite
matrix.
(a) What will the sign of det(A) be if n is even? If

n is odd?
(b) Show that the leading principal submatrices of

A are negative definite.
(c) Show that the determinants of the leading prin-

cipal submatrices of A alternate in sign.
17. Let A be a symmetric positive definite n×n matrix.

(a) If k < n, then the leading principal submatrices
Ak and Ak+1 are both positive definite and, con-
sequently, have Cholesky factorizations LkLT

k
and Lk+1LT

k+1. If Ak+1 is expressed in the form

Ak+1 =
⎧⎪⎪⎪⎩ Ak yk

yT
k βk

⎫⎪⎪⎪⎭
where yk ∈ R

k and βk is a scalar, show that
Lk+1 is of the form

Lk+1 =
⎧⎪⎪⎪⎩ Lk 0

xT
k αk

⎫⎪⎪⎪⎭
and determine xk and αk in terms of Lk, yk,
and βk.

(b) The leading principal submatrix A1 has
Cholesky decomposition L1LT

1 , where L1 =
(
√

a11 ). Explain how part (a) can be used to
compute successively the Cholesky factoriza-
tions of A2, . . . , An. Devise an algorithm that
computes L2, L3, . . . , Ln in a single loop. Since
A = An, the Cholesky decomposition of A
will be LnLT

n . (This algorithm is efficient in
that it uses approximately half the amount of
arithmetic that would generally be necessary to
compute an LU factorization.)

6.8 Nonnegative Matrices

In many of the types of linear systems that occur in applications, the entries of the
coefficient matrix represent nonnegative quantities. This section deals with the study
of such matrices and some of their properties.

Definition An n × n matrix A with real entries is said to be nonnegative if aij ≥ 0 for each i
and j and positive if aij > 0 for each i and j.

Similarly, a vector x = (x1, . . . , xn)T is said to be nonnegative if each xi ≥ 0
and positive if each xi > 0.



378 Chapter 6 Eigenvalues

For an example of one of the applications of nonnegative matrices, we consider
the Leontief input–output models.

APPLICATION 1 The Open Model

Suppose that there are n industries producing n different products. Each industry re-
quires input of the products from the other industries and possibly even of its own
product. In the open model, it is assumed that there is an additional demand for each
of the products from an outside sector. The problem is to determine the output of each
of the industries that is necessary to meet the total demand.

We will show that this problem can be represented by a linear system of equations
and that the system has a unique nonnegative solution. Let aij denote the amount of
input from the ith industry necessary to produce one unit of output in the jth industry.
By a unit of input or output, we mean one dollar’s worth of the product. Thus, the total
cost of producing one dollar’s worth of the jth product will be

a1j + a2j + · · · + anj

Since the entries of A are all nonnegative, this sum is equal to ‖aj‖1. Clearly, production
of the jth product will not be profitable unless ‖aj‖1 < 1. Let di denote the demand of
the open sector for the ith product. Finally, let xi represent the amount of output of the
ith product necessary to meet the total demand. If the jth industry is to have an output
of xj, it will need an input of aijxj units from the ith industry. Thus, the total demand
for the ith product will be

ai1x1 + ai2x2 + · · · + ainxn + di

and hence we require that

xi = ai1x1 + ai2x2 + · · · + ainxn + di

for i = 1, . . . , n. This leads to the system

(1 − a11)x1 + (−a12)x2 + · · · + (−a1n)xn = d1

(−a21)x1 + (1 − a22)x2 + · · · + (−a2n)xn = d2
...

(−an1)x1 + (−an2)x2 + · · · + (1 − ann)xn = dn

which may be written in the form

(I − A)x = d (1)

The entries of A have two important properties:

(i) aij ≥ 0 for each i and j.

(ii) ‖aj‖1 =
n∑

i=1

aij < 1 for each j.
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The vector x must not only be a solution of (1); it must also be nonnegative. (It would
not make any sense to have a negative output.)

To show that the system has a unique nonnegative solution, we need to make use of
a matrix norm that is related to the 1-norm for vectors that was introduced in Section 4
of Chapter 5. The matrix norm is also referred to as the 1-norm and is denoted by ‖·‖1.
The definition and properties of the 1-norm for matrices are studied in Section 4 of
Chapter 7. In that section, we will show that, for any m × n matrix B,

‖B‖1 = max
1≤j≤n

(
m∑

i=1

|bij|
)

= max(‖b1‖1, ‖b2‖1, . . . , ‖bn‖1) (2)

It will also be shown that the 1-norm satisfies the following multiplicative properties:

‖BC‖1 ≤ ‖B‖1‖C‖1 for any matrix C ∈ R
n×r (3)

‖Bx‖1 ≤ ‖B‖1‖x‖1 for any x ∈ R
n

In particular, if A is an n × n matrix satisfying conditions (i) and (ii), then it follows
from (2) that ‖A‖1 < 1. Furthermore, if λ is any eigenvalue of A and x is an eigenvector
belonging to λ, then

|λ|‖x‖1 = ‖λx‖1 = ‖Ax‖1 ≤ ‖A‖1‖x‖1

and hence

|λ| ≤ ‖A‖1 < 1

Thus, 1 is not an eigenvalue of A. It follows that I − A is nonsingular and hence the
system (1) has a unique solution

x = (I − A)−1d

We would like to show that this solution must be nonnegative. To do this, we will
show that (I − A)−1 is nonnegative. First note that, as a consequence of multiplicative
property (3), we have

‖Am‖1 ≤ ‖A‖m
1

Since ‖A‖1 < 1, it follows that

‖Am‖1 → 0 as m → ∞
and hence Am approaches the zero matrix as m → ∞.

Since

(I − A)(I + A + · · · + Am) = I − Am+1

it follows that

I + A + · · · + Am = (I − A)−1 − (I − A)−1Am+1
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As m → ∞,

(I − A)−1 − (I − A)−1Am+1 → (I − A)−1

and hence the series I+A+· · ·+Am converges to (I−A)−1 as m → ∞. By condition (i),
I+A+· · ·+Am is nonnegative for each m, and therefore (I−A)−1 must be nonnegative.
Since d is nonnegative, it follows that the solution x must be nonnegative. We see, then,
that conditions (i) and (ii) guarantee that the system (1) will have a unique nonnegative
solution x.

As you have probably guessed, there is also a closed version of the Leontief input–
output model. In the closed version, it is assumed that each industry must produce
enough output to meet the input needs of only the other industries and itself. The open
sector is ignored. Thus, in place of the system (1), we have

(I − A)x = 0

and we require that x be a positive solution. The existence of such an x in this case
is a much deeper result than in the open version and requires some more advanced
theorems.

Theorem 6.8.1 Perron’s Theorem
If A is a positive n×n matrix, then A has a positive real eigenvalue r with the following
properties:

(i) r is a simple root of the characteristic equation.
(ii) r has a positive eigenvector x.

(iii) If λ is any other eigenvalue of A, then |λ| < r.

The Perron theorem may be thought of as a special case of a more general theorem
due to Frobenius. The Frobenius theorem applies to irreducible nonnegative matrices.

Definition A nonnegative matrix A is said to be reducible if there exists a partition of the index
set {1, 2, . . . , n} into nonempty disjoint sets I1 and I2 such that aij = 0 whenever
i ∈ I1 and j ∈ I2. Otherwise, A is said to be irreducible.

EXAMPLE 1 Let A be a matrix of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × 0 0 ×
× × 0 0 ×
× × × × ×
× × × × ×
× × 0 0 ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Let I1 = {1, 2, 5} and I2 = {3, 4}. Then I1 ∪ I2 = {1, 2, 3, 4, 5} and aij = 0 whenever
i ∈ I1 and j ∈ I2. Therefore, A is reducible. If P is the permutation matrix formed by
interchanging the third and fifth rows of the identity matrix I, then
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PA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × 0 0 ×
× × 0 0 ×
× × 0 0 ×
× × × × ×
× × × × ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

PAPT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × × 0 0
× × × 0 0
× × × 0 0
× × × × ×
× × × × ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
In general, it can be shown that an n×n matrix A is reducible if and only if there exists
a permutation matrix P such that PAPT is a matrix of the form⎧⎪⎩ B O

X C

⎫⎪⎭
where B and C are square matrices.

Theorem 6.8.2 Frobenius Theorem
If A is an irreducible nonnegative matrix, then A has a positive real eigenvalue r with
the following properties:

(i) r has a positive eigenvector x.
(ii) If λ is any other eigenvalue of A, then |λ| ≤ r. The eigenvalues with absolute

value equal to r are all simple roots of the characteristic equation. Indeed, if
there are m eigenvalues with absolute value equal to r, they must be of the
form

λk = re2kπ i/m k = 0, 1, . . . , m − 1

The proof of this theorem is beyond the scope of the text. We refer the reader to
Gantmacher [4, Vol. 2]. Perron’s theorem follows as a special case of the Frobenius
theorem.

APPLICATION 2 The Closed Model

In the closed Leontief input–output model, we assume that there is no demand from
the open sector and we wish to find outputs to satisfy the demands of all n industries.
Thus, defining the xi’s and the aij’s as in the open model, we have

xi = ai1x1 + ai2x2 + · · · + ainxn

for i = 1, . . . , n. The resulting system may be written in the form

(A − I)x = 0 (4)
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As before, we have the condition

aij ≥ 0 (i)

Since there is no open sector, the amount of output from the jth industry should be the
same as the total input for that industry. Thus,

xj =
n∑

i=1

aijxj

and hence we have as our second condition

n∑
i=1

aij = 1 j = 1, . . . , n (ii)

Condition (ii) implies that A − I is singular, because the sum of its row vectors is
0. Therefore, 1 is an eigenvalue of A, and since ‖A‖1 = 1, it follows that all the
eigenvalues of A have moduli less than or equal to 1. Let us assume that enough of the
coefficients of A are nonzero so that A is irreducible. Then, by Theorem 6.8.2, λ = 1
has a positive eigenvector x. Thus any positive multiple of x will be a positive solution
of (4).

APPLICATION 3 Markov Chains Revisited

Nonnegative matrices also play an important role in the theory of Markov processes.
Recall that if A is an n × n stochastic matrix, then λ1 = 1 is an eigenvalue of A and the
remaining eigenvalues satisfy

|λj| ≤ 1 for j = 2, . . . , n

In the case that A is stochastic and all of its entries are positive, it follows from Perron’s
theorem that λ1 = 1 must be a dominant eigenvalue and this in turn implies that the
Markov chain with transition matrix A will converge to a steady-state vector for any
starting probability vector x0. In fact, if, for some k, the matrix Ak is positive, then by
Perron’s theorem, λ1 = 1 must be a dominant eigenvalue of Ak. One can then show
that λ1 = 1 must also be a dominant eigenvalue of A. (See Exercise 12.) We say that a
Markov process is regular if all of the entries of some power of the transition matrix are
strictly positive. The transition matrix for a regular Markov process will have λ1 = 1
as a dominant eigenvalue, and hence the Markov chain is guaranteed to converge to a
steady-state vector.

APPLICATION 4 Analytic Hierarchy Process: Eigenvector Computation of Weights

In Section 5.3, we considered an example involving a search process to fill a full pro-
fessor position at a large university. In order to assign weights to the quality of the
research of the four candidates, the committee did pairwise comparisons of the relative
quality of the research publications of the candidates. After studying the publications
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of all the candidates, the committee agreed upon the following pairwise comparisons
of the weights:

w1 = 1.75w2, w1 = 1.5w3, w1 = 1.25w4, w2 = 0.75w3, w2 = 0.50w4, w3 = 0.75w4

Here an equation such as w2 = 0.50w4 would indicate that the quality of research
from candidate 2 was only half as strong as the quality of research from candidate 4.
Equivalently one could say that the quality of research from candidate 4 is twice as
strong as the quality of research from candidate 2. In Chapter 5 we added the condition
that the weights must all add up to 1. Using this condition we were able to express w4

in terms of w1, w2, and w3. We then found the values of w1, w2, and w3 by calculating
the least squares solution to a 6 × 3 linear system. The calculated weight vector was
w1 = (0.3289, 0.1739, 0.2188, 0.2784)T .

We now consider an alternative method for computing the weight vector based on
an eigenvector calculation. To do this we first form a comparison matrix C. The (i, j)
entry of C indicates how the quality of the research of candidate i compares to the
quality of the research of candidate j. Thus if, for example, w2 = 0.5w4, then c24 = 2
and c42 = 1

2 . The comparison matrix for judging quality of research is given by

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 7
4

3
2

5
4

4
7 1 3

4
1
2

2
3

4
3 1 3

4

4
5 2 4

3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix C is called a reciprocal matrix since it has the property that cji = 1

cij
for

all i and j. The matrix C is a positive matrix, so it follows by Perron’s theorem that
C has a dominant eigenvalue with a positive eigenvector. The dominant eigenvalue is
λ1 = 4.0106. If we compute the eigenvector belonging to λ1 and then normalize so
that its entries add up to 1, we end up with a weight vector

w2 = (0.3255, 0.1646, 0.2177, 0.2922)T

The eigenvector solution w2 is very close to the weight vector w1 computed using least
squares. Why does this eigenvector method work so well? To answer this question let
us first consider a simple example where both methods of computing weights give the
exact same answer.

Suppose the mathematics department at a small college is conducting a search for
an assistant professor position. Candidates will be evaluated in the areas of teaching,
research, and professional activities. The committee decides that teaching is twice as
important as research and 8 times as important as professional activities. The commit-
tee also decides that research is 4 times as important as professional activities. In this
case it is easy to find the weight vector since the decisions about the relative importance
of the three areas were done in a consistent way.

If w3 is the weight assigned to professional activities, then the weight for research
w2 must be 4w3 and the weight w1 must be 8w3. So w1 is automatically equal to 2w2.
The weight vector then must be of the form w = (8w3, 4w3, w3)T . In order for the
entries of w to add up to 1, the value of w3 must be 1

13 . If we use the least squares
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method discussed in Section 5.3, we would set w3 = 1 − w1 − w1. The weight vector
would then be computed by finding the least squares solution to a 3 × 2 linear system.
In this case the 3 × 2 system is consistent, so the least squares solution is the exact
solution and our computed weight vector is w = ( 8

13 , 4
13 , 1

13 )T .
Let us now compute the weight vector using the eigenvector method. To do this

we first form the comparison matrix

C =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 2 8
1
2 1 4
1
8

1
4 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Note that c12 = 2 since teaching is considered twice as important as professional
activities and c23 = 4 since research is considered 4 times as important as professional
activiies. Because the judgments of relative importance were made in a consistent man-
ner, the value of c13, the relative importance of teaching to to professional activities,
should be

c13 = 2 · 4 = c12c23

Indeed, if all decisions on the relative importance of the criteria are made in a con-
sistent manner, then the entries of the comparison matrix will satisfy the property:
cij = cikckj for all i, j, and k. A reciprocal comparison matrix with this property is said
to be consistent. Note that the matrix C in our example has rank 1 since

c1 = 1

8
c3 and c2 = 1

4
c3

In general, if C is an n × n consistent reciprocal comparison matrix and cj and ck

are column vectors of C, then

cj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c1j

c2j
...

cnj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c1kckj

c2kckj
...

cnkckj

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ = ckjck

Therefore C must have rank equal to 1. It follows that 0 must be an eigenvalue of C
and the dimension of its eigenspace must be n − 1, the nullity of C. So 0 must be an
eigenvalue of multiplicity n − 1. The remaining eigenvalue λ1 must equal the trace of
C. So λ1 = n is the dominant eigenvalue of C. Furthermore, since C has rank 1, any
column vector of C will be an eigenvector belonging to the dominant eigenvalue. (See
Exercise 17 in Section 6.3.)

For our example, it follows that the dominant eigenvalue of C is λ1 = 3 and that
c3 is an eigenvector belonging to λ1. If we divide c3 by the sum of its entries, we end
up with the weight vector w = ( 8

13 , 4
13 , 1

13 )T .
In general, if the decisions on the relative importance are made in a consistent

manner, then there is only one way to choose the weights and both the least squares
method and the eigenvector method will produce the same weight vector. Suppose
now that the decisions are not made in a consistent manner. This is not uncommon
when decisions are made based on human judgments. For the least squares method,
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the linear system in the variables w1, w2, . . . , wn−1 will not be consistent, but we can
always find a least squares solution. If the eigenvector method is used, the comparison
matrix C1 will not be consistent. By Perron’s theorem C1 will have a positive dominant
eigenvalue λ1 and a positive eigenvector x1. The eigenvector can be scaled to form a
vector w1 whose entries add to 1. The scaled vector w1 is used to assign weights to
the criteria. If the decisions on the relative importance have not been made in a wildly
inconsistent manner, but in a way that is in some sense close to being consistent, then
the eigenvector w1 is a reasonable choice for a weight vector. In this case, the matrix C1

should in some sense be close to a consistent reciprocal comparison matrix and λ1 and
w1 should be close to the dominant eigenvalue and eigenvector of a consistent matrix.

Suppose, for example, that the search committee at the college had decided as
before that teaching is twice as important as research and 8 times as important as
professional activities; however, suppose this time they decided that research should
only be 3 times as important as professional activities. In this case, the comparison
matrix is

C1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 2 8
1
2 1 3
1
8

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The matrix C1 is not consistent so its dominant eigenvalue λ1 = 3.0092 is not equal
to 3; however, it is close to 3. The eigenvector belonging to λ1 (normalized so that its
entries add up to 1) is w1 = (0.6282, 0.2854, 0.0864)T . Table 1 summarizes the results
for both the problem with the consistent comparison matrix and for the inconsistent
version of the problem. For each comparison matrix the table includes the dominant
eigenvalue and the computed weights. All computed values are rounded to 4 decimal
places.

Table 1 A Comparison of Comparison Matrices

Weights

Matrix Eigenvalue Teaching Research Prof. Activities

C 3 0.6154 0.3077 0.0769

C1 3.0092 0.6282 0.2854 0.0864

SECTION 6.8 EXERCISES
1. Find the eigenvalues of each of the following

matrices and verify that conditions (i), (ii), and (iii)
of Theorem 6.8.1 hold:

(a)
⎧⎪⎩ 2 3

2 1

⎫⎪⎭ (b)
⎧⎪⎩ 4 2

2 7

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1 2 4
2 4 1
1 2 4

⎫⎪⎪⎪⎪⎪⎭

2. Find the eigenvalues of each of the following
matrices and verify that conditions (i) and (ii) of
Theorem 6.8.2 hold:

(a)
⎧⎪⎩ 2 3

1 0

⎫⎪⎭ (b)
⎧⎪⎩ 0 2

2 0

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
0 0 8
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
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3. Find the output vector x in the open version of the
Leontief input–output model if

A =
⎧⎪⎪⎪⎪⎪⎩

0.2 0.4 0.4
0.4 0.2 0.2
0.0 0.2 0.2

⎫⎪⎪⎪⎪⎪⎭ and d =
⎧⎪⎪⎪⎪⎪⎩

16,000
8,000

24,000

⎫⎪⎪⎪⎪⎪⎭
4. Consider the closed version of the Leontief input–

output model with input matrix

A =
⎧⎪⎪⎪⎪⎪⎩

0.5 0.4 0.1
0.5 0.0 0.5
0.0 0.6 0.4

⎫⎪⎪⎪⎪⎪⎭
If x = (x1, x2, x3)T is any output vector for this

model, how are the coordinates x1, x2, and x3

related?
5. Prove: If Am = O for some positive integer m, then

I − A is nonsingular.
6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

0 1 1
0 −1 1
0 −1 1

⎫⎪⎪⎪⎪⎪⎭
(a) Compute (I − A)−1.
(b) Compute A2 and A3. Verify that

(I − A)−1 = I + A + A2.
7. Which of the matrices that follow are reducible?

For each reducible matrix, find a permutation mat-
rix P such that PAPT is of the form⎧⎪⎪⎩ B O

X C

⎫⎪⎪⎭
where B and C are square matrices.

(a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 1
1 1 1 1
1 0 1 1
1 0 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 0 0
0 1 1 1 1
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1 1 1
1 1 0 0 1
1 1 1 1 1
1 1 0 0 1
1 1 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
8. Let A be a nonnegative irreducible 3 × 3 matrix

whose eigenvalues satisfy λ1 = 2 = |λ2| = |λ3|.
Determine λ2 and λ3.

9. Let

A =
⎧⎪⎪⎩ B O

O C

⎫⎪⎪⎭
where B and C are square matrices.

(a) If λ is an eigenvalue of B with eigenvector
x = (x1, . . . , xk)T , show that λ is also
an eigenvalue of A with eigenvector x̃ =
(x1, . . . , xk, 0, . . . , 0)T .

(b) If B and C are positive matrices, show that A
has a positive real eigenvalue r with the prop-
erty that |λ| < r for any eigenvalue λ �= r.
Show also that the multiplicity of r is at most 2
and that r has a nonnegative eigenvector.

(c) If B = C, show that the eigenvalue r in part (b)
has multiplicity 2 and possesses a positive
eigenvector.

10. Prove that a 2 × 2 matrix A is reducible if and only
if a12a21 = 0.

11. Prove the Frobenius theorem in the case where A is
a 2 × 2 matrix.

12. We can show that, for an n × n stochastic mat-
rix, λ1 = 1 is an eigenvalue and the remaining
eigenvalues must satisfy

|λj| ≤ 1 j = 2, . . . , n

(See Exercise 24 of Chapter 7, Section 4.) Show
that if A is an n × n stochastic matrix with the prop-
erty that Ak is a positive matrix for some positive
integer k, then

|λj| < 1 j = 2, . . . , n

13. Let A be an n × n positive stochastic matrix with
dominant eigenvalue λ1 = 1 and linearly inde-
pendent eigenvectors x1, x2, . . . , xn, and let y0 be an
initial probability vector for a Markov chain

y0, y1 = Ay0, y2 = Ay1, . . .

(a) Show that λ1 = 1 has a positive eigenvector x1.
(b) Show that ‖yj‖1 = 1, j = 0, 1, . . ..
(c) Show that if

y0 = c1x1 + c2x2 + · · · + cnxn

then the component c1 in the direction of the
positive eigenvector x1 must be nonzero.

(d) Show that the state vectors yj of the Markov
chain converge to a steady-state vector.

(e) Show that

c1 = 1

‖x1‖1

and hence the steady-state vector is independ-
ent of the initial probability vector y0.

14. Would the results of parts (c) and (d) in Exercise 13
be valid if the stochastic matrix A was not a posit-
ive matrix? Answer this same question in the case
when A is a nonnegative stochastic matrix and, for
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some positive integer k, the matrix Ak is positive.
Explain your answers.

15. A management student received fellowship offers
from four universities and now must choose which
one to accept. The student uses the analytic hier-
archy process to decide among the universities and
bases the decision process on the following four
criteria:

(i) financial matters—tuition and scholarships
(ii) the reputation of the university
(iii) social life at the university
(iv) geography—how desirable is the location

of the university

In order to weigh the criteria the student decides
that finance and reputation are equally important

and both are 4 times as important as social life and
6 times as important as geography. The student also
rates social life twice as important as geography.
(a) Determine a reciprocal comparison matrix C

based on the given judgments of the relative
importance of the 4 criteria.

(b) Show that the matrix C is not consistent.

(c) Make the problem consistent by changing the
relative importance of one pair of criteria and
determine a new comparison matrix C1 for the
consistent problem.

(d) Find an eigenvector belonging to the domin-
ant eigenvalue of C1 and use it to determine a
weight vector for the decision criteria.

Chapter Six Exercises

MATLAB EXERCISES

Visualizing Eigenvalues
MATLAB has a utility for visualizing the actions of lin-
ear operators that map the plane into itself. The utility is
invoked using the command eigshow. This command
opens a figure window that shows a unit vector x and
also Ax, the image of x under A. The matrix A can be
specified as an input argument of the eigshow com-
mand or selected from the menu at the top of the figure
window. To see the effect of the operator A on other
unit vectors, point your mouse to the tip of the vector x
and use it to drag the vector x around the unit circle in
a counterclockwise direction. As x moves, you will see
how its image Ax changes. In this exercise, we will use
the eigshow utility to investigate the eigenvalues and
eigenvectors of the matrices in the eigshow menu.

1. The top matrix on the menu is the diagonal matrix

A =
⎧⎪⎪⎪⎪⎩

5
4 0

0 3
4

⎫⎪⎪⎪⎪⎭
Initially, when you select this matrix, the vectors
x and Ax should both be aligned along the posit-
ive x-axis. What information about an eigenvalue–
eigenvector pair is apparent from the initial figure
positions? Explain. Rotate x counterclockwise un-
til x and Ax are parallel, that is, until they both
lie along the same line through the origin. What
can you conclude about the second eigenvalue–
eigenvector pair? Repeat this experiment with the

second matrix. How can you determine the eigen-
values and eigenvectors of a 2 × 2 diagonal matrix
by inspection without doing any computations?
Does this also work for 3 × 3 diagonal matrices?
Explain.

2. The third matrix on the menu is just the identity
matrix I. How do x and Ix compare geometrically
as you rotate x around the unit circle? What can you
conclude about the eigenvalues and eigenvectors in
this case?

3. The fourth matrix has 0’s on the diagonal and 1’s
in the off-diagonal positions. Rotate the vector x
around the unit circle and note when x and Ax
are parallel. On the basis on these observations,
determine the eigenvalues and the corresponding
unit eigenvectors. Check your answers by multiply-
ing the matrix times the eigenvector to verify that
Ax = λx.

4. The next matrix in the eigshow menu looks the
same as the previous ones except that the (2, 1)
entry has been changed to −1. Rotate the vector
x completely around the unit circle. Are x and Ax
ever parallel? Does A have any real eigenvectors?
What can you conclude about the nature of the
eigenvalues and eigenvectors of this matrix?

5. Investigate the next three matrices on the menu
(the sixth, seventh and eighth). In each case, try to
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estimate geometrically the eigenvalues and eigen-
vectors and make your guesses for the eigenvalues
consistent with the trace of the matrix. Use MAT-
LAB to compute the eigenvalues and eigenvectors
of the sixth matrix by setting

[X, D] = eig([0.25, 0.75 ; 1, 0.50 ])

The column vectors of X are the eigenvectors of the
matrix and the diagonal entries of D are the eigen-
values. Check the eigenvalues and eigenvectors of
the other two matrices in the same way.

6. Investigate the ninth matrix on the menu. What can
you conclude about the nature of its eigenvalues
and eigenvectors? Check your conclusions by com-
puting the eigenvalues and eigenvectors with the
eig command.

7. Investigate the next three matrices on the menu.
You should note that, for the last two of these
matrices, the two eigenvalues are equal. For each
matrix, how are the eigenvectors related? Use
MATLAB to compute the eigenvalues and eigen-
vectors of these matrices.

8. The last item on the eigshow menu will generate
a random 2 × 2 matrix each time that it is invoked.
Try using the random matrix 10 times, and in each
case determine whether the eigenvalues are real.
What percentage of the 10 random matrices had
real eigenvalues? What is the likelihood that two
real eigenvalues of a random matrix will turn out to
be exactly equal? Explain.

Critical Loads for a Beam

9. Consider the application relating to critical loads for
a beam from Section 6.1. For simplicity, we will as-
sume that the beam has length 1 and that its flexural
rigidity is also 1. Following the method described
in the application, if the interval [0, 1] is partitioned
into n subintervals, then the problem can be trans-
lated into a matrix equation Ay = λy. The critical
load for the beam can be approximated by setting
P = sn2, where s is the smallest eigenvalue of A.
For n = 100, 200, 400, form the coefficient matrix
by setting

D = diag(ones(n − 1, 1), 1);

A = 2 ∗ eye(n) − D − D′;

In each case, determine the smallest eigenvalue of A
by setting

s = min(eig(A))

and then compute the corresponding approximation
to the critical load.

Diagonalizable and Defective Matrices

10. Construct a symmetric matrix A by setting

A = round(5 ∗ rand(6)); A = A + A′

Compute the eigenvalues of A by setting

e = eig(A)

(a) The trace of A can be computed with the MAT-
LAB command trace(A), and the sum of
the eigenvalues of A can be computed with
the command sum(e). Compute both of these
quantities and compare the results. Use the
command prod(e) to compute the product of
the eigenvalues of A and compare the result
with det(A).

(b) Compute the eigenvectors of A by setting
[X, D] = eig(A). Use MATLAB to compute
X−1AX and compare the result with D. Com-
pute also A−1 and XD−1X−1 and compare the
results.

11. Set

A = ones(10) + eye(10)

(a) What is the rank of A − I? Why must λ = 1
be an eigenvalue of multiplicity 9? Compute
the trace of A using the MATLAB function
trace. The remaining eigenvalue λ10 must
equal 11. Why? Explain. Compute the eigen-
values of A by setting e = eig(A). Examine
the eigenvalues, using format long. How
many digits of accuracy are there in the com-
puted eigenvalues?

(b) The MATLAB routine for computing eigenval-
ues is based on the QR algorithm described in
Section 6 of Chapter 7. We can also compute
the eigenvalues of A by computing the roots of
its characteristic polynomial. To determine the
coefficients of the characteristic polynomial of
A, set p = poly(A). The characteristic poly-
nomial of A should have integer coefficients.
Why? Explain. If we set p = round(p), we
should end up with the exact coefficients of the
characteristic polynomial of A. Compute the
roots of p by setting

r = roots(p)

and display the results, using format long.
How many digits of accuracy are there in the
computed results? Which method of comput-
ing eigenvalues is more accurate, using the
eig function or computing the roots of the
characteristic polynomial?
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12. Consider the matrices

A =
⎧⎪⎩ 5 −3

3 −5

⎫⎪⎭ and B =
⎧⎪⎩ 5 −3

3 5

⎫⎪⎭
Note that the two matrices are the same except for
their (2, 2) entries.
(a) Use MATLAB to compute the eigenvalues of

A and B. Do they have the same type of eigen-
values? The eigenvalues of the matrices are the
roots of their characteristic polynomials. Use
the following MATLAB commands to form
the polynomials and plot their graphs on the
same axis system:

p = poly(A);
q = poly(B);
x = −8 : 0.1 : 8;
z = zeros(size(x));
y = polyval(p, x);
w = polyval(q, x);
plot(x, y, x, w, x, z)
hold on

The hold on command is used so that sub-
sequent plots in part (b) will be added to the
current figure. How can you use the graph
to estimate the eigenvalues of A? What does
the graph tell you about the eigenvalues of B?
Explain.

(b) To see how the eigenvalues change as the (2, 2)
entry changes, let us construct a matrix C with
a variable (2, 2) entry. Set

t = sym(′t′) C = [5, −3; 3, t − 5]

As t goes from 0 to 10, the (2, 2) entries
of these matrices go from −5 to 5. Use the
following MATLAB commands to plot the
graphs of the characteristic polynomials for
the intermediate matrices corresponding to t =
1, 2, . . . , 9:.

p = poly(C)
for j = 1 : 9

s = subs(p, t, j);
ezplot(s, [−10, 10])
axis([−10, 10, −20, 220])
pause(2)

end

Which of these intermediate matrices
have real eigenvalues and which have complex
eigenvalues? The characteristic polynomial of
the symbolic matrix C is a quadratic poly-
nomial whose coefficients are functions of t.
To find exactly where the eigenvalues change
from real to complex, write the discriminant of

the quadratic as a function of t and then find
its roots. One root should be in the interval
(0, 10). Plug that value of t back into the matrix
C and determine the eigenvalues of the matrix.
Explain how these results correspond to your
graph. Solve for the eigenvectors by hand. Is
the matrix diagonalizable?

13. Set

B = toeplitz(0 : −1 : −3, 0 : 3)

The matrix B is not symmetric and hence it is not
guaranteed to be diagonalizable. Use MATLAB to
verify that the rank of B equals 2. Explain why 0
must be an eigenvalue of B and the corresponding
eigenspace must have dimension 2. Set [X, D] =
eig(B). Compute X−1BX and compare the result
with D. Compute also XD5X−1 and compare the
result with B5.

14. Set

C = triu(ones(4), 1) + diag([1, −1], −2)

and

[X, D] = eig(C)

Compute X−1CX and compare the result with D.
Is C diagonalizable? Compute the rank of X and
the condition number of X. If the condition number
of X is large, the computed values for the eigen-
values may not be accurate. Compute the reduced
row echelon form of C. Explain why 0 must be an
eigenvalue of C and the corresponding eigenspace
must have dimension 1. Use MATLAB to com-
pute C4. It should equal the zero matrix. Given that
C4 = O, what can you conclude about the actual
values of the other three eigenvalues of C? Explain.
Is C defective? Explain.

15. Construct a defective matrix by setting

A = ones(6); A = A−tril(A)−triu(A, 2)

It is easily seen that λ = 0 is the only eigenvalue of
A and that its eigenspace is spanned by e1. Verify
that this is indeed the case by using MATLAB to
compute the eigenvalues and eigenvectors of A. Ex-
amine the eigenvectors using format long. Are
the computed eigenvectors multiples of e1? Now
perform a similarity transformation on A. Set

Q = orth(rand(6)); and B = Q′ ∗A∗Q
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If the computations had been done in exact arith-
metic, the matrix B would be similar to A and
hence defective. Use MATLAB to compute the ei-
genvalues of B and a matrix X consisting of the
eigenvectors of B. Determine the rank of X. Is the
computed matrix B defective? Because of rounding
error, a more reasonable question to ask is whether
the computed matrix B is close to being defective
(i.e., are the column vectors of X close to being
linearly dependent?). To answer this question, use
MATLAB to compute rcond(X), the reciprocal of
the condition number of X. A value of rcond close
to zero indicates that X is nearly rank deficient.

16. Generate a matrix A by setting

B = [ −1, −1; 1, 1 ],
A = [zeros(2), eye(2); eye(2), B]

(a) The matrix A should have eigenvalues λ1 = 1
and λ2 = −1. Use MATLAB to verify that
these are the correct eigenvalues by comput-
ing the reduced row echelon forms of A − I
and A + I. What are the dimensions of the
eigenspaces of λ1 and λ2?

(b) It is easily seen that trace(A) = 0 and
det(A) = 1. Verify these results in MATLAB.
Use the values of the trace and determinant to
prove that 1 and −1 are actually both double
eigenvalues. Is A defective? Explain.

(c) Set e = eig(A) and examine the eigenvalues
using format long. How many digits of ac-
curacy are there in the computed eigenvalues?
Set [X, D] = eig(A) and compute the con-
dition number of X. The log of the condition
number gives an estimate of how many digits
of accuracy are lost in the computation of the
eigenvalues of A.

(d) Compute the rank of X. Are the computed
eigenvectors linearly independent? Use MAT-
LAB to compute X−1AX. Does the computed
matrix X diagonalize A?

Application: Sex-Linked Genes

17. Suppose that 10,000 men and 10,000 women settle
on an island in the Pacific that has been opened to
development. Suppose also that a medical study of
the settlers finds that 200 of the men are color blind
and only 9 of the women are color blind. Let x(1)
denote the proportion of genes for color blindness
in the male population and let x(2) be the propor-
tion for the female population. Assume that x(1)
is equal to the proportion of color-blind males and

that x(2)2 is equal to the proportion of color-blind
females. Determine x(1) and x(2) and enter them
in MATLAB as a column vector x. Enter also the
matrix A from Application 3 of Section 6.3. Set
MATLAB to format long, and use the matrix
A to compute the proportions of genes for color
blindness for each sex in generations 5, 10, 20, and
40. What are the limiting percentages of genes for
color blindness for this population? In the long run,
what percentage of males and what percentage of
females will be color blind?

Similarity

18. Set

S = round(10 ∗ rand(5));
S = triu(S, 1) + eye(5)
S = S′ ∗ S
T = inv(S)

(a) The exact inverse of S should have integer
entries. Why? Explain. Check the entries of
T using format long. Round the entries
of T to the nearest integer by setting T =
round(T). Compute T ∗ S and compare with
eye(5).

(b) Set

A = triu(ones(5), 1) + diag(1 : 5),

B = S ∗ A ∗ T

The matrices A and B both have the eigenval-
ues 1, 2, 3, 4, and 5. Use MATLAB to compute
the eigenvalues of B. How many digits of ac-
curacy are there in the computed eigenvalues?
Use MATLAB to compute and compare each
of the following:

(i) det(A) and det(B)
(ii) trace(A) and trace(B)

(iii) SA2T and B2

(iv) SA−1T and B−1

Hermitian Matrices

19. Construct a complex Hermitian matrix by setting

j = sqrt(−1);
A = rand(5) + j ∗ rand(5);
A = (A + A′)/2

(a) The eigenvalues of A should be real. Why?
Compute the eigenvalues and examine your



Chapter Six Exercises 391

results, using format long. Are the com-
puted eigenvalues real? Compute also the ei-
genvectors by setting

[X, D] = eig(A)

What type of matrix would you expect X to
be? Use the MATLAB command X′ ∗ X to
compute XHX. Do the results agree with your
expectations?

(b) Set

E = D+ j∗eye(5) and B = X ∗E/X

What type of matrix would you expect B to be?
Use MATLAB to compute BHB and BBH . How
do these two matrices compare?

Visualizing the Singular Value Decomposition

In some of the earlier exercises we used MATLAB’s
eigshow command to look at geometric interpret-
ations of the eigenvalues and eigenvectors of 2 × 2
matrices. The eigshow facility also has an svdshow
mode that we can use to visualize the singular values
and singular vectors of a nonsingular 2 × 2 matrix. Be-
fore using the svdshow facility, we establish some
basic relations between the right and left singular vec-
tors.

20. Let A be a nonsingular 2 × 2 matrix with singular
value decomposition A = USVT and singular values

s1 = s11 and s2 = s22. Explain why each of the
following are true.

(a) AV = US

(b) Av1 = s1u1 and Av2 = s2u2.
(c) v1 and v2 are orthogonal unit vectors and the

images Av1 and Av2 are also orthogonal.
(d) ‖Av1‖ = s1 and ‖Av2‖ = s2.

21. Set

A = [1, 1; 0.5, −0.5]

and use MATLAB to verify each of statements (a)-
(d) in Exercise 20. Use the command eigshow(A)
to apply the eigshow utility to the matrix A. Click
on the eig/(svd) button to switch into the
svdshow mode. The display in the figure window
should show a pair of orthogonal vectors x, y and
their images Ax and Ay. Initially, the images of x
and y should not be orthogonal. Use the mouse to
rotate the x and y vectors counterclockwise until
their images Ax and Ay become orthogonal. When
the images are orthogonal, x and y are right singular
vectors of A. When x and y are right singular vectors,
how are the singular values and left singular vectors
related to the images Ax and Ay? Explain. Note that
when you rotate a full 360◦ the image of the unit
circle traces out as an ellipse. How do the singular
values and singular vectors relate to the axes of the
ellipse?

Optimization

22. Use the following MATLAB commands to construct a symbolic function:

syms x y
f = (y + 1)^3 + x ∗ y^2 + y^2 − 4 ∗ x ∗ y − 4 ∗ y + 1

Compute the first partials of f and the Hessian of f by setting

fx = diff(f , x), fy = diff(f , y)
H = [diff(fx, x),diff(fx, y); diff(fy, x),diff(fy, y)]

We can use the subs command to evaluate the Hessian for any pair (x, y). For example, to evaluate the Hessian
when x = 3 and y = 5, set

H1 = subs(H, [x, y], [3, 5])

Use the MATLAB command solve(fx, fy) to determine vectors x and y containing the x and y coordinates of the
stationary points. Evaluate the Hessian at each stationary point and then determine whether the stationary point is
a local maximum, local minimum, or saddle point.
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Positive Definite Matrices

23. Set

C = ones(6) + 7 ∗ eye(6)

and

[X, D] = eig(C)

(a) Even though λ = 7 is an eigenvalue of mul-
tiplicity 5, the matrix C cannot be defective.
Why? Explain. Check that C is not defective by
computing the rank of X. Compute also XTX.
What type of matrix is X? Explain. Compute
also the rank of C − 7I. What can you con-
clude about the dimension of the eigenspace
corresponding to λ = 7? Explain.

(b) The matrix C should be symmetric positive
definite. Why? Explain. Thus, C should have
a Cholesky factorization LLT . The MATLAB
command R = chol(C) will generate an up-
per triangular matrix R that is equal to LT .
Compute R in this manner and set L = R′. Use
MATLAB to verify that

C = LLT = RT R

(c) Alternatively, one can determine the Cholesky
factors from the LU factorization of C. Set

[ L U ] = lu(C)

and

D = diag(sqrt(diag(U)))

and

W = (L ∗ D)′

How do R and W compare? This method of
computing the Cholesky factorization is less
efficient than the method MATLAB uses for its
Chol function.

24. For various values of k, form an k × k matrix A by
setting

D = diag(ones(k − 1, 1), 1);

A = 2 ∗ eye(k) − D − D′;

In each case, compute the LU factorization of A
and the determinant of A. If A is an n × n matrix of
this form, what will its LU factorization be? What
will its determinant be? Why must the matrix be
positive definite?

25. For any positive integer n, the MATLAB command
P = pascal(n) will generate an n × n matrix P
whose entries are given by

pij =
{

1 if i = 1 or j = 1
pi−1,j + pi,j−1 if i > 1 and j > 1

The name pascal refers to Pascal’s triangle, a tri-
angular array of numbers that is used to generate
binomial coefficients. The entries of the matrix P
form a section of Pascal’s triangle.
(a) Set

P = pascal(6)

and compute the value of its determinant. Now
subtract 1 from the (6, 6) entry of P by setting

P(6, 6) = P(6, 6) − 1

and compute the determinant of the new mat-
rix P. What is the overall effect of subtracting
1 from the (6, 6) entry of the 6 × 6 Pascal
matrix?

(b) In part (a) we saw that the determinant of the
6 × 6 Pascal matrix is 1, but if we subtract 1
from the (6, 6) entry, the matrix becomes sin-
gular. Will this happen in general for n × n
Pascal matrices? To answer this question, con-
sider the cases n = 4, 8, 12. In each case, set
P = pascal(n) and compute its determinant.
Next, subtract 1 from the (n, n) entry and com-
pute the determinant of the resulting matrix.
Does the property that we discovered in part (a)
appear to hold for Pascal matrices in general?

(c) Set

P = pascal(8)

and examine its leading principal submatrices.
Assuming that all Pascal matrices have determ-
inants equal to 1, why must P be positive def-
inite? Compute the upper triangular Cholesky
factor R of P. How can the nonzero entries of
R be generated as a Pascal triangle? In general,
how is the determinant of a positive definite
matrix related to the determinant of one of its
Cholesky factors? Why must det(P) = 1?

(d) Set

R(8, 8) = 0 and Q = R′ ∗ R

The matrix Q should be singular. Why? Ex-
plain. Why must the matrices P and Q be the
same except for the (8, 8) entry? Why must
q88 = p88 − 1? Explain. Verify the relation
between P and Q by computing the difference
P − Q.



Chapter Six Exercises 393

CHAPTER TEST A True or False

In each of the following answer true if the statement is
always true and false otherwise. In the case of a true
statement, explain or prove your answer. In the case
of a false statement, give an example to show that the
statement is not always true.

1. If A is an n × n matrix whose eigenvalues are all
nonzero, then A is nonsingular.

2. If A is an n × n matrix, then A and AT have the
same eigenvectors.

3. If A and B are similar matrices, then they have the
same eigenvalues.

4. If A and B are n × n matrices with the same
eigenvalues, then they are similar.

5. If A has eigenvalues of multiplicity greater than 1,
then A must be defective.

6. If A is a 4 × 4 matrix of rank 3 and λ = 0 is an
eigenvalue of multiplicity 3, then A is diagonaliz-
able.

7. If A is a 4 × 4 matrix of rank 1 and λ = 0 is an
eigenvalue of multiplicity 3, then A is defective.

8. The rank of an n × n matrix A is equal to the num-
ber of nonzero eigenvalues of A, where eigenvalues
are counted according to multiplicity.

9. The rank of an m × n matrix A is equal to the num-
ber of nonzero singular values of A, where singular
values are counted according to multiplicity.

10. If A is Hermitian and c is a complex scalar, then cA
is Hermitian.

11. If an n × n matrix A has Schur decomposi-
tion A = UTUH , then the eigenvalues of A are
t11, t22, . . . , tnn.

12. If A is normal, but not Hermitian, then A must have
at least one complex eigenvalue.

13. If A is symmetric positive definite, then A is
nonsingular and A−1 is also symmetric positive
definite.

14. If A is symmetric and det(A) > 0, then A is positive
definite.

15. If A is symmetric, then eA is symmetric positive
definite.

CHAPTER TEST B

1. Let
A =

⎧⎪⎪⎪⎪⎩ 1 0 0
1 1 −1
1 2 −2

⎫⎪⎪⎪⎪⎭
(a) Find the eigenvalues of A.
(b) For each eigenvalue, find a basis for the corres-

ponding eigenspace.
(c) Factor A into a product XDX−1 where D is a

diagonal matrix, and then use the factorization
to compute A7.

2. Let A be a 4 × 4 matrix with real entries that has all
1’s on the main diagonal (i.e., a11 = a22 = a33 =
a44 = 1). If A is singular and λ1 = 3 + 2i is an
eigenvalue of A, then what, if anything, is it pos-
sible to conclude about the values of the remaining
eigenvalues λ2, λ3, and λ4? Explain.

3. Let A be a nonsingular n × n matrix and let λ be an
eigenvalue of A.
(a) Show that λ �= 0.

(b) Show that
1

λ
is an eigenvalue of A−1.

4. Show that if A is a matrix of the form

A =
⎧⎪⎪⎪⎪⎪⎩

a 0 0
0 a 1
0 0 a

⎫⎪⎪⎪⎪⎪⎭
then A must be defective.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

4 2 2
2 10 10
2 10 14

⎫⎪⎪⎪⎪⎪⎭
(a) Without computing the eigenvalues of A, show

that A is positive definite.

(b) Factor A into a product LDLT where L is unit
lower triangular and D is diagonal.

(c) Compute the Cholesky factorization of A.
6. The function

f (x, y) = x3y + x2 + y2 − 2x − y + 4

has a stationary point (1, 0). Compute the Hes-
sian of f at (1, 0), and use it to determine whether
the stationary point is a local maximum, local
minimum or saddle point.

7. Given

Y′(t) = AY(t) Y(0) = Y0

where

A =
⎧⎪⎩ 1 −2

3 −4

⎫⎪⎭ Y0 =
⎧⎪⎩ 1

2

⎫⎪⎭
compute etA and use it to solve the initial value
problem.
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8. Let A be a 4 × 4 real symmetric matrix with
eigenvalues

λ1 = 1, λ2 = λ3 = λ4 = 0

(a) Explain why the multiple eigenvalue λ = 0
must have three linearly independent eigen-
vectors x2, x3, x4.

(b) Let x1 be an eigenvector belonging to λ1. How
is x1 related to x2, x3, and x4? Explain.

(c) Explain how to use x1, x2, x3, and x4 to con-
struct an orthogonal matrix U that diagonal-
izes A.

(d) What type of matrix is eA? Is it symmetric? Is
it positive definite? Explain your answers.

9. Let {u1, u2} be an orthonormal basis for C
2 and

suppose that a vector z can be written as a linear
combination

z = (5 − 7i)u1 + c2u2

(a) What are the values of uH
1 z and zHu1? If

zHu2 = 1 + 5i, determine the value of c2.

(b) Use the results from part (a) to determine the
value of ‖z‖2.

10. Let A be a 5 × 5 nonsymmetric matrix with rank
equal to 3, let B = AT A, and let C = eB.
(a) What, if anything, can you conclude about the

nature of the eigenvalues of B? Explain. What
words best describe the type of matrix that
B is?

(b) What, if anything, can you conclude about the
nature of the eigenvalues of C? Explain. What
words best describe the type of matrix that
C is?

11. Let A and B be n × n matrices.
(a) If A is real and nonsymmetric with Schur

decomposition UTUH , then what types of
matrices are U and T? How are the eigenvalues
of A related to U and T? Explain your answers.

(b) If B is Hermitian with Schur decomposition
WSWH , then what types of matrices are W and
S? How are the eigenvalues and eigenvectors of
B related to W and S? Explain your answers.

12. Let A be a matrix whose singular value decomposition is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
5 − 2

5 − 2
5 − 2

5
3
5

2
5 − 2

5 − 2
5

3
5 − 2

5
2
5 − 2

5
3
5 − 2

5 − 2
5

2
5

3
5 − 2

5 − 2
5 − 2

5
3
5

2
5

2
5

2
5

2
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
100 0 0 0

0 10 0 0
0 0 10 0
0 0 0 0
0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

− 1
2 − 1

2
1
2

1
2

− 1
2

1
2 − 1

2
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Make use of the singular value decomposition to do each of the following:
(a) Determine the rank of A.
(b) Find an orthonormal basis for R(A).
(c) Find an orthonormal basis for N(A).
(d) Find the matrix B that is the closest matrix of rank 1 to A. (The distance between matrices is measured using

the Frobenius norm.)
(e) Let B be the matrix asked for in part (d). Use the singular values of A to determine the distance between A

and B (i.e., use the singular values of A to determine the value of ||B − A||F).
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Numerical Linear Algebra
In this chapter, we consider computer methods for solving linear algebra problems.
To understand these methods, you should be familiar with the type of number system
used by the computer. When data are read into the computer, they are translated into
its finite number system. This translation will usually involve some round off error.
Additional rounding errors will occur when the algebraic operations of the algorithm
are carried out. Because of rounding errors, we cannot expect to get the exact solution
to the original problem. The best we can hope for is a good approximation to a slightly
perturbed problem. Suppose, for example, that we wanted to solve Ax = b. When the
entries of A and b are read into the computer, rounding errors will generally occur.
Thus, the program will actually be attempting to compute a good approximation to the
solution of a perturbed system of the form

(A + E)x = b + e

where the entries of E and e are all very small. An algorithm is said to be stable if it will
produce a good approximation to the exact solution to a slightly perturbed problem.
Algorithms that ordinarily would converge to the solution in exact arithmetic could
very well fail to be stable, owing to the growth of error in the algebraic processes.

Even with a stable algorithm, we may encounter problems that are highly sensitive
to perturbations. For example, if A is “nearly singular,” the exact solutions of Ax = b
and (A + E)x = b may vary greatly, even though all the entries of E are small. The
major part of this chapter is devoted to numerical methods for solving linear systems.
We will pay particular attention to the growth of error and to the sensitivity of systems
to small changes.

Another problem that is very important in numerical applications is the problem of
finding the eigenvalues of a matrix. Two iterative methods for computing eigenvalues
are presented in Section 7.6. The second of these methods is the powerful QR al-
gorithm, which makes use of the special types of orthogonal transformations presented
in Section 7.5.

In Section 7.7, we will look at numerical methods for solving least squares
problems. In the case where the coefficient matrix is rank deficient, we will make use

395



396 Chapter 7 Numerical Linear Algebra

of the singular value decomposition to find the particular least squares solution that has
the smallest 2-norm. The Golub-Reinsch algorithm for computing the singular value
decomposition will also be presented in this section.

7.1 Floating-Point Numbers

In solving a numerical problem on a computer, we do not usually expect to get the exact
answer. Some amount of error is inevitable. Rounding errors may occur initially when
the data are represented in the finite number system of the computer. Further rounding
errors may occur whenever arithmetic operations are used. In some cases it is possible
to have a catastrophic loss of digits of accuracy or a more subtle growth of error as the
algorithmic proceeds. In either of these cases one could end up with a completely unre-
liable computed solution. To avoid this, we must understand how computational errors
occur. To do that, we must be familiar with the type of numbers used by the computer.

Definition A floating-point number in base β is a number of the form

±
(

d1

β
+ d2

β2
+ · · · + dt

β t

)
× βe

where t, d1, d2, . . . , dt, β, and e are all integers and

0 ≤ di ≤ β − 1 i = 1, . . . , t

The integer t refers to the number of digits and this depends on the word length
of the computer. The exponent e is restricted to be within certain bounds, L ≤ e ≤ U,
which also depend on the particular computer. Commonly computers use a standard
base 2 representation for floating-point numbers. This standard representation was
established by the Institute for Electrical and Electronics Engineers (IEEE). We will
discuss the IEEE 754 standard floating-point representation in more detail at the end of
this section. This representation is used in major software packages such as MATLAB.

EXAMPLE 1 The following are five-digit decimal (base 10) floating-point numbers:

0.53216 × 10−4

−0.81724 × 1021

0.00112 × 108

0.11200 × 106

Note that the numbers 0.00112 × 108 and 0.11200 × 106 are equal. Thus the floating-
point representation of a number need not be unique.

Floating-point numbers that are written with no leading zeros are said to be nor-
malized. For nonzero base-2 floating-point numbers the lead digit will always be a 1.
Thus if the number is normalized we can represent in the form

1.b1b2 · · · bt × 2e

This form allows us to represent a normalized t + 1 digit number while only storing t
digits in memory.
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EXAMPLE 2 (0.236)8 × 82 and (1.01011)2 × 24 are normalized floating-point numbers. Here,
(0.236)8 represents

2

8
+ 3

82
+ 6

83

Hence, (0.236)8 × 82 is the base 8 floating-point representation of the decimal number
19.75. Similarly,

(1.01011)2 × 24 =
(

1 + 1

22
+ 1

24
+ 1

25

)
× 24

is a normalized base 2 representation of the decimal number 21.5.

To better understand the type of number systems that we are working with, it may
help to look at a very simple example.

EXAMPLE 3 Suppose that t = 1, L = −1, U = 1, and β = 10. There are altogether 55 one-digit
floating-point numbers in this system. These are

0, ±0.1 × 10−1, ±0.2 × 10−1, . . . , ±0.9 × 10−1

±0.1 × 100, ±0.2 × 100, . . . , ±0.9 × 100

±0.1 × 101, ±0.2 × 101, . . . , ±0.9 × 101

Although all these numbers lie in the interval [−9, 9], over one-third of the numbers
have absolute value less than 0.1 and over two-thirds have absolute value less than
1. Figure 7.1.1 illustrates how the floating-point numbers in the interval [0, 2] are
distributed.

0 1 20.1

Figure 7.1.1.

Most real numbers have to be rounded off in order to be represented as t-digit
floating-point numbers. The difference between the floating-point number x′ and the
original number x is called the round off error. The size of the round off error is perhaps
more meaningful when it is compared with the size of the original number.

Definition If x is a real number and x′ is its floating-point approximation, then the difference
x′ − x is called the absolute error and the quotient (x′ − x)/x is called the relative
error.

Modern computers commonly use base 2 floating-point numbers. When a decimal
number is converted to a base 2 floating-point number some rounding may occur.
The following example illustrates how to convert a decimal number into a base 2
floating-point number.
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Table 1 Rounding Errors for 4-digit Decimal Floating-Point Numbers

Real number 4-digit decimal Absolute error Relative error

x representation x′ x′ − x (x′ − x)/x

62,133 0.6213 × 105 −3
−3

62,133
≈ −4.8 × 10−5

0.12658 0.1266 × 100 2 × 10−5 1

6329
≈ 1.6 × 10−4

47.213 0.4721 × 102 −3.0 × 10−3 −0.003

47.213
≈ −6.4 × 10−5

π 0.3142 × 101 3.142 − π ≈ 4 × 10−4 3.142 − π

π
≈ 1.3 × 10−4

EXAMPLE 4 Consider the problem of representing the decimal number 11.31 as a 10-digit base 2
floating-point number. It is easy to see how to represent the integer part of the number
as a base 2 number. Since 11 = 23 + 21 + 20, it follows that its base 2 representation
is (1011)2. Now we need to represent the fractional part m = 0.31 as a base 2 number
(0.b1b2b3b4b5b6)2. Since m is less than 1

2 , the digit b1 must be 0. Note that 2m = 2 ×
0.31 = 0.62 so that b1 equals the integer part of 0.62. To determine b2 we double 0.62
and set b2 equal the integer part of 1.24. Thus b2 = 1. Next we double the fractional
part of the resulting 1.24. Since 2 × 0.24 = 0.48 we set b3 = 0. Continuing in this
manner we get

2 × 0.48 = 0.96 b4 = 0
2 × 0.96 = 1.92 b5 = 1
2 × 0.92 = 1.84 b6 = 1

Since 1.84 is not an integer, we cannot represent 0.31 exactly as a 6-digit base 2 num-
ber. If we were to compute one more digit b7, it would be a 1. In the case where the next
digit would be a 1, we round up. Thus instead of (.010011)2 we end up with (.010100)2.
It follows that the 10-digit base 2 representation of 11.31 is (1011.010100)2. The
normalized base 2 floating-point representation is (1.011010100)2 × 23.

The absolute error in approximating 11.31 by its 10-digit base 2 floating-point
representation is 0.0025 and the relative error is approximately 2.2 × 10−4.

When arithmetic operations are applied to floating-point numbers, additional
round off errors may occur.

EXAMPLE 5 Let a′ = 0.263 × 104 and b′ = 0.466 × 101 be three-digit decimal floating-point
numbers. If these numbers are added, the exact sum will be

a′ + b′ = 0.263446 × 104

However, the floating-point representation of this sum is 0.263×104. This then should
be the computed sum. We will denote the floating-point sum by f l(a′+b′). The absolute
error in the sum is

f l(a′ + b′) − (a′ + b′) = −4.46
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and the relative error is
−4.46

0.26344 × 104
≈ −0.17 × 10−2

The actual value of a′b′ is 11,729.8; however, f l(a′b′) is 0.117 × 105. The absolute
error in the product is −29.8 and the relative error is approximately −0.25 × 10−2.
Floating-point subtraction and division can be done in a similar manner.

The relative error in approximating a number x by its floating-point representation
x′ is usually denoted by the symbol δ. Thus

δ = x′ − x

x
, or x′ = x(1 + δ) (1)

|δ| can be bounded by a positive constant ε, called the machine precision or the machine
epsilon. The machine epsilon is defined to be the smallest floating-point number ε for
which

f l(1 + ε) > 1

For example, if the computer uses three-digit decimal floating-point numbers, then

f l(1 + 0.499 × 10−2) = 1

while

f l(1 + 0.500 × 10−2) = 1.01

Therefore, the machine epsilon would be 0.500×10−2. More generally for t-digit base
β floating-point arithmetic the machine epsilon is 1

2β−t+1. In particular for t-digit base
2 arithmetic the machine epsilon is

ε = 1

2
× 2−t+1 = 2−t

It follows from (1) that if a′ and b′ are two floating-point numbers, then

f l(a′ + b′) = (a′ + b′)(1 + δ1)
f l(a′b′) = (a′b′)(1 + δ2)

f l(a′ − b′) = (a′ − b′)(1 + δ3)
f l(a′ ÷ b′) = (a′ ÷ b′)(1 + δ4)

The δi’s are relative errors and will all have absolute values less than ε. Note in
Example 5 that δ1 ≈ −0.17 × 10−2, δ2 ≈ −0.25 × 10−2, and ε = 0.5 × 10−2.

If the numbers you are working with involve some slight errors, arithmetic oper-
ations may compound these errors. If two numbers agree to k decimal places and one
number is subtracted from the other, there will be a loss of significant digits in your
answer. In this case, the relative error in the difference will be many times as great as
the relative error in either of the numbers.

EXAMPLE 6 Let c = 3.4215298 and d = 3.4213851. Calculate c − d using six-digit decimal
floating-point arithmetic.
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Solution

I. The first step is to represent c and d by six-digit decimal floating-point numbers.

c′ = 0.342153 × 101

d′ = 0.342139 × 101

The relative errors in c and d are, respectively,

c′ − c

c
≈ 0.6 × 10−7 and

d′ − d

d
≈ 1.4 × 10−6

II. f l(c′ − d′) = c′ − d′ = 0.140000 × 10−3. The actual value of c − d is 0.1447 ×
10−3. The absolute and relative errors in approximating c − d by f l(c′ − d′) are,
respectively,

f l(c′ − d′) − (c − d) = −0.47 × 10−5

and

f l(c′ − d′) − (c − d)

c − d
≈ −3.2 × 10−2

Note that the magnitude of the relative error in the difference is more than 104

times the relative error in either c or d.

Example 6 illustrates the loss of accuracy when subtraction is performed with two
numbers that are close together. The floating-point representations of c and d in the
example were accurate to 6 digits; however, we lost 4 digits of accuracy when the
difference c − d was computed.

The IEEE Standard 754 Floating-Point Representation
The standard IEEE single precision format represents a floating-point number using a
sequence of 32 bits

b1b2 · · · b9b10 · · · b31b32

where each bit bj is either a 0 or a 1. The first bit b1 is used to determine the sign
of the floating-point number, bits b2 through b9 are used to determine the exponent
of the base β = 2, and the remaining bits are used to determine the fractional part
of the normalized mantissa. The base 2 number (b2b3 · · · b9)2 represents an integer e in
the range 0 ≤ e ≤ 255. This number e is not used as the exponent for the floating-point
number since it is always nonnegative. Instead, to allow for negative powers of 2, the
number k = e − 127 is used. This value yields exponents in the range from −127 to
128. If we set s = b1 and let m be the base 2 number b10b11 · · · b32, then the normalized
floating number x represented by the bit sequence b1b2 · · · b32 is given by

x = (−1)s × (1.m)2 × 2k

EXAMPLE 7 Determine the IEEE single precision floating-point number represented by the se-
quence of bits 01000001100011000000000000000000.
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Solution
Since the first bit is 0, the number will have a positive sign. The next 8 bits are used to
determine the exponent. If one sets

e = (100011)2 = 20 + 21 + 27 = 131

then the exponent will be k = e − 127 = 4. It follows that the floating-point number
corresponding to the given bit sequence is (1.0001100 . . . 0)2 × 24 which is equal to

(1 + 1

24
+ 1

25
) × 24 = 17.5

The standard IEEE double precision format represents a floating-point number
using a sequence of 64 bits

b1b2 · · · b12b13 · · · b63b64

As before the sign of the number is determined by the first bit b1. The exponent is
determined by the bits b2, b3, . . . b12. In this case if e the integer with base 2 repres-
entation (b2b3 · · · b12)2, then the exponent of the base β = 2 will be the shifted value
k = e − 1023. The remaining 52 bits b13, . . . , b64 are used to determine m, the frac-
tional part of the mantissa. Thus for double precision the normalized floating-point
representation is of the form

x = (−1)s × (1.m)2 × 2k

For IEEE arithmetic double precision t = 52 and hence the machine epsilon is

ε = 2−52 ≈ 2.22 × 10−16

So double precision floating-point representations of decimal numbers should be
accurate to about 16 decimal digits. The software package MATLAB represents
floating-point numbers using either IEEE double-precision or single-precision format.
The default is double precision. When the command eps is entered in MATLAB, a
decimal representation of 2−52 is returned.

Loss of Accuracy and Instability
In the remaining sections of this chapter we consider numerical algorithms for solving
linear systems, least squares problems, and eigenvalue problems. The previous meth-
ods we have learned in Chapters 1–6 for solving these problems work when exact
arithmetic is used; however, they may not yield accurate answers when the compu-
tations are carried out using finite precision arithmetic (i.e., the algorithms may be
unstable). In designing stable algorithms one should try to avoid losing digits of ac-
curacy. Digits of accuracy may be lost when subtractions are performed using two
numbers that are close together as we saw in Example 6. In this case we say that
the resulting instabilities are due to catastrophic cancellation of digits. Consider for
example the problem of computing the roots to a quadratic equation

ax2 + bx + c = 0
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If exact arithmetic is used, the roots are usually computed using the quadratic formula

x = −b ± √
b2 − 4ac

2a
(2)

If we use equation (2) for floating-point arithmetic and the value of |b| is far greater
than the value of |4ac|, then for one of the roots we could expect to get cancella-
tion of digits of accuracy. To avoid this we first find the root r1 for which there is no
cancellation of significant digits. To do this we set

s =
{

1 if b ≥ 0
−1 if b < 0

and compute

r1 = −b − s
√

b2 − 4ac

2a
(3)

If r2 is the other root, then we can factor ax2 + bx + c

ax2 + bx + c = a(x − r1)(x − r2)

Equating the constant terms in this equation, we see that c = ar1r2. We can find the
second root by simply setting

r2 = c

ar1
(4)

EXAMPLE 8 If a = 1, b = −(107 + 10−7), and c = 1, then the quadratic polynomial ax2 + bx + c
factors as

x2 − (107 + 10−7)x + 1 = (x − 107)(x − 10−7)

and the exact roots are r1 = 107 and r2 = 10−7. The roots were computed using
MATLAB with standard IEEE double precision arithmetic in two ways. First, we cal-
culated the roots using the quadratic formula from equation (2). MATLAB returned the
following values for the computed roots:

r1 = 10000000 and r2 = 9.965151548385620 e − 008

Next, we used equations (3) and (4) to compute the roots. This time MATLAB returned
the correct answers

r1 = 10000000 and r2 = 1.000000000000000 e − 007

An algorithm may fail to be numerically stable due to catastrophic cancellation
or to the build-up of round off error in the algebraic processes. As was illustrated
in Example 8, there are often simple precautions one can take to avoid catastrophic
cancellation (see Exercise 10 at the end of this section).

There are also precautions one can take to avoid the build-up of round off error
in an algorithm. The Gaussian elimination method introduced in Chapter 1 for solving
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linear systems could be unstable due to the build-up of round off unless care is taken
in the choice of the row operations that are used. In Section 7.3 we will learn a strategy
for interchanging rows in the elimination process that is commonly used in order to
guarantee numerical stability of the algorithm. In Chapter 6 we learned to compute
the eigenvalues of a matrix by finding the roots of its characteristic polynomial. This
method does not work well when finite precision arithmetic is used. Small errors in
the coefficients or rounding errors in arithmetic computations could result in signific-
ant changes in the computed roots. In Section 7.6 we will learn alternative methods
for computing eigenvalues and eigenvectors that are numerically stable. In Chapter 5
we learned to solve least squares problems using the normal equations and using a
QR factorization derived from the classical Gram–Schmidt process. Neither of these
methods are guaranteed to give accurate solutions when carried out in finite precision
arithmetic. In Section 7.7 we will present some alternative numerically stable methods
for solving least squares problems.

SECTION 7.1 EXERCISES
1. Find the three-digit decimal floating-point repres-

entation of each of the following numbers:
(a) 2312 (b) 32.56
(c) 0.01277 (d) 82,431

2. Find the absolute error and the relative error when
each of the real numbers in Exercise 1 is ap-
proximated by a three-digit decimal floating-point
number.

3. Represent each of the following numbers as nor-
malized base 2 floating-point numbers using 4
digits to represent the fractional part of the man-
tissa; that is, represent the numbers in the form
±(1.b1b2b3b4)2 × 2k.
(a) 21 (b) 3

8

(c) 9.872 (d) −0.1
4. Use four-digit decimal floating-point arithmetic to

do each of the following and calculate the absolute
and relative errors in your answers:
(a) 10,420 + 0.0018 (b) 10,424 − 10,416
(c) 0.12347 − 0.12342 (d) (3626.6) · (22.656)

5. Let x1 = 94,210, x2 = 8631, x3 = 1440, x4 = 133,
and x5 = 34. Calculate each of the following, using
four-digit decimal floating-point arithmetic:
(a) (((x1 + x2) + x3) + x4) + x5

(b) x1 + ((x2 + x3) + (x4 + x5))
(c) (((x5 + x4) + x3) + x2) + x1

6. What would the machine epsilon be for a com-
puter that uses 16-digit base 10 floating-point
arithmetic?

7. What would the machine epsilon be for a com-
puter that uses 36-digit base 2 floating-point
arithmetic?

8. How many floating-point numbers are there in the
system if t = 2, L = −2, U = 2, and β = 2?

9. In each of the following you are given a bit se-
quence corresponding to the IEEE single precision
representation of a floating-point number. In each
case determine the base 2 floating-point represent-
ation of the number and also the base 10 decimal
representation of the number.

(a) 01000001000110100000000000000000
(b) 10111100010110000000000000000000
(c) 11000100010010000000000000000000

10. When the following functions are evaluated at
values of x that are close to 0 there will be a
loss of significant digits of accuracy. For each
function: (i) use identities or Taylor series ap-
proximations to find an alternative representation
of the function that avoids cancellation of signi-
ficant digits, (ii) use a hand calculator or com-
puter to evaluate the function by plugging in the
value x = 10−8 and also evaluate the altern-
ative representation of the function at the point
x = 10−8.

(a) f (x) = 1 − cos x

sin x
(b) f (x) = ex − 1

(c) f (x) = sec x − cos x (d) f (x) = sin x

x
− 1
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7.2 Gaussian Elimination

In this section, we discuss the problem of solving a system of n linear equations in n
unknowns. Gaussian elimination is generally considered to be the most efficient com-
putational method, since it involves the least amount of arithmetic operations. If the
coefficient matrix A is nonsingular, then the reduction to strict triangular form can be
carried out using only row operations I and III. The algorithm is much simpler if we
do not have to interchange rows and can do all of the eliminations using only row op-
eration III. For simplicity we will consider this first, although it should be pointed that
in general it is necessary to interchange rows to achieve numerical stability. The more
general elimination algorithm that incorporates row interchanges will be covered in the
next section of the book.

Gaussian Elimination without Interchanges

Let A = A(1) = (a(1)
ij ) be a nonsingular matrix. Then A can be reduced to strict triangular

form using row operations I and III. For simplicity, let us assume that the reduction can
be done by using only row operation III. Initially we have

A = A(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
11 a(1)

12 · · · a(1)
1n

a(1)
21 a(1)

22 · · · a(1)
2n

...
a(1)

n1 a(1)
n2 · · · a(1)

nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Step 1. Let lk1 = a(1)

k1 /a(1)
11 for k = 2, . . . , n [by our assumption, a(1)

11 �= 0]. The first
step of the elimination process is to apply row operation III n − 1 times to
eliminate the entries below the diagonal in the first column of A. Note that lk1

is the multiple of the first row that is to be subtracted from the kth row. The
new matrix obtained will be

A(2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
11 a(1)

12 · · · a(1)
1n

0 a(2)
22 · · · a(2)

2n
...
0 a(2)

n2 · · · a(2)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where

a(2)
kj = a(1)

kj − lk1a(1)
1j (2 ≤ k ≤ n, 2 ≤ j ≤ n)

The first step of the elimination process requires n − 1 divisions, (n − 1)2

multiplications, and (n − 1)2 additions/subtractions.

Step 2. If a(2)
22 �= 0, then it can be used as a pivot element to eliminate a(2)

32 , . . . , a(2)
n2 .

For k = 3, . . . , n, set

lk2 = a(2)
k2

a(2)
22
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and subtract lk2 times the second row of A(2) from the kth row. The new matrix
obtained will be

A(3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1n

0 a(2)
22 a(2)

23 · · · a(2)
2n

0 0 a(3)
33 · · · a(3)

3n
...

...
...

...
0 0 a(3)

n3 · · · a(3)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The second step requires n − 2 divisions, (n − 2)2 multiplications, and (n − 2)2

additions/subtractions.

If we continue this process, then after n − 1 steps we will end up with a strictly tri-
angular matrix U = A(n). The operation count for the entire process can be determined
as follows:

Divisions: (n − 1) + (n − 2) + · · · + 1 = n(n − 1)

2

Multiplications: (n − 1)2 + (n − 2)2 + · · · + 12 = n(2n − 1)(n − 1)

6

Additions and/or subtractions: (n − 1)2 + · · · + 12 = n(2n − 1)(n − 1)

6

The elimination process is summarized in the following algorithm.

Algorithm 7.2.1 Gaussian Elimination without Interchanges

For i = 1, 2, . . . , n − 1
For k = i + 1, . . . , n

Set lki = a
(i)
ki

a(i)

ii

[ provided that a(i)
ii �= 0]

For j = i + 1, . . . , n

Set a
(i+1)

kj
= a(i)

kj − lkia
(i)
ij

→ End for loop
→ End for loop

→ End for loop

To solve the system Ax = b, we could augment A by b. Thus, b would be stored
in an extra column of A. The reduction process could then be done by using Al-
gorithm 7.2.1 and letting j run from i + 1 to n + 1 instead of from i + 1 to n. The
triangular system could then be solved by back substitution.
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Using the Triangular Factorization to Solve Ax = b
Most of the work involved in solving a system Ax = b occurs in the reduction of A
to strict triangular form. Suppose that, after having solved Ax = b, we want to solve
another system, Ax = b1. We know the triangular form U from the first system, and
consequently we would like to be able to solve the new system without having to go
through the entire reduction process again. We can do this if we make use of the LU
factorization discussed in Section 5 of Chapter 1. The matrix L is a lower triangular
matrix whose diagonal entries are all equal to 1. The subdiagonal entries of L are the
numbers lki used in Algorithm 7.2.1. These numbers are referred to as multipliers since
lki is the multiple of the ith row that is subtracted from the kth row during the ith step
of the reduction process. The matrix U is the upper triangular matrix obtained from the
elimination process. To review how the factorization works we consider the following
example.

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 3 1
4 1 4
3 4 6

⎫⎪⎪⎪⎪⎪⎭
The elimination can be carried out in two steps:

⎧⎪⎪⎪⎪⎪⎩
2 3 1
4 1 4
3 4 6

⎫⎪⎪⎪⎪⎪⎭ 1→
⎧⎪⎪⎪⎪⎪⎩

2 3 1
0 −5 2
0 − 1

2
9
2

⎫⎪⎪⎪⎪⎪⎭ 2→
⎧⎪⎪⎪⎪⎪⎩

2 3 1
0 −5 2
0 0 4.3

⎫⎪⎪⎪⎪⎪⎭
The multipliers for step 1 were l21 = 2 and l31 = 3

2 and the multiplier for step 2 was
l32 = 1

10 . Let

L =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
l21 1 0
l31 l32 1

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
2 1 0
3
2

1
10 1

⎫⎪⎪⎪⎪⎪⎭
and

U =
⎧⎪⎪⎪⎪⎪⎩

2 3 1
0 −5 2
0 0 4.3

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that LU = A.

Once A has been reduced to triangular form and the factorization LU has been
determined, the system Ax = b can be solved in two steps.
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Step 1. Forward Substitution. The system Ax = b can be written in the form

LUx = b

Let y = Ux. It follows that

Ly = LUx = b

Thus, we can find y by solving the lower triangular system

y1 = b1

l21y1 + y2 = b2

l31y1 + l32y2 + y3 = b3
...

ln1y1 + ln2y2 + ln3y3 + · · · + yn = bn

It follows from the first equation that y1 = b1. This value can be used in the second
equation to solve for y2. The values of y1 and y2 can be used in the third equation to
solve for y3, and so on. This method of solving a lower triangular system is called
forward substitution.

Step 2. Back Substitution. Once y has been determined, we need only solve the upper
triangular system Ux = y to find the solution x of the system. The upper triangular
system is solved by back substitution.

EXAMPLE 2 Solve the system

2x1 + 3x2 + x3 = −4
4x1 + x2 + 4x3 = 9
3x1 + 4x2 + 6x3 = 0

Solution
The coefficient matrix for this system is the matrix A in Example 1. Since L and U have
been determined, the system can be solved by forward and back substitution.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 −4

2 1 0 9

3
2

1
10 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
y1 = −4

y2 = 9 − 2y1 = 17

y3 = 0 − 3
2 y1 − 1

10 y2 = 4.3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 3 1 −4

0 −5 2 17

0 0 4.3 4.3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
2x1 + 3x2 + x3 = −4 x1 = 2

− 5x2 + 2x3 = 17 x2 = −3

4.3x3 = 4.3 x3 = 1

The solution of the system is x = (2, −3, 1)T .
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Algorithm 7.2.2 Forward and Back Substitution

For k = 1, . . . , n

Set yk = bk −
k−1∑
i=1

mkiyi

→ End for loop
For k = n, n − 1, . . . , 1

Set xk =
yk −

n∑
j=k+1

ukjxj

ukk

→ End for loop

Operation Count Algorithm 7.2.2 requires n divisions, n(n − 1) multiplications, and
n(n − 1) additions/subtractions. The total operation count for solving a system Ax = b
using Algorithms 7.2.1 and 7.2.2 is then

Multiplications/divisions: 1
3 n3 + n2 − 1

3 n

Additions/subtractions: 1
3 n3 + 1

2 n2 − 5
6 n

In both cases, 1
3 n3 is the dominant term. We will say that solving a system by

Gaussian elimination involves roughly 1
3 n3 multiplications/divisions and 1

3 n3 addi-
tions/subtractions.

Algorithm 7.2.1 breaks down if, at any step, a(k)
kk is 0. If this happens, it is neces-

sary to perform row interchanges. In the next section, we will see how to incorporate
interchanges into our elimination algorithm.

SECTION 7.2 EXERCISES
1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
2 4 1

−3 1 −2

⎫⎪⎪⎪⎪⎪⎭
Factor A into a product LU, where L is lower tri-
angular with 1’s along the diagonal and U is upper
triangular.

2. Let A be the matrix in Exercise 1. Use the LU fac-
torization of A to solve Ax = b for each of the
following choices of b:
(a) (4, 3, −13)T (b) (3, 1, −10)T

(c) (7, 23, 0)T

3. Let A and B be n × n matrices and let x ∈ R
n.

(a) How many scalar additions and multiplications
are necessary to compute the product Ax?

(b) How many scalar additions and multiplications
are necessary to compute the product AB?

(c) How many scalar additions and multiplications
are necessary to compute (AB)x? To compute
A(Bx)?

4. Let A ∈ R
m×n, B ∈ R

n×r, and x, y ∈ R
n. Suppose

that the product AxyTB is computed in the following
ways:

(i) (A(xyT ))B (ii) (Ax)(yTB)
(iii) ((Ax)yT )B

(a) How many scalar additions and multiplications
are necessary for each of these computations?
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(b) Compare the number of scalar additions and
multiplications for each of the three methods
when m = 5, n = 4, and r = 3. Which method
is most efficient in this case?

5. Let Eki be the elementary matrix formed by sub-
tracting α times the ith row of the identity matrix
from the kth row.
(a) Show that Eki = I − αekeT

i .

(b) Let Eji = I − βejeT
i . Show that

EjiEki = I − (αek + βej)eT
i .

(c) Show that E−1
ki = I + αekeT

i .
6. Let A be an n × n matrix with triangular factoriza-

tion LU. Show that

det(A) = u11u22 · · · unn

7. If A is a symmetric n×n matrix with triangular fac-
torization LU, then A can be factored further into
a product LDLT (where D is diagonal). Devise an
algorithm, similar to Algorithm 7.2.2, for solving
LDLTx = b.

8. Write an algorithm for solving the tridiagonal
system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 b1

c1 a2
. . .
. . .
. . . an−1 bn−1

cn−1 an

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1

x2

...
xn−1

xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1

d2

...
dn−1

dn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
by Gaussian elimination with the diagonal ele-
ments as pivots. How many additions/subtractions
and multiplications/divisions are necessary?

9. Let A = LU, where L is lower triangular with 1’s
on the diagonal and U is upper triangular.
(a) How many scalar additions and multiplications

are necessary to solve Ly = ej by forward
substitution?

(b) How many additions/subtractions and mul-
tiplications/divisions are necessary to solve
Ax = ej? The solution xj of Ax = ej will be
the jth column of A−1.

(c) Given the factorization A = LU, how many
additional multiplications/divisions and addi-
tions/subtractions are needed to compute A−1?

10. Suppose that A−1 and the LU factorization of A
have already been determined. How many scalar
additions and multiplications are necessary to com-
pute A−1b? Compare this number with the number
of operations required to solve LUx = b using Al-
gorithm 7.2.2. Suppose that we have a number of
systems to solve with the same coefficient matrix
A. Is it worthwhile to compute A−1? Explain.

11. Let A be a 3 × 3 matrix and assume that A can
be transformed into a lower triangular matrix L by
using only column operations of type III; that is,

AE1E2E3 = L

where E1, E2, E3 are elementary matrices of
type III. Let

U = (E1E2E3)−1

Show that U is upper triangular with 1’s on the di-
agonal and A = LU. (This exercise illustrates a
column version of Gaussian elimination.)

7.3 Pivoting Strategies

In this section, we present an algorithm for Gaussian elimination with row inter-
changes. At each step of the algorithm, it will be necessary to choose a pivotal row.
We can often avoid unnecessarily large error accumulations by choosing the pivotal
rows in a reasonable manner.

Gaussian Elimination with Interchanges
Consider the following example.

EXAMPLE 1 Let

A =
⎧⎪⎪⎪⎪⎪⎩

6 −4 2
4 2 1
2 −1 1

⎫⎪⎪⎪⎪⎪⎭
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We wish to reduce A to triangular form by using row operations I and III. To keep track
of the interchanges, we will use a row vector p. The coordinates of p will be denoted
by p(1), p(2), and p(3). Initially, we set p = (1, 2, 3). Suppose that, at the first step
of the reduction process, the third row is chosen as the pivotal row. Then instead of
interchanging the first and third rows, we will interchange the first and third entries of
p. Setting p(1) = 3 and p(3) = 1, the vector p becomes (3, 2, 1). The vector p is used
to keep track of the reordering of the rows. We can think of p as a renumbering of the
rows. The actual physical reordering of the rows can be deferred until the end of the
reduction process.

row
p(3) = 1

p(2) = 2

p(1) = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
6 −4 2

4 2 1

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 −1 −1

0 4 −1

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If, at the second step, row p(3) is chosen as the pivotal row, the entries of p(3)

and p(2) are switched. The final step of the elimination process is then carried out as
follows:

p(2) = 1

p(3) = 2

p(1) = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 − 1 −1

0 4 −1

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 −1 −1

0 0 −5

2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If the rows are reordered in the order (p(1), p(2), p(3)) = (3, 1, 2), the resulting matrix
will be in strict triangular form:

p(1) = 3

p(2) = 1

p(3) = 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −1 1

0 −1 −1

0 0 −5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Had the rows been written in the order (3, 1, 2) to begin with, the reduction would have
been exactly the same, except that there would have been no need for interchanges.
Reordering the rows of A in the order (3, 1, 2) is the same as premultiplying A by the
permutation matrix:

P =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
Let us perform the reduction on A and PA simultaneously and compare the results. The
multipliers used in the reduction process were 3, 2, and −4. These will be stored in
the places of the terms eliminated and enclosed in boxes to distinguish them from the
other entries of the matrix.
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A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

6 −4 2
4 2 1
2 −1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

3 −1 −1
2 4 −1
2 −1 1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

3 −1 −1
2 −4 −5
2 −1 1

⎫⎪⎪⎪⎪⎪⎭

PA =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 −1 1
6 −4 2
4 2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 −1 1
3 −1 −1
2 4 −1

⎫⎪⎪⎪⎪⎪⎭ →
⎧⎪⎪⎪⎪⎪⎩

2 −1 1
3 −1 −1
2 −4 −5

⎫⎪⎪⎪⎪⎪⎭
If the rows of the reduced form of A are reordered, the resulting reduced matrices
will be the same. The reduced form of PA now contains the information necessary to
determine its triangular factorization. Indeed,

PA = LU

where

L =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
3 1 0
2 −4 1

⎫⎪⎪⎪⎪⎪⎭ and U =
⎧⎪⎪⎪⎩ 2 −1 1

0 −1 −1
0 0 −5

⎫⎪⎪⎪⎭
On the computer, it is not necessary to actually interchange the rows of A. We

simply treat row p(k) as the kth row and use ap(k)j in place of akj.

Algorithm 7.3.1 Gaussian Elimination with Interchanges

For i = 1, . . . , n
Set p(i) = i

→ End for loop

For i = 1, . . . , n

(1) Choose a pivot element ap(j)i from the elements

ap(i)i, ap(i+1)i, . . . , ap(n)i

(Strategies for doing this will be discussed later in this section.)
(2) Switch the ith and jth entries of p.
(3) For k = i + 1, . . . , n

Set lp(k)i = ap(k)i/ap(i)i

For j = i + 1, . . . , n
Set ap(k)j = ap(k)j − lp(k)iap(i)j

→ End for loop
→ End for loop

→ End for loop

Remarks

1. The multiplier lp(k)i is stored in the position of the element ap(k)i being
eliminated.

2. The vector p can be used to form a permutation matrix P whose ith row is the
p(i)th row of the identity matrix.
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3. The matrix PA can be factored into a product LU, where

lki =
⎧⎨
⎩

lp(k)i if k > i
1 if k = i
0 if k < i

and uki =
{

ap(k)i if k ≤ i
0 if k > i

4. Since P is nonsingular, the system Ax = b is equivalent to the system PAx =
Pb. Let c = Pb. Since PA = LU, it follows that the system is equivalent to

LUx = c

5. If PA = LU, then A = P−1LU = PTLU.

It follows from Remarks 4 and 5 that if A = PTLU, then the system Ax = b can be
solved in three steps:

Step 1. Reordering. Reorder the entries of b to form c = Pb.

Step 2. Forward substitution. Solve the system Ly = c for y.

Step 3. Back substitution. Solve Ux = y.

EXAMPLE 2 Solve the system

6x1 − 4x2 + 2x3 = −2
4x1 + 2x2 + x3 = 4
2x1 − x2 + x3 = −1

Solution
The coefficient matrix of this system is the matrix A from Example 1. P, L, and U have
already been determined, and they can be used to solve the system as follows:

Step 1. c = Pb = (−1, −2, 4)T

Step 2. y1 = −1 y1 = −1
3y1 + y2 = −2 y2 = −2 + 3 = 1
2y1 − 4y2 + y3 = 4 y3 = 4 + 2 + 4 = 10

Step 3. 2x1 − x2 + x3 = −1 x1 = 1
− x2 − x3 = 1 x2 = 1

− 5x3 = 10 x3 = −2

The solution of the system is x = (1, 1, −2)T .

It is possible to do Gaussian elimination without row interchanges if the diagonal
entries a(i)

ii are nonzero at each step. However, in finite-precision arithmetic, pivots a(i)
ii

that are near 0 can cause problems.

EXAMPLE 3 Consider the system

0.0001x1 + 2x2 = 4
x1 + x2 = 3
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The exact solution of the system is

x =
(

2

1.9999
,

3.9997

1.9999

)T

Rounded off to four decimal places, the solution is (1.0001, 1.9999)T . Let us solve the
system using three-digit decimal floating-point arithmetic.⎧⎪⎩ 0.0001 2 4

1 1 3

⎫⎪⎭ →
⎧⎪⎩ 0.0001 2 4

0 −0.200 × 105 −0.400 × 105

⎫⎪⎭
The computed solution is x′ = (0, 2)T . There is a 100 percent error in the x1 coordinate.
However, if we interchange rows to avoid the small pivot, then three-digit decimal
arithmetic gives ⎧⎪⎩ 1 1 3

0.0001 2 4

⎫⎪⎭ →
⎧⎪⎩ 1 1 3

0 2.00 4.00

⎫⎪⎭
In this case, the computed solution is x′ = (1, 2)T .

If the pivot a(i)
ii is small in absolute value, the multipliers lki = a(i)

ki /a(i)
ii may be large

in absolute value. If there is an error in the computed value of a(i)
ij , it will be multiplied

by lki. In general, large multipliers contribute to the propagation of error. In contrast,
multipliers that are less than 1 in absolute value generally retard the growth of error. By
careful selection of the pivot elements, we can try to avoid small pivots and at the same
time keep the multipliers less than or equal to 1 in absolute value. The most commonly
used strategy for doing this is called partial pivoting.

Partial Pivoting
At the ith step of the reduction process, there are n − i + 1 candidates for the pivot
element:

ap(i)i, ap(i+1)i, . . . , ap(n)i

Choose the candidate ap(j)i with the maximum absolute value

|ap(j)i| = max
i≤k≤n

|ap(k)i|
and interchange the ith and jth entries of p. The pivot element ap(i)i has the property

|ap(i)i| ≥ |ap(k)i|
for k = i + 1, . . . , n. Thus, the multipliers will all satisfy

|lp(k)i| =
∣∣∣∣ap(k)i

ap(i)i

∣∣∣∣ ≤ 1

We could always carry things one step further and do complete pivoting. In com-
plete pivoting, the pivot element is chosen to be the element of maximum absolute
value among all the elements in the remaining rows and columns. In this case, we must
keep track of both the rows and columns. At the ith step the element ap(j)q(k) is chosen
so that

|ap(j)q(k)| = max
i≤s≤n
i≤t≤n

|ap(s)q(t)|
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The ith and jth entries of p are interchanged, and the ith and kth entries of q are inter-
changed. The new pivot element is ap(i)q(i). The major drawback to complete pivoting
is that at each step we must search for a pivot element among (n − i + 1)2 elements of
A. Doing this may be too costly in terms of computer time. Although Gaussian elimin-
ation is numerically stable when carried out with either partial or complete pivoting, it
is more efficient to use partial pivoting. As a consequence, the partial pivoting strategy
is the method of choice for all of the standard numerical software packages.

SECTION 7.3 EXERCISES
1. Let

A =
⎧⎪⎪⎪⎪⎪⎩

0 3 1
1 2 −2
2 5 4

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

1
7

−1

⎫⎪⎪⎪⎪⎪⎭
(a) Reorder the rows of (A|b) in the order (2, 3, 1)

and then solve the reordered system.

(b) Factor A into a product PTLU, where P is
the permutation matrix corresponding to the
reordering in part (a).

2. Let A be the matrix in Exercise 1. Use the factoriza-
tion PTLU to solve Ax = c for each of the following
choices of c:
(a) (8, 1, 20)T (b) (−9, −2, −7)T

(c) (4, 1, 11)T

3. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 8 6
−1 −4 5

2 4 −6

⎫⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎩

8
1
4

⎫⎪⎪⎪⎪⎪⎭
Solve the system Ax = b using partial pivoting. If
P is the permutation matrix corresponding to the
pivoting strategy, factor PA into a product LU.

4. Let

A =
⎧⎪⎩ 3 2

2 4

⎫⎪⎭ and b =
⎧⎪⎩ 5

−2

⎫⎪⎭
Solve the system Ax = b using complete pivot-
ing. Let P be the permutation matrix determined by
the pivot rows and Q the permutation matrix de-
termined by the pivot columns. Factor PAQ into a
product LU.

5. Let A be the matrix in Exercise 4 and let c =
(6, −4)T . Solve the system Ax = c in two steps:

(a) Set z = QT x and solve LUz = Pc for z.

(b) Calculate x = Qz.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎩

5 4 7
2 −4 3
2 8 6

⎫⎪⎪⎪⎪⎪⎭,

b =
⎧⎪⎪⎪⎪⎪⎩

2
−5

4

⎫⎪⎪⎪⎪⎪⎭, c =
⎧⎪⎪⎪⎪⎪⎩

5
−4

2

⎫⎪⎪⎪⎪⎪⎭
(a) Use complete pivoting to solve the system

Ax = b.
(b) Let P be the permutation matrix determined

by the pivot rows, and let Q be the permuta-
tion matrix determined by the pivot columns.
Factor PAQ into a product LU.

(c) Use the LU factorization from part (b) to solve
the system Ax = c.

7. The exact solution of the system

0.6000x1 + 2000x2 = 2003

0.3076x1 − 0.4010x2 = 1.137

is x = (5, 1)T . Suppose that the calculated value of
x2 is x′

2 = 1 + e. Use this value in the first equation
and solve for x1. What will the error be? Calculate
the relative error in x1 if e = 0.001.

8. Solve the system in Exercise 7 using four-digit
decimal floating-point arithmetic and Gaussian
elimination with partial pivoting.

9. Solve the system in Exercise 7 using four-digit
decimal floating-point arithmetic and Gaussian
elimination with complete pivoting.

10. Use four-digit decimal floating-point arithmetic,
and scale the system in Exercise 7 by multiply-
ing the first equation through by 1/2000 and the
second equation through by 1/0.4010. Solve the
scaled system using partial pivoting.



7.4 Matrix Norms and Condition Numbers 415

7.4 Matrix Norms and Condition Numbers

In this section, we are concerned with the accuracy of computed solutions of linear
systems. How accurate can we expect the computed solutions to be, and how can we
test their accuracy? The answer to these questions depends largely on how sensitive the
coefficient matrix of the system is to small changes. The sensitivity of the matrix can
be measured in terms of its condition number. The condition number of a nonsingular
matrix is defined in terms of its norm and the norm of its inverse. Before discussing
condition numbers, it is necessary to establish some important results regarding the
standard types of matrix norms.

Matrix Norms
Just as vector norms are used to measure the size of vectors, matrix norms can be used
to measure the size of matrices. In Section 4 of Chapter 5, we introduced a norm on
R

m×n that was induced by an inner product on R
m×n. This norm was referred to as the

Frobenius norm and was denoted by ‖ · ‖F. We showed that the Frobenius norm of a
matrix A could be computed by taking the square root of the sum of the squares of all
its entries:

‖A‖F =
⎛
⎝ n∑

j=1

m∑
i=1

a2
ij

⎞
⎠1/2

(1)

Actually, equation (1) defines a family of matrix norms since it defines a norm on R
m×n

for any choice of m and n. The Frobenius norm has a number of important properties:

I. If aj represents the jth column vector of A, then

‖A‖F =
⎛
⎝ n∑

j=1

m∑
i=1

a2
ij

⎞
⎠1/2

=
⎛
⎝ n∑

j=1

‖aj‖2
2

⎞
⎠1/2

II. If �ai represents the ith row vector of A, then

‖A‖F =
⎛
⎝ m∑

i=1

n∑
j=1

a2
ij

⎞
⎠1/2

=
(

m∑
i=1

‖�aT
i ‖2

2

)1/2

III. If x ∈ R
n, then

‖Ax‖2 =
⎡
⎢⎣ m∑

i=1

⎛
⎝ n∑

j=1

aijxj

⎞
⎠2

⎤
⎥⎦

1/2

=
[

m∑
i=1

(�aix
)2

]1/2

≤
[

m∑
i=1

‖x‖2
2‖�aT

i ‖2
2

]1/2

(Cauchy–Schwarz)

= ‖A‖F ‖x‖2
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IV. If B = (b1, . . . , br) is an n × r matrix, it follows from properties I and III
that

‖AB‖F = ‖(Ab1, Ab2, . . . , Abr)‖F

=
(

r∑
i=1

‖Abi‖2
2

)1/2

≤ ‖A‖F

(
r∑

i=1

‖bi‖2
2

)1/2

= ‖A‖F‖B‖F

There are many other norms that we could use for R
m×n in addition to the Frobenius

norm. Any norm used must satisfy the three conditions that define norms in
general:

(i) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = O
(ii) ‖αA‖ = |α|‖A‖

(iii) ‖A + B‖ ≤ ‖A‖ + ‖B‖
The families of matrix norms that turn out to be most useful also satisfy the

additional property

(iv) ‖AB‖ ≤ ‖A‖ ‖B‖
Consequently, we will consider only families of norms that have this additional
property. One important consequence of property (iv) is that

‖An‖ ≤ ‖A‖n

In particular, if ‖A‖ < 1, then ‖An‖ → 0 as n → ∞.
In general, a matrix norm ‖ · ‖M on R

m×n and a vector norm ‖ · ‖V on R
n are said

to be compatible if

‖Ax‖V ≤ ‖A‖M‖x‖V

for every x ∈ R
n. In particular, it follows from property III of the Frobenius norm

that the matrix norm ‖ · ‖F and the vector norm ‖ · ‖2 are compatible. For each of the
standard vector norms, we can define a compatible matrix norm by using the vector
norm to compute an operator norm for the matrix. The matrix norm defined in this way
is said to be subordinate to the vector norm.

Subordinate Matrix Norms
We can think of each m × n matrix as a linear transformation from R

n to R
m. For any

family of vector norms, we can define an operator norm by comparing ‖Ax‖ and ‖x‖
for each nonzero x and taking

‖A‖ = max
x �=0

‖Ax‖
‖x‖ (2)
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It can be shown that there is a particular x0 in R
n that maximizes ‖Ax‖/‖x‖, but the

proof is beyond the scope of this book. Assuming that ‖Ax‖/‖x‖ can always be max-
imized, we will show that (2) actually does define a norm on R

m×n. To do this, we must
verify that each of the three conditions of the definition is satisfied.

(i) For each x �= 0,

‖Ax‖
‖x‖ ≥ 0

and, consequently,

‖A‖ = max
x �=0

‖Ax‖
‖x‖ ≥ 0

If ‖A‖ = 0, then Ax = 0 for every x ∈ R
n. This implies that

aj = Aej = 0 for j = 1, . . . , n

and hence A must be the zero matrix.

(ii) ‖αA‖ = max
x�=0

‖αAx‖
‖x‖ = |α| max

x�=0

‖Ax‖
‖x‖ = |α| ‖A‖

(iii) If x �= 0, then

‖A + B‖ = max
x�=0

‖(A + B)x‖
‖x‖

≤ max
x�=0

‖Ax‖ + ‖Bx‖
‖x‖

≤ max
x �=0

‖Ax‖
‖x‖ + max

x�=0

‖Bx‖
‖x‖

= ‖A‖ + ‖B‖

Thus (2) defines a norm on R
m×n. For each family of vector norms ‖ · ‖, we can then

define a family of matrix norms by (2). The matrix norms defined by (2) are said to be
subordinate to the vector norms ‖ · ‖.

Theorem 7.4.1 If the family of matrix norms ‖ · ‖M is subordinate to the family of vector norms ‖ · ‖V,
then ‖ · ‖M and ‖ · ‖V are compatible and the matrix norms ‖ · ‖M satisfy property (iv).

Proof If x is any nonzero vector in R
n, then

‖Ax‖V

‖x‖V
≤ max

y �=0

‖Ay‖V

‖y‖V
= ‖A‖M

and hence

‖Ax‖V ≤ ‖A‖M‖x‖V
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Since this last inequality is also valid if x = 0, it follows that ‖ · ‖M and ‖ · ‖V are
compatible. If B is an n× r matrix, then, since ‖ ·‖M and ‖ ·‖V are compatible, we have

‖ABx‖V ≤ ‖A‖M‖Bx‖V ≤ ‖A‖M‖B‖M‖x‖V

Thus, for all x �= 0,

‖ABx‖V

‖x‖V
≤ ‖A‖M‖B‖M

and hence

‖AB‖M = max
x�=0

‖ABx‖V

‖x‖V
≤ ‖A‖M‖B‖M

It is a simple matter to compute the Frobenius norm of a matrix. For example, if

A =
⎧⎪⎩ 4 2

0 4

⎫⎪⎭
then

‖A‖F = (42 + 02 + 22 + 42)1/2 = 6

On the other hand, it is not so obvious how to compute ‖A‖ if ‖ · ‖ is a subordinate
matrix norm. It turns out, however, that the matrix norms

‖A‖1 = max
x�=0

‖Ax‖1

‖x‖1
and ‖A‖∞ = max

x �=0

‖Ax‖∞
‖x‖∞

are simple to calculate.

Theorem 7.4.2 If A is an m × n matrix, then

‖A‖1 = max
1≤j≤n

(
m∑

i=1

|aij|
)

and

‖A‖∞ = max
1≤i≤m

⎛
⎝ n∑

j=1

|aij|
⎞
⎠

Proof We will prove that

‖A‖1 = max
1≤j≤n

(
m∑

i=1

|aij|
)
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and leave the proof of the second statement as an exercise. Let

α = max
1≤j≤n

m∑
i=1

|aij| =
m∑

i=1

|aik|

That is, k is the index of the column in which the maximum occurs. Let x be an arbitrary
vector in R

n; then

Ax =
⎛
⎝ n∑

j=1

a1jxj,
n∑

j=1

a2jxj, . . . ,
n∑

j=1

amjxj

⎞
⎠T

and it follows that

‖Ax‖1 =
m∑

i=1

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣
≤

m∑
i=1

n∑
j=1

|aijxj|

=
n∑

j=1

(
|xj|

m∑
i=1

|aij|
)

≤ α

n∑
j=1

|xj|

= α‖x‖1

Thus, for any nonzero x in R
n,

‖Ax‖1

‖x‖1
≤ α

and hence

‖A‖1 = max
x�=0

‖Ax‖1

‖x‖1
≤ α (3)

On the other hand,

‖Aek‖1 = ‖ak‖1 = α

Since ‖ek‖1 = 1, it follows that

‖A‖1 = max
x �=0

‖Ax‖1

‖x‖1
≥ ‖Aek‖1

‖ek‖1
= α (4)

Together, (3) and (4) imply that ‖A‖1 = α.
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EXAMPLE 1 Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
−3 2 4 −3

5 −2 −3 5
2 1 −6 4
1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Then

‖A‖1 = |4| + | − 3| + | − 6| + |1| = 14

and

‖A‖∞ = |5| + | − 2| + | − 3| + |5| = 15

The 2-norm of a matrix is more difficult to compute since it depends on the singular
values of the matrix. In fact, the 2-norm of a matrix is its largest singular value.

Theorem 7.4.3 If A is an m × n matrix with singular value decomposition U�VT, then

‖A‖2 = σ1 (the largest singular value)

Proof Since U and V are orthogonal,

‖A‖2 = ‖U�VT‖2 = ‖�‖2

(See Exercise 42.) Now,

‖�‖2 = max
x�=0

‖�x‖2

‖x‖2

= max
x�=0

⎛
⎝ n∑

i=1

(σixi)
2

⎞
⎠1/2

(
n∑

i=1

x2
i

)1/2

≤ σ1

However, if we choose x = e1, then

‖�x‖2

‖x‖2
= σ1

and hence it follows that

‖A‖2 = ‖�‖2 = σ1
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Corollary 7.4.4 If A = U�VT is a nonsingular n × n matrix, then

‖A−1‖2 = 1

σn

Proof The singular values of A−1 = V�−1UT , arranged in decreasing order, are

1

σn
≥ 1

σn−1
≥ · · · ≥ 1

σ1

Therefore,

‖A−1‖2 = 1

σn

Condition Numbers
Matrix norms can be used to estimate the sensitivity of linear systems to small changes
in the coefficient matrix. Consider the following example:

EXAMPLE 2 Solve the following system:

2.0000x1 + 2.0000x2 = 6.0000
2.0000x1 + 2.0005x2 = 6.0010 (5)

If we use five-digit decimal floating-point arithmetic, the computed solution will be
the exact solution x = (1, 2)T . Suppose, however, that we are forced to use four-digit
decimal floating-point numbers. Thus, in place of (5), we have

2.000x1 + 2.000x2 = 6.000
2.000x1 + 2.001x2 = 6.001 (6)

The computed solution of system (6) is the exact solution x′ = (2, 1)T .
The systems (5) and (6) agree except for the coefficient a22. The relative error in

this coefficient is

a′
22 − a22

a22
≈ 0.00025

However, the relative errors in the coordinates of the solutions x and x′ are

x′
1 − x1

x1
= 1.0 and

x′
2 − x2

x2
= −0.5

Definition A matrix A is said to be ill conditioned if relatively small changes in the entries of
A can cause relatively large changes in the solutions to Ax = b. A is said to be well
conditioned if relatively small changes in the entries of A result in relatively small
changes in the solutions to Ax = b.



422 Chapter 7 Numerical Linear Algebra

If the matrix A is ill conditioned, the computed solution of Ax = b generally
will not be accurate. Even if the entries of A can be represented exactly as floating-
point numbers, small rounding errors occurring in the reduction process may have a
drastic effect on the computed solution. If, however, the matrix is well conditioned
and the proper pivoting strategy is used, we should be able to compute solutions quite
accurately. In general, the accuracy of the solution depends on the conditioning of the
matrix. If we could measure the conditioning of A, this measure could be used to derive
a bound for the relative error in the computed solution.

Let A be an n × n nonsingular matrix and consider the system Ax = b. If x is
the exact solution of the system and x′ is the calculated solution, then the error can be
represented by the vector e = x − x′. If ‖ · ‖ is a norm on R

n, then ‖e‖ is a measure of
the absolute error and ‖e‖/‖x‖ is a measure of the relative error. In general, we have no
way of determining the exact values of ‖e‖ and ‖e‖/‖x‖. One possible way of testing
the accuracy of x′ is to put it back into the original system and see how close b′ = Ax′
comes to b. The vector

r = b − b′ = b − Ax′

is called the residual and can be easily calculated. The quantity

‖b − Ax′‖
‖b‖ = ‖r‖

‖b‖
is called the relative residual. Is the relative residual a good estimate of the relative
error? The answer to this question depends on the conditioning of A. In Example 2, the
residual for the computed solution x′ = (2, 1)T is

r = b − Ax′ = (0, 0.0005)T

The relative residual in terms of the ∞-norm is

‖r‖∞
‖b‖∞

= 0.0005

6.0010
≈ 0.000083

and the relative error is given by

‖e‖∞
‖x‖∞

= 0.5

The relative error is more than 6000 times the relative residual! In general, we will
show that if A is ill conditioned, then the relative residual may be much smaller than
the relative error. For well-conditioned matrices, however, the relative residual and the
relative error are quite close. To show this, we need to make use of matrix norms.
Recall that if ‖ · ‖ is a compatible matrix norm on R

n×n, then, for any n × n matrix C
and any vector y ∈ R

n, we have

‖Cy‖ ≤ ‖C‖ ‖y‖ (7)

Now

r = b − Ax′ = Ax − Ax′ = Ae
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and consequently,

e = A−1r

It follows from property (7) that

‖e‖ ≤ ‖A−1‖ ‖r‖
and

‖r‖ = ‖Ae‖ ≤ ‖A‖ ‖e‖
Therefore,

‖r‖
‖A‖ ≤ ‖e‖ ≤ ‖A−1‖ ‖r‖ (8)

Now x is the exact solution to Ax = b, and hence x = A−1b. By the same reasoning
used to derive (8), we have

‖b‖
‖A‖ ≤ ‖x‖ ≤ ‖A−1‖ ‖b‖ (9)

It follows from (8) and (9) that
1

‖A‖ ‖A−1‖
‖r‖
‖b‖ ≤ ‖e‖

‖x‖ ≤ ‖A‖ ‖A−1‖ ‖r‖
‖b‖

The number ‖A‖ ‖A−1‖ is called the condition number of A and will be denoted by
cond(A). Thus,

1

cond(A)

‖r‖
‖b‖ ≤ ‖e‖

‖x‖ ≤ cond(A)
‖r‖
‖b‖ (10)

Inequality (10) relates the size of the relative error ‖e‖/‖x‖ to the relative residual
‖r‖/‖b‖. If the condition number is close to 1, the relative error and the relative re-
sidual will be close. If the condition number is large, the relative error could be many
times as large as the relative residual.

EXAMPLE 3 Let

A =
⎧⎪⎩ 3 3

4 5

⎫⎪⎭
Then

A−1 = 1

3

⎧⎪⎩ 5 −3
−4 3

⎫⎪⎭
‖A‖∞ = 9 and ‖A−1‖∞ = 8

3 . (We use ‖ · ‖∞ because it is easy to calculate.) Thus

cond∞(A) = 9 · 8
3 = 24

Theoretically, the relative error in the calculated solution of the system Ax = b could
be as much as 24 times the relative residual.

EXAMPLE 4 Suppose that x′ = (2.0, 0.1)T is the calculated solution of

3x1 + 3x2 = 6
4x1 + 5x2 = 9

Determine the residual r and the relative residual ‖r‖∞/‖b‖∞.
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Solution

r =
⎧⎪⎪⎪⎩ 6

9

⎫⎪⎪⎪⎭ −
⎧⎪⎪⎪⎩ 3 3

4 5

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ 2.0

0.1

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ −0.3

0.5

⎫⎪⎪⎪⎭
‖r‖∞
‖b‖∞

= 0.5

9
= 1

18

We can see by inspection that the actual solution of the system in Example 4 is

x =
⎧⎪⎩ 1

1

⎫⎪⎭. The error e is given by

e = x − x′ =
⎧⎪⎩ −1.0

0.9

⎫⎪⎭
The relative error is given by

‖e‖∞
‖x‖∞

= 1.0

1
= 1

The relative error is 18 times the relative residual. This is not surprising, since
cond(A) = 24. The results are similar if we use ‖ · ‖1. In this case,

‖r‖1

‖b‖1
= 0.8

15
= 4

75
and

‖e‖1

‖x‖1
= 1.9

2
= 19

20

The condition number of a nonsingular matrix actually gives us valuable informa-
tion about the conditioning of A. Let A′ be a new matrix formed by altering the entries
of A slightly. Let E = A′ − A. Thus, A′ = A + E, where the entries of E are small
relative to the entries of A. The matrix A will be ill conditioned if, for some such E, the
solutions to A′x = b and Ax = b vary greatly. Let x′ be the solution of A′x = b and x
be the solution of Ax = b. The condition number allows us to compare the change in
solution relative to x′ to the relative change in the matrix A.

x = A−1b = A−1A′x′ = A−1(A + E)x′ = x′ + A−1Ex′

Hence,

x − x′ = A−1Ex′

Using inequality (7), we see that

‖x − x′‖ ≤ ‖A−1‖ ‖E‖ ‖x′‖
or

‖x − x′‖
‖x′‖ ≤ ‖A−1‖ ‖E‖ = cond(A)

‖E‖
‖A‖ (11)

Let us return to Example 2 and see how inequality (11) applies. Let A and A′ be
the two coefficient matrices in Example 2:

E = A′ − A =
⎧⎪⎩ 0 0

0 0.0005

⎫⎪⎭
and

A−1 =
⎧⎪⎩ 2000.5 −2000

−2000 2000

⎫⎪⎭
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In terms of the ∞-norm, the relative error in A is

‖E‖∞
‖A‖∞

= 0.0005

4.0005
≈ 0.0001

and the condition number is

cond(A) = ‖A‖∞ ‖A−1‖∞ = (4.0005)(4000.5) ≈ 16,004

The bound on the relative error given in (11) is then

cond(A)
‖E‖
‖A‖ = ‖A−1‖ ‖E‖ = (4000.5)(0.0005) ≈ 2

The actual relative error for the systems in Example 2 is

‖x − x′‖∞
‖x′‖∞

= 1

2

If A is a nonsingular n × n matrix and we compute its condition number using the
2-norm, then we have

cond2(A) = ‖A‖2‖A−1‖2 = σ1

σn

If σn is small relative to σ1, then cond2(A) will be large. The smallest singular value,
σn, is a measure of how close the matrix is to being singular. Thus, the closer the
matrix is to being singular, the more ill conditioned it is. If the coefficient matrix of a
linear system is close to being singular, then small changes in the matrix due to round
off errors could result in drastic changes to the solution of the system. To illustrate
the relation between conditioning and nearness to singularity, let us look again at an
example from Chapter 6.

EXAMPLE 5 In Section 5 of Chapter 6, we saw that the nonsingular 100 × 100 matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −1 −1 · · · −1 −1
0 1 −1 · · · −1 −1
0 0 1 · · · −1 −1...
0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
is actually very close to being singular, and to make it singular, we need only change
the value of the (100, 1) entry of A from 0 to − 1

298 . It follows from Theorem 6.5.3 that

σn = min
X singular

‖A − X‖F ≤ 1

298
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so cond2(A) must be very large. It is even easier to see that A is extremely ill-
conditioned if we use the infinity norm The inverse of A is given by

A−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 2 4 · · · 298

0 1 1 2 · · · 297

...
0 0 0 0 · · · 21

0 0 0 0 · · · 20

0 0 0 0 · · · 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The infinity norms of A and A−1 are both determined by the entries in the first row of
the matrix.

cond∞ A = ‖A‖∞‖A−1‖∞ = 100 × 299 ≈ 6.34 × 1031

SECTION 7.4 EXERCISES
1. Determine ‖ · ‖F , ‖ · ‖∞, and ‖ · ‖1 for each of the

following matrices:

(a)
⎧⎪⎩ 1 0

0 1

⎫⎪⎭ (b)
⎧⎪⎩ 1 4

−2 2

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
0 5 1
2 3 1
1 2 2

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
5 0 5
4 1 0
3 2 1

⎫⎪⎪⎪⎪⎪⎭
2. Let

A =
⎧⎪⎩ 2 0

0 −2

⎫⎪⎭ and x =
⎧⎪⎩ x1

x2

⎫⎪⎭
and set

f (x1, x2) = ‖Ax‖2/‖x‖2

Determine the value of ‖A‖2 by finding the max-
imum value of f for all (x1, x2) �= (0, 0).

3. Let

A =
⎧⎪⎩ 1 0

0 0

⎫⎪⎭
Use the method of Exercise 2 to determine the
value of ‖A‖2.

4. Let

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 0 0 0
0 −5 0 0
0 0 −2 0
0 0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Compute the singular value decomposition

of D.
(b) Find the value of ‖D‖2.

5. Show that if D is an n × n diagonal matrix then

‖D‖2 = max
1≤i≤n

(|dii|)
6. If D is an n × n diagonal matrix, how do the values

of ‖D‖1, ‖D‖2, and ‖D‖∞ compare? Explain your
answers.

7. Let I denote the n × n identity matrix. Determine
the values of ‖I‖1, ‖I‖∞, and ‖I‖F .

8. Let ‖ · ‖M denote a matrix norm on R
n×n, ‖ · ‖V de-

note a vector norm on R
n, and I be the n×n identity

matrix. Show that
(a) If ‖ · ‖M and ‖ · ‖V are compatible, then ‖I‖M ≥

1.

(b) If ‖ ·‖M is subordinate to ‖ ·‖V , then ‖I‖M = 1.

9. A vector x in R
n can also be viewed as an n × 1

matrix X:

x = X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

x2

...
xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) How do the matrix norm ‖X‖∞ and the vector

norm ‖x‖∞ compare? Explain.

(b) How do the matrix norm ‖X‖1 and the vector
norm ‖x‖1 compare? Explain.

10. A vector y in R
n can also be viewed as an n × 1

matrix Y = (y). Show that
(a) ‖Y‖2 = ‖y‖2 (b) ‖YT‖2 = ‖y‖2
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11. Let A = wyT where w ∈ R
m and y ∈ R

n. Show that

(a)
‖Ax‖2

‖x‖2
≤ ‖y‖2‖w‖2 for all x �= 0 in R

n.

(b) ‖A‖2 = ‖y‖2‖w‖2

12. Let

A =
⎧⎪⎪⎪⎪⎩ 3 −1 −2

−1 2 −7
4 1 4

⎫⎪⎪⎪⎪⎭
(a) Determine ‖A‖∞.
(b) Find a vector x whose coordinates are each ±1

such that ‖Ax‖∞ = ‖A‖∞. (Note that ‖x‖∞ =
1, so ‖A‖∞ = ‖Ax‖∞/‖x‖∞.)

13. Theorem 7.4.2 states that

‖A‖∞ = max
1≤i≤m

⎛
⎝ n∑

j=1

|aij|
⎞
⎠

Prove this in two steps.
(a) Show first that

‖A‖∞ ≤ max
1≤i≤m

⎛
⎝ n∑

j=1

|aij|
⎞
⎠

(b) Construct a vector x whose coordinates are
each ±1 such that

‖Ax‖∞
‖x‖∞

= ‖Ax‖∞ = max
1≤i≤m

⎛
⎝ n∑

j=1

|aij|
⎞
⎠

14. Show that ‖A‖F = ‖AT‖F .
15. Let A be a symmetric n × n matrix. Show that

‖A‖∞ = ‖A‖1.
16. Let A be a 5 × 4 matrix with singular values σ1 =

5, σ2 = 3, and σ3 = σ4 = 1. Determine the values
of ‖A‖2 and ‖A‖F .

17. Let A be an m × n matrix.
(a) Show that ‖A‖2 ≤ ‖A‖F .
(b) Under what circumstances will ‖A‖2 = ‖A‖F?

18. Let ‖ · ‖ denote a family of vector norms and let
‖ · ‖M be a subordinate matrix norm. Show that

‖A‖M = max
‖x‖=1

‖Ax‖
19. Let A be an m × n matrix and let ‖ · ‖v and ‖ · ‖w

be vector norms on R
n and R

m, respectively. Show
that

‖A‖(v,w) = max
x�=0

‖Ax‖w

‖x‖v

defines a matrix norm on R
m×n.

20. Let A be an m × n matrix. The (1,2)-norm of A is
given by

‖A‖(1,2) = max
x �=0

‖Ax‖2

‖x‖1

(See Exercise 19.) Show that

‖A‖(1,2) = max (‖a1‖2, ‖a2‖2, . . . , ‖an‖2)

21. Let A be an m×n matrix. Show that ‖A‖(1,2) ≤ ‖A‖2

22. Let A ∈ R
m×n and B ∈ R

n×r. Show that
(a) ‖Ax‖2 ≤ ‖A‖(1,2)‖x‖1 for all x in R

n.

(b) ‖AB‖(1,2) ≤ ‖A‖2‖B‖(1,2)

(c) ‖AB‖(1,2) ≤ ‖A‖(1,2)‖B‖1

23. Let A be an n × n matrix and let ‖ · ‖M be a mat-
rix norm that is compatible with some vector norm
on R

n. Show that if λ is an eigenvalue of A, then
|λ| ≤ ‖A‖M .

24. Use the result from Exercise 23 to show that if λ is
an eigenvalue of a stochastic matrix, then |λ| ≤ 1.

25. Sudoku is a popular puzzle involving matrices. In
this puzzle one is given some of the entries of a
9 × 9 matrix A and asked to fill in the missing
entries. The matrix A has block structure

A =
⎧⎪⎪⎪⎪⎪⎩

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎫⎪⎪⎪⎪⎪⎭
where each submatrix Aij is 3 × 3. The rules of the
puzzle are that each row, each column, and each of
the submatrices of A must be made up of all of the
integers 1 through 9. We will refer to such a mat-
rix as a sudoku matrix. Show that if A is a sudoku
matrix, then λ = 45 is its dominant eigenvalue.

26. Let Aij be a submatrix of a sudoku matrix A (see
Exercise 25). Show that if λ is an eigenvalue of Aij,
then |λ| ≤ 22.

27. Let A be an n × n matrix and x ∈ R
n. Prove:

(a) ‖Ax‖∞ ≤ n1/2‖A‖2‖x‖∞

(b) ‖Ax‖2 ≤ n1/2‖A‖∞‖x‖2

(c) n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2

28. Let A be a symmetric n × n matrix with ei-
genvalues λ1, . . . , λn and orthonormal eigenvectors
u1, . . . , un. Let x ∈ R

n and let ci = uT
i x for

i = 1, 2, . . . , n. Show that
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(a) ‖Ax‖2
2 =

n∑
i=1

(λici)
2

(b) if x �= 0, then

min
1≤i≤n

|λi| ≤ ‖Ax‖2

‖x‖2
≤ max

1≤i≤n
|λi|

(c) ‖A‖2 = max
1≤i≤n

|λi|
29. Let

A =
⎧⎪⎩ 1 −0.99

−1 1

⎫⎪⎭
Find A−1 and cond∞(A).

30. Solve the given two systems and compare the
solutions. Are the coefficient matrices well condi-
tioned? Ill conditioned? Explain.

1.0x1 + 2.0x2 = 1.12
1.000x1 + 2.011x2=1.120

2.0x1 + 3.9x2 = 2.16
2.000x1 + 3.982x2=2.160

31. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 1
2 2 3
1 1 2

⎫⎪⎪⎪⎪⎪⎭
Calculate cond∞(A) = ‖A‖∞‖A−1‖∞.

32. Let A be a nonsingular n × n matrix, and let ‖ · ‖M

denote a matrix norm that is compatible with some
vector norm on R

n. Show that

condM(A) ≥ 1

33. Let

An =
⎧⎪⎪⎪⎪⎩ 1 1

1 1 − 1

n

⎫⎪⎪⎪⎪⎭
for each positive integer n. Calculate
(a) A−1

n (b) cond∞(An) (c) lim
n→∞ cond∞(An)

34. If A is a 5×3 matrix with ‖A‖2 = 8, cond2(A) = 2,
and ‖A‖F = 12, determine the singular values
of A.

35. Given

A =
⎧⎪⎩ 3 2

1 1

⎫⎪⎭ and b =
⎧⎪⎩ 5

2

⎫⎪⎭
If two-digit decimal floating-point arithmetic is
used to solve the system Ax = b, the computed
solution will be x = (1.1, 0.88)T .
(a) Determine the residual vector r and the value

of the relative residual ‖r‖∞/‖b‖∞.
(b) Find the value of cond∞(A).

(c) Without computing the exact solution, use the
results from parts (a) and (b) to obtain bounds
for the relative error in the computed solution.

(d) Compute the exact solution x and determine
the actual relative error. Compare this to the
bounds derived in part (c).

36. Let

A =
⎧⎪⎪⎪⎪⎪⎩

−0.50 0.75 −0.25
−0.50 0.25 0.25

1.00 −0.50 0.50

⎫⎪⎪⎪⎪⎪⎭
Calculate cond1(A) = ‖A‖1‖A−1‖1.

37. Let A be the matrix in Exercise 36 and let

A′ =
⎧⎪⎪⎪⎪⎪⎩

−0.5 0.8 −0.3
−0.5 0.3 0.3

1.0 −0.5 0.5

⎫⎪⎪⎪⎪⎪⎭
Let x and x′ be the solutions of Ax = b and
A′x = b, respectively, for some b ∈ R

3. Find a
bound for the relative error (‖x − x′‖1)/‖x′‖1.

38. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
5.00
1.02
1.04
1.10

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
An approximate solution of Ax = b is calculated by
rounding the entries of b to the nearest integer and
then solving the rounded system with integer arith-
metic. The calculated solution is x′ = (12, 4, 2, 1)T .
Let r denote the residual vector.
(a) Determine the values of ‖r‖∞ and cond∞(A).

(b) Use your answer to part (a) to find an upper
bound for the relative error in the solution.

(c) Compute the exact solution x and determine

the relative error
‖x − x′‖∞

‖x‖∞
.

39. Let A and B be nonsingular n × n matrices. Show
that

cond(AB) ≤ cond(A) cond(B)

40. Let D be a nonsingular n × n diagonal matrix and
let

dmax = max
1≤i≤n

|dii| and dmin = min
1≤i≤n

|dii|
(a) Show that

cond1(D) = cond∞(D) = dmax

dmin

(b) Show that

cond2(D) = dmax

dmin
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41. Let Q be an n × n orthogonal matrix. Show that
(a) ‖Q‖2 = 1 (b) cond2(Q) = 1
(c) for any b ∈ R

n, the relative error in the solu-
tion of Qx = b is equal to the relative residual,
that is,

‖e‖2

‖x‖2
= ‖r‖2

‖b‖2

42. Let A be an n × n matrix and let Q and V be n × n
orthogonal matrices. Show that
(a) ‖QA‖2 = ‖A‖2 (b) ‖AV‖2 = ‖A‖2

(c) ‖QAV‖2 = ‖A‖2

43. Let A be an m × n matrix and let σ1 be the largest
singular value of A. Show that if x and y are
nonzero vectors in R

n, then each of the following
holds:

(a)
|xTAy|

‖x‖2 ‖y‖2
≤ σ1

[Hint: Make use of the Cauchy-Schwarz in-
equality.]

(b) max
x�=0, y�=0

|xTAy|
‖x‖ ‖y‖ = σ1

44. Let A be an m × n matrix with singular value
decomposition U�VT . Show that

min
x �=0

‖Ax‖2

‖x‖2
= σn

45. Let A be an m×n matrix with singular value decom-
position U�VT . Show that, for any vector x ∈ R

n,

σn‖x‖2 ≤ ‖Ax‖2 ≤ σ1‖x‖2

46. Let A be a nonsingular n × n matrix and let Q be an
n × n orthogonal matrix. Show that
(a) cond2(QA) = cond2(AQ) = cond2(A)

(b) if B = QTAQ, then cond2(B) = cond2(A).
47. Let A be a symmetric nonsingular n×n matrix with

eigenvalues λ1, . . . , λn. Show that

cond2(A) =
max
1≤i≤n

|λi|
min
1≤i≤n

|λi|

7.5 Orthogonal Transformations

Orthogonal transformations are one of the most important tools in numerical linear
algebra. The types of orthogonal transformations that will be introduced in this section
are easy to work with and do not require much storage. Most important, processes that
involve orthogonal transformations are inherently stable. For example, let x ∈ R

n and
x′ = x + e be an approximation to x: If Q is an orthogonal matrix, then

Qx′ = Qx + Qe

The error in Qx′ is Qe. With respect to the 2-norm, the vector Qe is the same size as e;

‖Qe‖2 = ‖e‖2

Similarly, if A′ = A + E, then

QA′ = QA + QE

and

‖QE‖2 = ‖E‖2

When an orthogonal transformation is applied to a vector or matrix, the error will not
grow with respect to the 2-norm.
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Elementary Orthogonal Transformations
By an elementary orthogonal matrix, we mean a matrix of the form

Q = I − 2uuT

where u ∈ R
n and ‖u‖2 = 1. To see that Q is orthogonal, note that

QT = (I − 2uuT )T = I − 2uuT = Q

and

QTQ = Q2 = (I − 2uuT )(I − 2uuT )
= I − 4uuT + 4u(uTu)uT

= I

Thus, if Q is an elementary orthogonal matrix, then

QT = Q−1 = Q

The matrix Q = I − 2uuT is completely determined by the unit vector u. Rather
than store all n2 entries of Q, we need store only the vector u. To compute Q x, note
that

Qx = (I − 2uuT )x = x − 2αu

where α = uTx.
The matrix product QA is computed as

QA = (Q a1, Q a2, . . . , Q an)

where

Qai = ai − 2αiu αi = uTai

Elementary orthogonal transformations can be used to obtain a QR factorization
of A, and this in turn can be used to solve a linear system Ax = b. As with Gaussian
elimination, the elementary matrices are chosen so as to produce zeros in the coefficient
matrix. To see how this is done, let us consider the problem of finding a unit vector u
such that

(I − 2uuT )x = (α, 0, . . . , 0)T = αe1

for a given vector x ∈ R
n.

Householder Transformations
Let H = I − 2uuT . If Hx = αe1, then, since H is orthogonal, it follows that

|α| = ‖αe1‖2 = ‖Hx‖2 = ‖x‖2

If we take α=‖x‖2 or α = −‖x‖2, then since Hx = αe1, and H is its own inverse, we
have

x = H(αe1) = α(e1 − (2u1)u) (1)
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Thus

x1 = α(1 − 2u2
1)

x2 = −2αu1u2
...

xn = −2αu1un

Solving for the ui’s, we get

u1 = ±
(

α − x1

2α

)1/2

ui = −xi

2αu1
for i = 2, . . . , n

If we let

u1 = −
(

α − x1

2α

)1/2

and set β = α(α − x1)

then

−2αu1 = [2α(α − x1)]1/2 = (2β)1/2

It follows that

u =
(

− 1

2αu1

)
(−2αu2

1, x2, . . . , xn)T

= 1√
2β

(x1 − α, x2, . . . , xn)T

If we set v = (x1 − α, x2, . . . , xn)T , then

‖v‖2
2 = (x1 − α)2 +

n∑
i=2

x2
i = 2α(α − x1)

and hence

‖v‖2 = √
2β

Thus

u = 1√
2β

v = 1

‖v‖2
v

and

H = I − 2uuT = I − 1

β
vvT (2)

In theory equation (2) will be valid if α = ±‖x‖2; however, in finite precision arith-
metic it does matter how the sign is chosen. Since the first entry of v is v1 = x1 − α,
one could possibly lose significant digits of accuracy if x1 and α are nearly equal and
have the same sign. To avoid this situation, the scalar α should be defined by

α =
{ −‖x‖2 if x1 > 0

‖x‖2 if x1 ≤ 0 (3)
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In summation, given a vector x ∈ R
n, if we define α as in equation (3) and set

β = α(α − x1)
v = (x1 − α, x2, . . . , xn)T

u = 1

‖v‖2
v = 1√

2β
v

and

H = I − 2uuT = I − 1

β
vvT

then

Hx = αe1

The matrix H formed in this way is called a Householder transformation. The matrix
H is determined by the vector v and the scalar β. For any vector y ∈ R

n,

Hy =
(

I − 1

β
vvT

)
y = y −

(
vTy
β

)
v

Rather than store all n2 entries of H, we need store only v and β.

EXAMPLE 1 Given the vector x = (1, 2, 2)T , find a Householder matrix that will zero out the last
two entries of x.

Solution
Since x1 = 1 > 0, set α = −‖x‖2 = −3 and then set

β = α(α − x1) = 12
v = (x1 − α, x2, x3)T = (4, 2, 2)T

The Householder matrix is given by

H = I − 1

12
vvT

= 1

3

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−1 −2 −2
−2 2 −1
−2 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The reader may verify that

Hx = −3e1

Suppose now that we wish to zero out only the last n − k components of
a vector x = (x1, . . . , xk, xk+1, . . . , xn)T . To do this, we let x(1) = (x1, . . . , xk−1)T

and x(2) = (xk, xk+1, . . . , xn)T . Let I(1) and I(2) denote the (k − 1) × (k − 1)
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and (n − k + 1) × (n − k + 1) identity matrices, respectively. By the methods just
described, we can construct a Householder matrix H(2)

k = I(2) − (1/βk)vkvT
k such that

H(2)
k x(2) = αe(2)

1

where α = ±‖x(2)‖2 and e(2)
1 is the first column vector of the (n − k + 1) × (n − k + 1)

identity matrix. Let

Hk =
⎧⎪⎪⎩ I(1) O

O H(2)
k

⎫⎪⎪⎭ (4)

It follows that

Hkx =
⎧⎪⎪⎩ I(1) O

O H(2)
k

⎫⎪⎪⎭⎧⎪⎪⎩ x(1)

x(2)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ I(1)x(1)

H(2)
k x(2)

⎫⎪⎪⎭ =
⎧⎪⎪⎩ x(1)

αe(2)
1

⎫⎪⎪⎭

Remarks

1. The Householder matrix Hk defined in equation (4) is an elementary orthogonal
matrix. If we let

v =
⎧⎪⎩ 0

vk

⎫⎪⎭ and u = (1/‖v‖)v

then

Hk = I − 1

βk
vvT = I − 2uuT

2. Hk acts like the identity matrix on the first k − 1 coordinates of any vector
y ∈ R

n. If y = (y1, . . . , yk−1, yk, . . . , yn)T , y(1) = (y1, . . . , yk−1)T , and y(2) =
(yk, . . . , yn)T , then

Hky =
⎧⎪⎪⎪⎩ I(1) O

O H(2)
k

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ y(1)

y(2)

⎫⎪⎪⎪⎭ =
⎧⎪⎪⎪⎩ y(1)

H(2)
k y(2)

⎫⎪⎪⎪⎭
In particular, if y(2) = 0, then Hky = y.

3. It is generally not necessary to store the entire matrix Hk. It suffices to store the
vector vk and the scalar βk.

EXAMPLE 2 Find a Householder matrix that zeroes out the last two entries of y = (3, 1, 2, 2)T while
leaving the first entry unchanged.

Solution
The Householder matrix will change only the last three entries of y. These entries
correspond to the vector x = (1, 2, 2)T in R

3. But this is the vector whose last two
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entries were zeroed out in Example 1. The 3 × 3 Householder matrix from Example 1
can be used to form a 4 × 4 matrix

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 0

0 − 1
3 − 2

3 − 2
3

0 − 2
3

2
3 − 1

3

0 − 2
3 − 1

3
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
which will have the desired effect on y. We leave it to the reader to verify that
Hy = (3, −3, 0, 0)T .

We are now ready to apply Householder transformations to solve linear systems.
If A is a nonsingular n × n matrix, we can use Householder transformations to reduce
A to strict triangular form. To begin with, we can find a Householder transformation
H1 = I − (1/β1)v1vT

1 that, when applied to the first column of A, will give a multiple
of e1. Thus, H1A will be of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × · · · ×
0 × · · · ×
0 × · · · ×
...
0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can then find a Householder transformation H2 that will zero out the last n − 2
elements in the second column of H1A while leaving the first element in that column
unchanged. It follows from remark 2 that H2 will have no effect on the first column of
H1A, so multiplication by H2 yields a matrix of the form

H2H1A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
× × × · · · ×
0 × × · · · ×
0 0 × · · · ×
...
0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We can continue to apply Householder transformations in this fashion until we end up
with an upper triangular matrix, which we will denote by R. Thus,

Hn−1 · · · H2H1A = R

It follows that

A = H−1
1 H−1

2 · · · H−1
n−1R

= H1H2 · · · Hn−1R

Let Q = H1H2 · · · Hn−1. The matrix Q is orthogonal and A can be factored into the
product of an orthogonal matrix times an upper triangular matrix:

A = QR
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After A has been factored into a product QR, the system Ax = b is easily solved.
Indeed if we multiply through by QT , we end up with the upper triangular system
Rx = c, where c = QTb. Since Q is a product of Householder matrices, it is not
necessary to perform the matrix multiplications to compute Q explicitly. Instead, we
can calculate c directly by performing a sequence of Householder transformations
on b,

c = Hn−1 · · · H2H1b (5)

The system Rx = c can then be solved using back substitution.

Operation Count In solving an n × n system by means of Householder transform-
ations, most of the work is done in reducing A to triangular form. The number of
operations required is approximately 2

3 n3 multiplications, 2
3 n3 additions, and n − 1

square roots.

Rotations and Reflections
Often, it will be desirable to have a transformation that zeros out only a single entry
of a vector. In this case, it is convenient to use either a rotation or a reflection. Let us
consider first the two-dimensional case.

Let

R =
⎧⎪⎩ cos θ −sin θ

sin θ cos θ

⎫⎪⎭ and G =
⎧⎪⎩ cos θ sin θ

sin θ −cos θ

⎫⎪⎭
and let

x =
⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩ r cos α

r sin α

⎫⎪⎭
be a vector in R

2. Then

Rx =
⎧⎪⎩ r cos(θ + α)

r sin(θ + α)

⎫⎪⎭ and Gx =
⎧⎪⎩ r cos(θ − α)

r sin(θ − α)

⎫⎪⎭
R represents a rotation in the plane by an angle θ . The matrix G has the effect of
reflecting x about the line x2 = [tan(θ/2)]x1 (see Figure 7.5.1). If we set cos θ = x1/r
and sin θ = −x2/r, then

Rx =
⎧⎪⎩ x1 cos θ − x2 sin θ

x1 sin θ + x2 cos θ

⎫⎪⎭ =
⎧⎪⎩ r

0

⎫⎪⎭
If we set cos θ = x1/r and sin θ = x2/r, then

Gx =
⎧⎪⎩ x1 cos θ + x2 sin θ

x1 sin θ − x2 cos θ

⎫⎪⎭ =
⎧⎪⎩ r

0

⎫⎪⎭
Both R and G are orthogonal matrices. The matrix G is also symmetric. Indeed, G is an
elementary orthogonal matrix. If we let u = (sin θ/2, − cos θ/2)T , then G = I − 2uuT .
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x

x
Rx

Gx

2+ αθ

α

θ
α

θ – α

Figure 7.5.1.

EXAMPLE 3 Let x = (−3, 4)T . To find a rotation matrix R that zeroes out the second coordinate of
x, set

r = √
(−3)2 + 42 = 5

cos θ = x1

r
= −3

5

sin θ = −x2

r
= −4

5

and set

R =
⎧⎪⎩ cos θ −sin θ

sin θ cos θ

⎫⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩ − 3

5
4
5

− 4
5 − 3

5

⎫⎪⎪⎪⎪⎪⎭
The reader may verify that Rx = 5e1.

To find a reflection matrix G that zeroes out the second coordinate of x, compute r
and cos θ in the same way as for the rotation matrix, but set

sin θ = x2

r
= 4

5

and

G =
⎧⎪⎩ cos θ sin θ

sin θ −cos θ

⎫⎪⎭ =
⎧⎪⎪⎪⎩ − 3

5
4
5

4
5

3
5

⎫⎪⎪⎪⎭
The reader may verify that Gx = 5e1.

Let us now consider the n-dimensional case. Let R and G be n × n matrices with

rii = rjj = cos θ gii = cos θ , gjj = −cos θ

rji = sin θ , rij = −sin θ gji = gij = sin θ
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and rst = gst = δst for all other entries of R and G. Thus, R and G resemble the identity
matrix, except for the (i, i), (i, j), ( j, j), and (j, i) positions. Let c = cos θ and s = sin θ .
If x ∈ R

n, then

Rx = (x1, . . . , xi−1, xic − xjs, xi+1, . . . , xj−1, xis + xjc, xj+1, . . . , xn)T

and

Gx = (x1, . . . , xi−1, xic + xjs, xi+1, . . . , xj−1, xis − xjc, xj+1, . . . , xn)T

The transformations R and G alter only the ith and jth components of a vector; they
have no effect on the other coordinates. We will refer to R as a plane rotation and to G
as a Givens transformation or a Givens reflection. If we set

c = xi

r
and s = −xj

r

(
r =

√
x2

i + x2
j

)
then the jth component of Rx will be 0. If we set

c = xi

r
and s = xj

r

then the jth component of Gx will be 0.

EXAMPLE 4 Let x = (5, 8, 12)T . Find a rotation matrix R that zeroes out the third entry of x but
leaves the second entry of x unchanged.

Solution
Since R will act only on x1 and x3, set

r =
√

x2
1 + x2

3 = 13

c = x1

r
= 5

13

s = −x3

r
= −12

13

and set

R =
⎧⎪⎪⎪⎪⎪⎩

c 0 −s
0 1 0
s 0 c

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
5

13 0 12
13

0 1 0

− 12
13 0 5

13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The reader may verify that Rx = (13, 8, 0)T .

Given a nonsingular n × n matrix A, we can use either plane rotations or Givens
transformations to obtain a QR factorization of A. Let G21 be the Givens transformation
acting on the first and second coordinates, which when applied to A results in a zero in
the (2, 1) position. We can apply another Givens transformation, G31, to G21A to obtain
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a zero in the (3, 1) position. This process can be continued until the last n − 1 entries
in the first column have been eliminated:

Gn1 · · · G31G21A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × · · · ×
0 × · · · ×
0 × · · · ×
...
0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
At the next step, Givens transformations G32, G42, . . . , Gn2 are used to eliminate the
last n − 2 entries in the second column. The process is continued until all elements
below the diagonal have been eliminated.

(Gn,n−1) · · · (Gn2 · · · G32)(Gn1 · · · G21)A = R (R upper triangular)

If we let QT = (Gn,n−1) · · · (Gn2 · · · G32)(Gn1 · · · G21), then A = QR and the system
Ax = b is equivalent to the system

Rx = QTb

This system can be solved by back substitution.

Operation Count The QR factorization of A by means of Givens transformations
or plane rotations requires roughly 4

3 n3 multiplications, 2
3 n3 additions, and 1

2 n2 square
roots.

The QR Factorization for Solving General Linear Systems
Given a linear system Ax = b consisting of n equations in n unknowns, one can use
either Householder matrices, rotations, or Givens transformations to compute a QR
factorization of A. The linear system can then be solved by setting c = QTb and then
using back substitution to solve Rx = c. If Householder matrices are used to compute
the QR factorization, the operation count is approximately 2

3 n3 multiplications and 2
3 n3

additions and it is double that amount if either rotations or Givens transformations
are used. However, solving the same system using Gaussian elimination would only
involve roughly 1

3 n3 multiplications and 1
3 n3 additions. So solving the system using

Gaussian elimination is twice as fast as solving it using a Householder QR factorization
and 4 times as fast as solving the system using a QR factorization based on either plane
rotations or Givens transformations.

For an overdetermined system Ax = b one needs to find a least squares solution. In
this case one could form the normal equations and then solve using Gaussian elimina-
tion; however, there are problems with this approach when the computations are carried
out in finite precision arithmetic. Alternatively, if the coefficient matrix A is m × n with
rank n, then one can use Householder matrices to obtain a QR factorization of A and
this in turn can be used to solve the least squares problem. The numerical methods for
solving least squares problems will be discussed in greater detail in Section 7.7.
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SECTION 7.5 EXERCISES
1. For each of the following vectors x, find a rotation

matrix R such that Rx = ‖x‖2e1:
(a) x = (1, 1)T (b) x = (

√
3, −1)T

(c) x = (−4, 3)T

2. Given x ∈ R
3, define

rij = (
x2

i + x2
j

)1/2
i, j = 1, 2, 3

For each of the following, determine a Givens
transformation Gij such that the ith and jth coordin-
ates of Gijx are rij and 0, respectively:
(a) x = (3, 1, 4)T , i = 1, j = 3

(b) x = (1, −1, 2)T , i = 1, j = 2

(c) x = (4, 1,
√

3)T , i = 2, j = 3

(d) x = (4, 1,
√

3)T , i = 3, j = 2
3. For each of the given vectors x, find a Householder

transformation that zeros out the last two entries of
the vector.
(a) x = (−1, 8, −4)T (b) x = (3, 6, 2)T

(c) x = (0, −3, 4)T

4. For each of the following, find a Householder trans-
formation that zeroes out the last two coordinates of
the vector:
(a) x = (5, 1, 4, 8)T

(b) x = (4, −3, −2, −1, 2)T

5. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 3 −2
1 1 1
1 −5 1
1 −1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Determine the scalar β and vector v for the

Householder matrix H = I − (1/β)vvT that
zeroes out the last three entries of a1.

(b) Without explicitly forming the matrix H, com-
pute the product HA.

6. Let

A =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

−1 3
2

1
2

2 8 8
−2 −7 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭ and b =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

11
2

0
1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use Householder transformations to transform

A into an upper triangular matrix R. Also,
transform the vector b; that is, compute c =
H2H1b.

(b) Solve Rx = c for x and check your answer by
computing the residual r = b − Ax.

7. For each of the following systems, use a Givens re-
flection to transform the system to upper triangular
form and then solve the upper triangular system:

(a) 3x1 + 8x2 = 5

4x1 − x2 = −5

(b) x1 + 4x2 = 5

x1 + 2x2 = 1

(c) 4x1 − 4x2 + x3 = 2

x2 + 3x3 = 2

−3x1 + 3x2 − 2x3 = 1

8. Suppose that you wish to eliminate the last coordin-
ate of a vector x and leave the first n−2 coordinates
unchanged. How many operations are necessary if
this is to be done by a Givens transformation G? A
Householder transformation H? If A is an n×n mat-
rix, how many operations are required to compute
GA and HA?

9. Let Hk = I−2uuT be a Householder transformation
with

u = (0, . . . , 0, uk, uk+1, . . . , un)T

Let b ∈ R
n and let A be an n × n matrix. How

many additions and multiplications are necessary
to compute (a) Hkb?; (b) HkA?

10. Let QT = Gn−k · · · G2G1, where each Gi is a Givens
transformation. Let b ∈ R

n and let A be an n × n
matrix. How many additions and multiplications
are necessary to compute (a) QT b; (b) QTA?

11. Let R1 and R2 be two 2 × 2 rotation matrices and
let G1 and G2 be two 2 × 2 Givens transforma-
tions. What type of transformations are each of the
following?
(a) R1R2 (b) G1G2

(c) R1G1 (d) G1R1

12. Let x and y be distinct vectors in R
n with ‖x‖2 =

‖y‖2. Define

u = 1

‖x − y‖2
(x − y) and Q = I − 2uuT

Show that
(a) ‖x − y‖2

2 = 2(x − y)T x

(b) Qx = y
13. Let u be a unit vector in R

n and let

Q = I − 2uuT
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(a) Show that u is an eigenvector of Q. What is the
corresponding eigenvalue?

(b) Let z be a nonzero vector in R
n that is ortho-

gonal to u. Show that z is an eigenvector of Q
belonging to the eigenvalue λ = 1.

(c) Show that the eigenvalue λ = 1 must have
multiplicity n−1. What is the value of det(Q)?

14. Let R be an n × n plane rotation. What is the
value of det(R)? Show that R is not an elementary
orthogonal matrix.

15. Let A = Q1R1 = Q2R2, where Q1 and Q2 are ortho-
gonal and R1 and R2 are both upper triangular and
nonsingular.
(a) Show that QT

1 Q2 is diagonal.

(b) How do R1 and R2 compare? Explain.

16. Let A = xyT , where x ∈ R
m, y ∈ R

n, and both x
and y are nonzero vectors. Show that A has a singu-
lar value decomposition of the form H1�H2, where
H1 and H2 are Householder transformations and

σ1 = ‖x‖ ‖y‖, σ2 = σ3 = · · · = σn = 0

17. Let

R =
⎧⎪⎩ cos θ − sin θ

sin θ cos θ

⎫⎪⎭
Show that if θ is not an integer multiple of π , then
R can be factored into a product R = ULU, where

U =
⎧⎪⎪⎪⎩ 1 cos θ−1

sin θ

0 1

⎫⎪⎪⎪⎭ and L =
⎧⎪⎪⎪⎩ 1 0

sin θ 1

⎫⎪⎪⎪⎭
This type of factorization of a rotation matrix arises
in applications involving wavelets and filter bases.

7.6 The Eigenvalue Problem

In this section, we are concerned with numerical methods for computing the eigenval-
ues and eigenvectors of an n×n matrix A. The first method we study is called the power
method. The power method is an iterative method for finding the dominant eigenvalue
of a matrix and a corresponding eigenvector. By the dominant eigenvalue, we mean an
eigenvalue λ1 satisfying |λ1| > |λi| for i = 2, . . . , n. If the eigenvalues of A satisfy

|λ1| > |λ2| > · · · > |λn|
then the power method can be used to compute the eigenvalues one at a time. The
second method, the QR algorithm, is an iterative method involving orthogonal simil-
arity transformations. It has many advantages over the power method. It will converge
whether or not A has a dominant eigenvalue, and it calculates all the eigenvalues at the
same time.

In the examples in Chapter 6, the eigenvalues were determined by forming the
characteristic polynomial and finding its roots. However, this procedure is gener-
ally not recommended for numerical computations. The difficulty is that often a
small change in one or more of the coefficients of the characteristic polynomial
can result in a relatively large change in the computed zeros of the polynomial.
For example, consider the polynomial p(x) = x10. The lead coefficient is 1 and
the remaining coefficients are all 0. If the constant term is altered by adding
−10−10, we obtain the polynomial q(x) = x10 − 10−10. Although the coefficients
of p(x) and q(x) differ only by 10−10, the roots of q(x) all have absolute value
1

10 , whereas the roots of p(x) are all 0. Thus, even when the coefficients of the
characteristic polynomial have been determined accurately, the computed eigenval-
ues may involve significant error. For this reason, the methods presented in this
section do not involve the characteristic polynomial. To see that there is some ad-
vantage to working directly with the matrix A, we must determine the effect that
small changes in the entries of A have on the eigenvalues. This is done in the next
theorem.
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Theorem 7.6.1 Let A be an n×n matrix with n linearly independent eigenvectors, and let X be a matrix
that diagonalizes A. That is,

X−1AX = D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2
. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
If A′ = A + E and λ′ is an eigenvalue of A′, then

min
1≤i≤n

|λ′ − λi| ≤ cond2(X)‖E‖2 (1)

Proof We may assume that λ′ is unequal to any of the λi’s (otherwise there is nothing to
prove). Thus, if we set D1 = D − λ′I, then D1 is a nonsingular diagonal matrix. Since
λ′ is an eigenvalue of A′, it is also an eigenvalue of X−1A′X. Therefore, X−1A′X − λ′I
is singular, and hence D−1

1 (X−1A′X − λ′I) is also singular. But

D−1
1 (X−1A′X − λ′I) = D−1

1 X−1(A + E − λ′I)X
= D−1

1 X−1EX + I

Therefore, −1 is an eigenvalue of D−1
1 X−1EX. It follows that

| −1| ≤ ‖D−1
1 X−1EX‖2 ≤ ‖D−1

1 ‖2 cond2(X)‖E‖2

The 2-norm of D−1
1 is given by

‖D−1
1 ‖2 = max

1≤i≤n
|λ′ − λi|−1

The index i that maximizes |λ′ −λi|−1 is the same index that minimizes |λ′ −λi|. Thus,

min
1≤i≤n

|λ′ − λi| ≤ cond2(X)‖E‖2

If the matrix A is symmetric, we can choose an orthogonal diagonalizing matrix.
In general, if Q is any orthogonal matrix, then

cond2(Q) = ‖Q‖2‖Q−1‖2 = 1

Hence (1) simplifies to

min
1≤i≤n

|λ′ − λi| ≤ ‖E‖2

Thus, if A is symmetric and ‖E‖2 is small, the eigenvalues of A′ will be close to the
eigenvalues of A.

We are now ready to talk about some of the methods for calculating the eigenvalues
and eigenvectors of an n × n matrix A. The first method we will present computes an
eigenvector x of A by successively applying A to a given vector in R

n. To see the
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idea behind the method, let us assume that A has n linearly independent eigenvectors
x1, . . . , xn and that the corresponding eigenvalues satisfy

|λ1| > |λ2| ≥ · · · ≥ |λn| (2)

Given an arbitrary vector v0 in R
n, we can write

v0 = α1x1 + · · · + αnxn

Av0 = α1λ1x1 + α2λ2x2 + · · · + αnλnxn

A2v0 = α1λ
2
1x1 + α2λ

2
2x2 + · · · + αnλ

2
nxn

and, in general,

Akv0 = α1λ
k
1x1 + α2λ

k
2x2 + · · · + αnλ

k
nxn

If we define

vk = Akv0 k = 1, 2, . . .

then

1

λk
1

vk = α1x1 + α2

(
λ2

λ1

)k

x2 + · · · + αn

(
λn

λ1

)k

xn (3)

Since ∣∣∣∣ λi

λ1

∣∣∣∣ < 1 for i = 2, 3, . . . , n

it follows that

1

λk
1

vk → α1x1 as k → ∞

Thus, if α1 �= 0, then the sequence {(1/λk
1)vk} converges to an eigenvector α1x1 of A.

There are some obvious difficulties with the method as it has been presented so far.
The main difficulty is that we cannot compute (1/λk

1)vk, since λ1 is unknown. But even
if λ1 were known, there would be difficulties because of λk

1 approaching 0 or ±∞.
Fortunately, however, we do not have to scale the sequence {vk} using 1/λk

1. If the vk’s
are scaled so that we obtain unit vectors at each step, the sequence will converge to a
unit vector in the direction of x1. The eigenvalue λ1 can be computed at the same time.
This method of computing the eigenvalue of largest magnitude and the corresponding
eigenvector is called the power method.

The Power Method
In this method, two sequences {vk} and {uk} are defined recursively. To start, u0 can be
any nonzero vector in R

n. Once uk has been determined, the vectors vk+1 and uk+1 are
calculated as follows:

1. Set vk+1 = Auk.
2. Find the coordinate jk+1 of vk+1 that has the maximum absolute value.
3. Set uk+1 = (1/vjk+1 )vk+1.
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The sequence {uk} has the property that, for k ≥ 1, ‖uk‖∞ = ujk = 1. If
the eigenvalues of A satisfy (2) and u0 can be written as a linear combination of
eigenvectors α1x1 + · · · + αnxn with α1 �= 0, the sequence {uk} will converge to
an eigenvector y of λ1. If k is large, then uk will be a good approximation to y
and vk+1 = Auk will be a good approximation to λ1y. Since the jkth coordinate
of uk is 1, it follows that the jkth coordinate of vk+1 will be a good approximation
to λ1.

In view of (3), we can expect that the uk’s will converge to y at the same rate
at which (λ2/λ1)k is converging to 0. Thus, if |λ2| is nearly as large as |λ1|, the
convergence will be slow.

EXAMPLE 1 Let

A =
⎧⎪⎩ 2 1

1 2

⎫⎪⎭
It is an easy matter to determine the exact eigenvalues of A. These turn out to be λ1 = 3
and λ2 = 1, with corresponding eigenvectors x1 = (1, 1)T and x2 = (1, −1)T . To
illustrate how the vectors generated by the power method converge, we will apply the
method with u0 = (2, 1)T :

v1 = Au0 =
⎧⎪⎩ 5

4

⎫⎪⎭, u1 = 1

5
v1 =

⎧⎪⎩ 1.0
0.8

⎫⎪⎭

v2 = Au1 =
⎧⎪⎩ 2.8

2.6

⎫⎪⎭, u2 = 1

2.8
v2 =

⎧⎪⎪⎪⎪⎪⎪⎩
1

13

14

⎫⎪⎪⎪⎪⎪⎪⎭ ≈
⎧⎪⎩ 1.00

0.93

⎫⎪⎭

v3 = Au2 = 1

14

⎧⎪⎩ 41
40

⎫⎪⎭, u3 = 14

41
v3 =

⎧⎪⎪⎪⎪⎪⎪⎩
1

40

41

⎫⎪⎪⎪⎪⎪⎪⎭ ≈
⎧⎪⎩ 1.00

0.98

⎫⎪⎭

v4 = Au3 ≈
⎧⎪⎩ 2.98

2.95

⎫⎪⎭
If u3 = (1.00, 0.98)T is taken as an approximate eigenvector, then 2.98 is the approx-
imate value of λ1. Thus, with only a few iterations, the approximation for λ1 involves
an error of only 0.02.

The power method is particularly useful in applications where only a few of the
dominant eigenvalues and eigenvectors are needed. For example, in the analytic hier-
archy process (AHP) only the eigenvectors belonging to the dominant eigenvalues are
needed to determine the weight vectors for the decision process (see Section 6.8).

APPLICATION 1 Computation of AHP Weight Vectors

In Application 4 of Section 6.8 we considered an example where a search committee
at a college makes a hiring choice using AHP. In the example the committee decided
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that teaching was twice as important as research and 8 times as important as profes-
sional activities. They also decided that research should be 3 times as important as
professional activities. The comparison matrix for this problem is

C =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 2 8
1
2 1 3
1
8

1
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The eigenvector belonging to the dominant eigenvalue can be computed using the
power method. Since the dominant eigenvalue is close to 3 and the remaining eigen-
values are close to 0, the power method should converge rapidly. In this case we use
u0 = (1, 1, 1)T as our starting vector and normalize at each step so that the entries of
uk (k ≥ 1) all add up to 1. Using this process we end up with the following sequence
of vectors

u1 =
⎧⎪⎪⎪⎪⎪⎩

0.6486
0.2654
0.0860

⎫⎪⎪⎪⎪⎪⎭, u2 =
⎧⎪⎪⎪⎪⎪⎩

0.6286
0.2854
0.0860

⎫⎪⎪⎪⎪⎪⎭, u3 =
⎧⎪⎪⎪⎪⎪⎩

0.6281
0.2854
0.0864

⎫⎪⎪⎪⎪⎪⎭, u4 =
⎧⎪⎪⎪⎪⎪⎩

0.6282
0.2854
0.0864

⎫⎪⎪⎪⎪⎪⎭
where all entries are displayed to 4 digits of accuracy. For k ≥ 3 the computed vectors
uk will all agree to 3 digits of accuracy. Thus if we take w = u4 as our weight vector,
it should be accurate to 3 digits.

For an n × n comparison matrix C, the power method algorithm for computing
AHP weights can be summarized as follows:

1. Set u0 = e where e is a vector in R
n whose entries are all equal to 1.

2. For k = 1, 2, . . .

Set v = Auk

s =
n∑

i=1

vi

uk+1 = 1
s v

The iterations should be terminated when uk and uk+1 agree to the desired digits
of accuracy. We then use the computed eigenvector uk+1 as an AHP weight
vector.

The power method can be used to compute the eigenvalue λ1 of largest magnitude
and a corresponding eigenvector y1. What about finding additional eigenvalues and
eigenvectors? If we could reduce the problem of finding additional eigenvalues of
A to that of finding the eigenvalues of some (n − 1) × (n − 1) matrix A1, then the
power method could be applied to A1. This can actually be done by a process called
deflation.
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Deflation
The idea behind deflation is to find a nonsingular matrix H such that HAH−1 is a matrix
of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 × · · · ×
0
... A1

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ (4)

Since A and HAH−1 are similar, they have the same characteristic polynomials. Thus,
if HAH−1 is of the form (4), then

det(A − λI) = det(HAH−1 − λI) = (λ1 − λ) det(A1 − λI)

and it follows that the remaining n − 1 eigenvalues of A are the eigenvalues of A1. The
question remains; How do we find such a matrix H? Note that the form (4) requires
that the first column of HAH−1 be λ1e1. The first column of HAH−1 is HAH−1e1. Thus,

HAH−1e1 = λ1e1

or, equivalently,

A(H−1e1) = λ1(H−1e1)

So H−1e1 is in the eigenspace corresponding to λ1. Thus, for some eigenvector x1

belonging to λ1,

H−1e1 = x1 or Hx1 = e1

We must find a matrix H such that Hx1 = e1 for some eigenvector x1 belonging to
λ1. This can be done by means of a Householder transformation. If y1 is the computed
eigenvector belonging to λ1, set

x1 = 1

‖y1‖2
y1

Since ‖x1‖2 = 1, we can find a Householder transformation H such that

Hx1 = e1

Because H is a Householder transformation, it follows that H−1 = H, and hence HAH
is the desired similarity transformation.

Reduction to Hessenberg Form
The standard methods for finding eigenvalues are all iterative. The amount of work
required in each iteration is often prohibitively high unless, initially, A is in some spe-
cial form that is easier to work with. If this is not the case, the standard procedure
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is to reduce A to a simpler form by means of similarity transformations. Generally,
Householder matrices are used to transform A into a matrix of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × · · · × × ×
× × · · · × × ×
0 × · · · × × ×
0 0 · · · × × ×
...
0 0 · · · × × ×
0 0 · · · 0 × ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
A matrix in this form is said to be in upper Hessenberg form. Thus B is in upper
Hessenberg form if and only if bij = 0 whenever i ≥ j + 2.

A matrix A can be transformed into upper Hessenberg form in the following
manner: First, choose a Householder matrix H1 so that H1A is of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 a12 · · · a1n

× × · · · ×
0 × · · · ×
...
0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The matrix H1 will be of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 · · · 0
0 × · · · ×
...
0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and hence postmultiplication of H1A by H1 will leave the first column unchanged. If
A(1) = H1AH1, then A(1) is a matrix of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
11 a(1)

12 · · · a(1)
1n

a(1)
21 a(1)

22 · · · a(1)
2n

0 a(1)
32 · · · a(1)

3n
...
0 a(1)

n2 · · · a(1)
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since H1 is a Householder matrix, it follows that H−1

1 = H1, and hence A(1) is similar
to A. Next, a Householder matrix H2 is chosen so that

H2(a(1)
12 , a(1)

22 , . . . , a(1)
n2 )T = (a(1)

12 , a(1)
22 , ×, 0, . . . , 0)T
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The matrix H2 will be of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0 · · · 0
0 1 0 · · · 0
0 0 × · · · ×
...
0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎩ I2 O
O X

⎫⎪⎭

Multiplication of A(1) on the left by H2 will leave the first two rows and the first column
unchanged:

H2A(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1n

a(1)
21 a(1)

22 a(1)
23 · · · a(1)

2n
0 × × · · · ×
0 0 × · · · ×
...
0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Postmultiplication of H2A(1) by H2 will leave the first two columns unchanged. Thus,
A(2) = H2A(1)H2 is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × × · · · ×
× × × · · · ×
0 × × · · · ×
0 0 × · · · ×
...
0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
This process may be continued until we end up with an upper Hessenberg matrix

H = A(n−2) = Hn−2 · · · H2H1AH1H2 · · · Hn−2

which is similar to A.
If, in particular, A is symmetric, then, since

HT = HT
n−2 · · · HT

2 HT
1 ATHT

1 HT
2 · · · HT

n−2

= Hn−2 · · · H2H1AH1H2 · · · Hn−2

= H

it follows that H is tridiagonal. Thus, any n × n matrix A can be reduced to upper
Hessenberg form by similarity transformations. If A is symmetric, the reduction will
yield a symmetric tridiagonal matrix.

We close this section by outlining one of the best methods available for computing
the eigenvalues of a matrix. The method is called the QR algorithm and was developed
by John G. F. Francis in 1961.
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QR Algorithm
Given an n × n matrix A, factor it into a product Q1R1, where Q1 is orthogonal and R1

is upper triangular. Define

A1 = A = Q1R1

and

A2 = QT
1 AQ1 = R1Q1

Factor A2 into a product Q2R2, where Q2 is orthogonal and R2 is upper triangular.
Define

A3 = QT
2 A2Q2 = R2Q2

Note that A2 = QT
1 AQ1 and A3 = (Q1Q2)TA(Q1Q2) are both similar to A. We can

continue in this manner and obtain a sequence of similar matrices. In general, if

Ak = QkRk

then Ak+1 is defined to be RkQk. It can be shown that, under very general conditions,
the sequence of matrices defined in this way converges to a matrix T of the form

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
B1 × · · · ×

B2 ×
O

. . .
Bs

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where the Bi’s are either 1 × 1 or 2 × 2 diagonal blocks. The matrix T is the real Schur
form of A. (See Theorem 6.4.6.) Each 2 × 2 diagonal block of T will correspond to a
pair of complex conjugate eigenvalues of A. The eigenvalues of A will be eigenvalues
of the Bi’s. In the case where A is symmetric, each of the Ak’s will also be symmetric
and the sequence will converge to a diagonal matrix.

EXAMPLE 2 Let A1 be the matrix from Example 1. The QR factorization of A1 requires only a single
Givens transformation,

G1 = 1√
5

⎧⎪⎩ 2 1
1 −2

⎫⎪⎭
Thus

A2 = G1AG1 = 1

5

⎧⎪⎩ 2 1
1 −2

⎫⎪⎭⎧⎪⎩ 2 1
1 2

⎫⎪⎭⎧⎪⎩ 2 1
1 −2

⎫⎪⎭ =
⎧⎪⎩ 2.8 −0.6

−0.6 1.2

⎫⎪⎭
The QR factorization of A2 can be accomplished with the Givens transformation

G2 = 1√
8.2

⎧⎪⎩ 2.8 −0.6
−0.6 −2.8

⎫⎪⎭
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It follows that

A3 = G2A2G2 ≈
⎧⎪⎩ 2.98 0.22

0.22 1.02

⎫⎪⎭
The off-diagonal elements are getting closer to 0 after each iteration, and the diagonal
elements are approaching the eigenvalues λ1 = 3 and λ2 = 1.

Remarks

1. Because of the amount of work required at each iteration of the QR algorithm,
it is important that the starting matrix A be in either Hessenberg or sym-
metric tridiagonal form. If this is not the case, we should perform similarity
transformations on A to obtain a matrix A1 that is in one of these forms.

2. If Ak is in upper Hessenberg form, the QR factorization can be carried out with
n − 1 Givens transformations.

Gn,n−1 · · · G32G21Ak = Rk

Setting

QT
k = Gn,n−1 · · · G32G21

we have

Ak = QkRk

and

Ak+1 = QT
k AkQk

To compute Ak+1, it is not necessary to determine Qk explicitly. We need only
keep track of the n − 1 Givens transformations. When Rk is postmultiplied
by G21, the resulting matrix will have the (2, 1) entry filled in. The other
entries below the diagonals will all still be zero. Postmultiplying RkG21 by
G32 will have the effect of filling in the (3, 2) position. Postmultiplication of
RkG21G32 by G43 will fill in the (4, 3) position, and so on. Thus, the resulting
matrix Ak+1 = RkG21G32 · · · Gn,n−1 will be in upper Hessenberg form. If A1

is a symmetric tridiagonal matrix, then each succeeding Ai will be upper
Hessenberg and symmetric. Hence, A2, A3, . . . will all be tridiagonal.

3. As in the power method, convergence may be slow when some of the eigenval-
ues are close together. To speed up convergence, it is customary to introduce
origin shifts. At the kth step, a scalar αk is chosen and Ak − αkI (rather than
Ak) is decomposed into a product QkRk. The matrix Ak+1 is defined by

Ak+1 = RkQk + αkI

Note that

QT
k AkQk = QT

k (QkRk + αkI)Qk = RkQk + αkI = Ak+1

so Ak and Ak+1 are similar. With the proper choice of shifts αk, the convergence
can be greatly accelerated.

4. In our brief discussion, we have presented only an outline of the method. Many
of the details, such as how to choose the origin shifts, have been omitted. For
a more thorough discussion and a proof of convergence, see Wilkinson [36].
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SECTION 7.6 EXERCISES
1. Let

A =
⎧⎪⎩ 1 1

1 1

⎫⎪⎭
(a) Apply one iteration of the power method to A

with any nonzero starting vector.
(b) Apply one iteration of the QR algorithm

to A.
(c) Determine the exact eigenvalues of A by solv-

ing the characteristic equation, and determine
the eigenspace corresponding to the largest ei-
genvalue. Compare your answers with those to
parts (a) and (b).

2. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 0
1 3 1
0 1 2

⎫⎪⎪⎪⎪⎪⎭ and u0 =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭
(a) Apply the power method to A to compute v1,

u1, v2, u2, and v3. (Round off to two decimal
places.)

(b) Determine an approximation λ′
1 to the largest

eigenvalue of A from the coordinates of v3. De-
termine the exact value of λ1 and compare it
with λ′

1. What is the relative error?
3. Let

A =
⎧⎪⎩ 1 2

−1 −1

⎫⎪⎭ and u0 =
⎧⎪⎩ 1

1

⎫⎪⎭
(a) Compute u1, u2, u3, and u4, using the power

method.
(b) Explain why the power method will fail to

converge in this case.
4. Let

A = A1 =
⎧⎪⎩ 1 1

1 3

⎫⎪⎭
Compute A2 and A3, using the QR algorithm. Com-
pute the exact eigenvalues of A and compare them
with the diagonal elements of A3. To how many
decimal places do they agree?

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

5 2 2
−2 1 −2
−3 −4 2

⎫⎪⎪⎪⎪⎪⎭
(a) Verify that λ1 = 4 is an eigenvalue of A and

y1 = (2, −2, 1)T is an eigenvector belonging
to λ1.

(b) Find a Householder transformation H such that
HAH is of the form⎧⎪⎪⎪⎪⎪⎩

4 × ×
0 × ×
0 × ×

⎫⎪⎪⎪⎪⎪⎭
(c) Compute HAH and find the remaining eigen-

values of A.
6. Let A be an n × n matrix with distinct real eigen-

values λ1, λ2, . . . , λn. Let λ be a scalar that is not
an eigenvalue of A and let B = (A − λI)−1. Show
that

(a) the scalars μj = 1/(λj − λ), j = 1, . . . , n are
the eigenvalues of B.

(b) if xj is an eigenvector of B belonging to μj, then
xj is an eigenvector of A belonging to λj.

(c) if the power method is applied to B, then the
sequence of vectors will converge to an eigen-
vector of A belonging to the eigenvalue that is
closest to λ. [The convergence will be rapid if λ

is much closer to one λi than to any of the oth-
ers. This method of computing eigenvectors by
using powers of (A−λI)−1 is called the inverse
power method.]

7. Let x = (x1, . . . , xn)T be an eigenvector of A
belonging to λ. Show that if |xi| = ‖x‖∞, then

(a)
n∑

j=1

aijxj = λxi

(b) |λ− aii| ≤
n∑

j=1
j �=i

|aij| (Gerschgorin’s theorem)

8. Let λ be an eigenvalue of an n × n matrix A. Show
that for some index j,

(column version of
|λ − ajj| ≤

n∑
i=1
i �=j

|aij| Gerschgorin’s
(theorem)

9. Let A be a matrix with eigenvalues λ1, . . . , λn and
let λ be an eigenvalue of A + E. Let X be a matrix
that diagonalizes A and let C = X−1EX. Prove:
(a) For some i,

|λ − λi| ≤
n∑

j=1

|cij|
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[Hint: λ is an eigenvalue of X−1(A + E)X. Ap-
ply Gerschgorin’s theorem from Exercise 7.]

(b) min
1≤j≤n

|λ − λj| ≤ cond∞(X)‖E‖∞

10. Let Ak = QkRk, k = 1, 2, . . . be the sequence of
matrices derived from A = A1 by applying the QR
algorithm. For each positive integer k, define

Pk = Q1Q2 · · · Qk and Uk = Rk · · · R2R1

Show that

PkAk+1 = APk

for all k ≥ 1.

11. Let Pk and Uk be defined as in Exercise 10. Show
that

(a) Pk+1Uk+1 = PkAk+1Uk = APkUk

(b) PkUk = Ak, and hence

(Q1Q2 · · · Qk)(Rk · · · R2R1)

is the QR factorization of Ak.
12. Let Rk be a k × k upper triangular matrix and

suppose that

RkUk = UkDk

where Uk is an upper triangular matrix with 1’s on
the diagonal and Dk is a diagonal matrix. Let Rk+1

be an upper triangular matrix of the form⎧⎪⎪⎩ Rk bk

0T βk

⎫⎪⎪⎭
where βk is not an eigenvalue of Rk. Determine
(k+1)×(k+1) matrices Uk+1 and Dk+1 of the form

Uk+1 =
⎧⎪⎪⎩ Uk xk

0T 1

⎫⎪⎪⎭, Dk+1 =
⎧⎪⎪⎩ Dk 0

0T β

⎫⎪⎪⎭
such that

Rk+1Uk+1 = Uk+1Dk+1

13. Let R be an n × n upper triangular matrix whose
diagonal entries are all distinct. Let Rk denote the
leading principal submatrix of R of order k and set
U1 = (1).
(a) Use the result from Exercise 12 to derive an

algorithm for finding the eigenvectors of R.
The matrix U of eigenvectors should be upper
triangular with 1’s on the diagonal.

(b) Show that the algorithm requires approx-
imately n3

6 floating-point multiplications/
divisions.

7.7 Least Squares Problems

In this section, we study computational methods for finding least squares solutions of
overdetermined systems. Let A be an m × n matrix with m ≥ n and let b ∈ R

m. We
consider some methods for computing a vector x̂ that minimizes ‖b − Ax‖2

2.

Normal Equations
We saw in Chapter 5 that if x̂ satisfies the normal equations

ATAx = ATb

then x̂ is a solution to the least squares problem. If A is of full rank (rank n), then
ATA is nonsingular and hence the system will have a unique solution. Thus, if ATA
is invertible, one possible method for solving the least squares problem is to form the
normal equations and then solve them by Gaussian elimination. An algorithm for doing
this would have two main parts.

1. Compute B = ATA and c = ATb.
2. Solve Bx = c.

Note that forming the normal equations requires roughly mn2/2 multiplications.
Since ATA is nonsingular, the matrix B is positive definite. For positive definite
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matrices, there are reduction algorithms that require only half the usual number of
multiplications. Thus, the solution of Bx = c requires roughly n3/6 multiplications.
Most of the work then occurs in forming the normal equations, rather than solving
them. However, the main difficulty with this method is that, in forming the normal
equations, we may well end up transforming the problem into an ill-conditioned one.
Recall from Section 7.4 that if x′ is the computed solution of Bx = c and x is the exact
solution, then the inequality

1

cond(B)

‖r‖
‖c‖ ≤ ‖x − x′‖

‖x‖ ≤ cond(B)
‖r‖
‖c‖

shows how the relative error compares to the relative residual. If A has singular values
σ1 ≥ σ2 ≥ · · · ≥ σn > 0, then cond2(A) = σ1/σn. The singular values of B are
σ 2

1 , σ 2
2 , . . . , σ 2

n . Thus,

cond2(B) = σ 2
1

σ 2
n

= [cond2(A)]2

If, for example, cond2(A) = 104, the relative error in the computed solution of the
normal equations could be 108 times as large as the relative residual. By forming the
normal equations one could possibly end up doubling the number of digits of accur-
acy that are lost in computing a least squares solution to the system. For this reason
we should be very careful about using the normal equations to compute least squares
solutions.

Modified Gram–Schmidt Method for Solving Least Squares
Problems
If A is an m × n matrix (m > n) with rank n, we can use the Gram–Schmidt process to
obtain a factorization, A = QR, where Q is an m × n matrix with orthonormal columns
and R is an n×n upper triangular whose diagonal entries are all positive. In theory one
could then find a least squares solution to a system Ax = b in two steps:

(i) Set c = QTb.
(ii) Use back substitution to solve the upper triangular system Rx = c for x.

Unfortunately if the classical Gram–Schmidt method is used, then because of
cancellation of significant digits, the computed column vectors of Q may fail to be
orthogonal and as a result the computed solution x in step (ii) may not be very ac-
curate. Indeed, if the classical Gram–Schmidt process is used, it is possible to have
catastrophic cancellation and to end up with a computed solution x that doesn’t have
any digits of accuracy.

Alternatively, one can use the modified Gram–Schmidt algorithm to compute the
QR factorization of A. There will still be some loss of orthogonality in the computed
column vectors of Q; however, the loss will generally be much less in this case. Even
though there is some loss of orthogonality, it has been shown that if one uses the
modified Gram–Schmidt QR factorization and computes the vector c in step (i) by suc-
cessively modifying the vector b, then the algorithm will be numerically stable. Thus
rather than computing ck = qk

Tb, we set ck = qT
k bk, where bk is a modified version of

b. We will not prove numerical stability as the analysis turns out to be quite involved.
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The modified Gram–Schmidt method for computing the least squares solution to an
overdetermined system Ax = b is summarized in the following algorithm.

Algorithm 7.7.1 Modified Gram–Schmidt Process for Least Squares

Given A is a m × n matrix with rank n and b is a vector in R
m.

Use Algorithm 5.6.1 to compute the factors Q and R of the modified Gram–Schmidt
QR factorization of A.

Set b1 = b
For k = 1, 2, . . . , n set

ck = qT
k bk

bk+1 = bk − ckqk

End for loop
Use back substitution to solve Rx = c for x.

The Householder QR Factorization
For the Gram–Schmidt solution of least squares problems we make use of a QR fac-
torization A = QR where Q is an m × n matrix with orthonormal columns and R is
an n × n upper triangular matrix. Another common method for solving least squares
problems uses a different type of QR factorization. The factorization is obtained by
applying a sequence of Householder transformations to A. In this case, Q will be an
m × m orthogonal matrix and R will be an m × n matrix whose subdiagonal entries are
all 0.

Given an m×n matrix A of full rank, we can apply n Householder transformations
to zero out all the entries below the diagonal. Thus,

HnHn−1 · · · H1A = R

where R is of the form

⎧⎪⎩ R1

O

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × × · · · ×
× × · · · ×

× · · · ×
. . .

...
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
with nonzero diagonal entries. Let

QT = Hn · · · H1 =
⎧⎪⎪⎩ QT

1

QT
2

⎫⎪⎪⎭
where QT

1 is an n × m matrix consisting of the first n rows of QT . Since QTA = R it
follows that

A = QR = (Q1 Q2)
⎧⎪⎩ R1

O

⎫⎪⎭ = Q1R1
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Let

c = QTb =
⎧⎪⎪⎩ QT

1 b
QT

2 b

⎫⎪⎪⎭ =
⎧⎪⎩ c1

c2

⎫⎪⎭
The normal equations can be written in the form

RT
1 QT

1 Q1R1x = RT
1 QT

1 b

Since QT
1 Q1 = I and RT

1 is nonsingular, this equation simplifies to

R1x = c1

This system can be solved by back substitution. The solution x = R−1
1 c1 will be the

unique solution to the least squares problem. To compute the residual, note that

QTr =
⎧⎪⎩ c1

c2

⎫⎪⎭ −
⎧⎪⎩ R1

O

⎫⎪⎭ x =
⎧⎪⎩ 0

c2

⎫⎪⎭
so that

r = Q
⎧⎪⎩ 0

c2

⎫⎪⎭ and ‖r‖2 = ‖c2‖2

In summation, if A is an m × n matrix with full rank, the least squares problem can
be solved as follows:

1. Use Householder transformations to compute

R = Hn · · · H2H1A and c = Hn · · · H2H1b

where R is an m × n upper triangular matrix.
2. Partition R and c into block form:

R =
⎧⎪⎩ R1

O

⎫⎪⎭ c =
⎧⎪⎩ c1

c2

⎫⎪⎭
where R1 and c1 each have n rows.

3. Use back substitution to solve R1x = c1.

The Pseudoinverse
Now consider the case where the matrix A has rank r < n. The singular value decom-
position provides the key to solving the least squares problem in this case. It can be
used to construct a generalized inverse of A. In the case where A is a nonsingular n × n
matrix with singular value decomposition U�VT , the inverse is given by

A−1 = V�−1UT
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More generally, if A = U�VT is an m × n matrix of rank r, then the matrix � will be
an m × n matrix of the form

� =
⎧⎪⎩ �1 O

O O

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2
. . .

σr

O

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and we can define

A+ = V�+UT (1)

where �+ is the n × m matrix

�+ =
⎧⎪⎪⎩ �−1

1 O
O O

⎫⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ1
. . .

1

σr

O

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Equation (1) gives a natural generalization of the inverse of a matrix. The matrix A+
defined by (1) is called the pseudoinverse of A.

It is also possible to define A+ by its algebraic properties, given in the following
four conditions.

The Penrose Conditions

1. AXA = A
2. XAX = X
3. (AX)T = AX
4. (XA)T = XA

We claim that if A is an m×n matrix, then there is a unique n×m matrix X that satisfies
these conditions. Indeed, if we choose X = A+ = V�+UT , then it is easily verified
that X satisfies all four conditions. We leave this as an exercise for the reader. To show
uniqueness, suppose that Y also satisfies the Penrose conditions. Then, by successively
applying these conditions, we can argue as follows:

X = XAX (2) Y = YAY (2)
= ATXTX (4) = YYTAT (3)
= (AYA)TXTX (1) = YYT (AXA)T (1)
= (ATYT )(ATXT )X = Y(YTAT )(XTAT )
= YAXAX (4) = YAYAX (3)
= YAX (1) = YAX (1)
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Therefore, X = Y . Thus, A+ is the unique matrix satisfying the four Penrose conditions.
These conditions are often used to define the pseudoinverse, and A+ is often referred
to as the Moore–Penrose pseudoinverse.

To see how the pseudoinverse can be used in solving least squares problems, let us
first consider the case where A is an m × n matrix of rank n. Then � is of the form

� =
⎧⎪⎩ �1

O

⎫⎪⎭
where �1 is a nonsingular n × n diagonal matrix. The matrix ATA is nonsingular and

(ATA)−1 = V(�T�)−1VT

The solution of the normal equations is given by

x = (ATA)−1ATb
= V(�T�)−1VTV�TUTb
= V(�T�)−1�TUTb
= V�+UTb
= A+b

Thus, if A has full rank, A+b is the solution to the least squares problem. Now, what
about the case where A has rank r < n? In this case there are infinitely many solutions
to the least squares problem. The next theorem shows that not only is A+b a solution,
but it is also the minimal solution with respect to the 2-norm.

Theorem 7.7.1 If A is an m × n matrix of rank r < n with singular value decomposition U�VT, then
the vector

x = A+b = V�+UTb

minimizes ‖b−Ax‖2
2. Moreover, if z is any other vector that minimizes ‖b−Ax‖2

2, then
‖z‖2 > ‖x‖2.

Proof Let x be a vector in R
n and define

c = UTb =
⎧⎪⎩ c1

c2

⎫⎪⎭ and y = VTx =
⎧⎪⎩ y1

y2

⎫⎪⎭
where c1 and y1 are vectors in R

r. Since UT is orthogonal, it follows that

‖b − Ax‖2
2 = ‖UTb − �(VTx)‖2

2

= ‖c − �y‖2
2

=
∣∣∣∣∣
∣∣∣∣∣
⎧⎪⎪⎪⎩ c1

c2

⎫⎪⎪⎪⎭ −
⎧⎪⎪⎪⎩ �1 O

O O

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ y1

y2

⎫⎪⎪⎪⎭
∣∣∣∣∣
∣∣∣∣∣
2

2

=
∣∣∣∣∣
∣∣∣∣∣
⎧⎪⎪⎪⎩ c1 − �1y1

c2

⎫⎪⎪⎪⎭
∣∣∣∣∣
∣∣∣∣∣
2

2
= ‖c1 − �1y1‖2

2 + ‖c2‖2
2
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Since c2 is independent of x, it follows that ‖b − Ax‖2 will be minimal if and only if

‖c1 − �1y1‖ = 0

Thus, x is a solution to the least squares problem if and only if x = Vy, where y is a
vector of the form ⎧⎪⎪⎩ �−1

1 c1

y2

⎫⎪⎪⎭
In particular,

x = V

⎧⎪⎪⎪⎩ �−1
1 c1

0

⎫⎪⎪⎪⎭
= V

⎧⎪⎪⎪⎩ �−1
1 O
O O

⎫⎪⎪⎪⎭
⎧⎪⎪⎪⎩ c1

c2

⎫⎪⎪⎪⎭
= V�+UTb
= A+b

is a solution. If z is any other solution, z must be of the form

z = Vy = V

⎧⎪⎪⎩ �−1
1 c1

y2

⎫⎪⎪⎭
where y2 �= 0. It then follows that

‖z‖2 = ‖y‖2 = ‖�−1
1 c1‖2 + ‖y2‖2 > ‖�−1

1 c1‖2 = ‖x‖2

If the singular value decomposition U�VT of A is known, it is a simple mat-
ter to compute the solution to the least squares problem. If U = (u1, . . . , um) and
V = (v1, . . . , vn), then, defining y = �+UTb, we have

yi = 1

σi
uT

i b i = 1, . . . , r (r = rank of A)

yi = 0 i = r + 1, . . . , n

and hence

A+b = Vy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
v11y1 + v12y2 + · · · + v1ryr

v21y1 + v22y2 + · · · + v2ryr
...

vn1y1 + vn2y2 + · · · + vnryr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= y1v1 + y2v2 + · · · + yrvr

Thus, the solution x = A+b can be computed in two steps:

1. Set yi = (1/σi)uT
i b for i = 1, . . . , r.

2. Let x = y1v1 + · · · + yrvr.
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We conclude this section by outlining a method for computing the singular values
of a matrix. We saw in the last section that the eigenvalues of a symmetric matrix are
relatively insensitive to perturbations in the matrix. The same is true for the singular
values of an m × n matrix. If two matrices A and B are close, their singular values must
also be close. More precisely, if A has the singular values σ1 ≥ σ2 ≥ · · · ≥ σn and B
has the singular values ω1 ≥ ω2 ≥ · · · ≥ ωn, then

|σi − ωi| ≤ ‖A − B‖2 i = 1, . . . , n

(see Datta [21]). Thus, in computing the singular values of a matrix A, we need not
worry that small changes in the entries of A will cause drastic changes in the computed
singular values.

The problem of computing singular values can be simplified using orthogonal
transformations. If A has singular value decomposition U�VT and B = HAPT , where
H is an m × m orthogonal matrix and P is an n × n orthogonal matrix, then B has
singular value decomposition (HU)�(PV)T . The matrices A and B will have the same
singular values, and if B has a much simpler structure than A, it should be easier to
compute its singular values. Indeed, Gene H. Golub and William Kahan have shown
that A can be reduced to upper bidiagonal form and the reduction can be carried out
using Householder transformations.

Bidiagonalization
Let H1 be a Householder transformation that zeros out all the elements below the di-
agonal in the first column of A. Let P1 be a Householder transformation such that
postmultiplication of H1A by P1 zeros out the last n − 2 entries of the first row of H1A
while leaving the first column unchanged; that is,

H1AP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × 0 · · · 0
0 × × · · · ×
...

0 × × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The next step is to apply a Householder transformation H2 that zeros out the elements
below the diagonal in the second column of H1AP1 while leaving the first row and
column unchanged:

H2H1AP1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × 0 · · · 0
0 × × · · · ×
0 0 × · · · ×
...

0 0 × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
H2H1AP1 is then postmultiplied by a Householder transformation P2 that zeros out the
last n − 3 elements in the second row while leaving the first two columns and the first
row unchanged:
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H2H1AP1P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × 0 0 · · · 0
0 × × 0 · · · 0
0 0 × × · · · ×

...

0 0 × × · · · ×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We continue in this manner until we obtain a matrix

B = Hn · · · H1AP1 · · · Pn−2

of the form ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× ×

. . .
. . .
× ×

×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since H = Hn · · · H1 and PT = P1 · · · Pn−2 are orthogonal, it follows that B has the
same singular values as A.

The problem has now been simplified to that of finding the singular values of an
upper bidiagonal matrix B. We could at this point form the symmetric tridiagonal mat-
rix BTB and then compute its eigenvalues using the QR algorithm. The problem with
this approach is that, in forming BTB, we would still be squaring the condition number,
and consequently our computed solution would be much less reliable. The method we
outline produces a sequence of bidiagonal matrices B1, B2, . . . that converges to a di-
agonal matrix �. The method involves applying a sequence of Givens transformations
to B alternately on the right- and left-hand sides.

The Golub–Reinsch Algorithm
Let

Rk =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

Ik−1 O O

O G(θk) O

O O In−k−1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
and

Lk =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

Ik−1 O O

O G(ϕk) O

O O In−k−1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
The 2 × 2 matrices G(θk) and G(ϕk) are given by

G(θk) =
⎧⎪⎩ cos θk sin θk

sin θk − cos θk

⎫⎪⎭ and G(ϕk) =
⎧⎪⎩ cos ϕk sin ϕk

sin ϕk − cos ϕk

⎫⎪⎭
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for some angles θk and ϕk. The matrix B = B1 is first multiplied on the right by R1.
This will have the effect of filling in the (2, 1) position.

B1R1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× × ×

×
. . . ×

×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Next, L1 is chosen so as to zero out the element filled in by R1. It will also have the
effect of filling in the (1, 3) position. Thus

L1B1R1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× × ×
× ×

. . .
×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
R2 is chosen so as to zero out the (1, 3) entry. It will fill in the (3, 2) entry of L1B1R1.
Next, L2 zeros out the (3, 2) entry and fills in the (2, 4) entry, and so on.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× ×
× × ×

. . .
×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

× ×
× × ×

× ×
. . .

×
×

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
L1B1R1R2 L2L1B1R1R2

We continue this process until we end up with a new bidiagonal matrix,

B2 = Ln−1 · · · L1B1R1 · · · Rn−1

Why should we be any better off with B2 than B1? It can be shown that if the first
transformation R1 is chosen correctly, BT

2B2 will be the matrix obtained from BT
1B1

by applying one iteration of the QR algorithm with shift. The same process can now
be applied to B2 to obtain a new bidiagonal matrix B3 such that BT

3B3 would be the
matrix obtained by applying two iterations of the QR algorithm with shifts to BT

1B1.
Even though the BT

i Bi’s are never computed, we know that, with the proper choice of
shifts, these matrices will converge rapidly to a diagonal matrix. The Bi’s then must
also converge to a diagonal matrix �. Since each of the Bi’s has the same singular
values as B, the diagonal elements of � will be the singular values of B. The matrices
U and VT can be determined by keeping track of all the orthogonal transformations.

Only a brief sketch of the algorithm has been given. To include more would be
beyond the scope of this book. For complete details of the algorithm see the paper by
Golub and Reinsch in [37], p. 135.
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SECTION 7.7 EXERCISES
1. Find the solution x to the least squares problem,

given that A = QR in each of the following:

(a) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

1√
2

1√
2

− 1√
2

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =
⎧⎪⎩ 1 1

0 1

⎫⎪⎭, b =
⎧⎪⎪⎪⎪⎪⎩

1
1
1

⎫⎪⎪⎪⎪⎪⎭

(b) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0
1√
2

− 1√
2

0
1√
2

1√
2

0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =
⎧⎪⎪⎪⎪⎪⎩

1 1 0
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
3
1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(c) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 0

0
1√
2

− 1√
2

0
1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =
⎧⎪⎪⎪⎪⎪⎩

1 1
0 1
0 0

⎫⎪⎪⎪⎪⎪⎭, b =
⎧⎪⎪⎪⎪⎪⎪⎩

1√
2

−√
2

⎫⎪⎪⎪⎪⎪⎪⎭

(d) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

1√
2

0
1

2
1

2
0

1√
2

−1

2
1

2
0 − 1√

2
−1

2
1

2
− 1√

2
0

1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 0
0 1 1
0 0 1
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2

−2
0
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

2. Let

A =
⎧⎪⎩ D

E

⎫⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1
d2

. . .
dn

e1

e2
. . .

en

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
b1

b2

...
b2n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Use the normal equations to find the solution x to
the least squares problem.

3. Let

A =
⎧⎪⎪⎪⎪⎪⎪⎩

1 0
1 3
1 3
1 0

⎫⎪⎪⎪⎪⎪⎪⎭ , b =
⎧⎪⎪⎪⎪⎪⎪⎩

−4
2
2
2

⎫⎪⎪⎪⎪⎪⎪⎭
(a) Use Householder transformations to reduce A

to the form ⎧⎪⎩ R1

O

⎫⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

× ×
0 ×
0 0
0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭
and apply the same transformations to b.

(b) Use the results from part (a) to find the least
squares solution of Ax = b.

4. Given

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 5
1 3
1 11
1 5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1

−1
3
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Use Algorithm 5.6.1 to compute the factors

Q and R of the modified Gram–Schmidt QR
factorization of A.

(b) Use Algorithm 7.7.1 to compute the least
squares solution to the linear system Ax = b.

5. Let

A =
⎧⎪⎪⎪⎪⎩ 1 1

ρ 0
0 ρ

⎫⎪⎪⎪⎪⎭
where ρ is a small scalar.
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(a) Determine the singular values of A exactly.

(b) Suppose that ρ is small enough so that
ρ2 is less than the machine epsilon. De-
termine the eigenvalues of the calculated
ATA and compare the square roots of
these eigenvalues with your answers in
part (a).

6. Show that the pseudoinverse A+ satisfies the four
Penrose conditions.

7. Let B be any matrix that satisfies Penrose con-
ditions 1 and 3, and let x = Bb. Show
that x is a solution to the normal equations
ATAx = AT b.

8. If x ∈ R
m, we can think of x as an m × 1 mat-

rix. If x �= 0 we can then define a 1 × m matrix
X by

X = 1

‖x‖2
2

xT

Show that X and x satisfy the four Penrose condi-
tions and, consequently, that

x+ = X = 1

‖x‖2
2

xT

9. Show that if A is a m × n matrix of rank n, then
A+ = (ATA)−1AT .

10. Let A be an m×n matrix and let b ∈ R
m. Show that

b ∈ R(A) if and only if

b = AA+b

11. Let A be an m × n matrix with singular value
decomposition U�VT , and suppose that A has
rank r, where r < n. Let b ∈ R

m. Show that
a vector x ∈ R

n minimizes ‖b − Ax‖2 if and
only if

x = A+b + cr+1vr+1 + · · · + cnvn

where cr+1, . . . , cn are scalars.

12. Let

A =
⎧⎪⎪⎪⎪⎪⎩

1 1
1 1
0 0

⎫⎪⎪⎪⎪⎪⎭
Determine A+ and verify that A and A+ satisfy
the four Penrose conditions (see Example 1 of
Section 6.5).

13. Let

A =
⎧⎪⎩ 1 2

−1 −2

⎫⎪⎭ and b =
⎧⎪⎩ 6

−4

⎫⎪⎭
(a) Compute the singular value decomposition of

A and use it to determine A+.

(b) Use A+ to find a least squares solution to the
system Ax = b.

(c) Find all solutions to the least squares problem
Ax = b.

14. Show each of the following:

(a) (A+)+ = A (b) (AA+)2 = AA+

(c) (A+A)2 = A+A

15. Let A1 = U�1VT and A2 = U�2VT , where

�1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1
. . .

σr−1

0
. . .

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

�2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1
. . .

σr−1

σr

0
. . .

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and σr = ρ > 0. What are the values of ‖A1 −A2‖F

and ‖A+
1 − A+

2 ‖F? What happens to these values as
we let ρ → 0?

16. Let A = XYT , where X is an m × r matrix, YT

is an r × n matrix, and XT X and YTY are both
nonsingular. Show that the matrix

B = Y(YTY)−1(XT X)−1XT

satisfies the Penrose conditions and hence must
equal A+. Thus A+ can be determined from any
factorization of this form.
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Chapter Seven Exercises

MATLAB EXERCISES

Sensitivity of Linear Systems
In these exercises, we are concerned with the numerical
solution of linear systems of equations. The entries of
the coefficient matrix A and the right-hand side b may
often contain small errors due to limitations in the ac-
curacy of the data. Even if there are no errors in either A
or b, rounding errors will occur when their entries are
translated into the finite-precision number system of the
computer. Thus, we generally expect that the coefficient
matrix and the right-hand side will involve small errors.
The system that the computer solves is then a slightly
perturbed version of the original system. If the original
system is very sensitive, its solution could differ greatly
from the solution of the perturbed system.

Generally, a problem is well conditioned if the per-
turbations in the solutions are on the same order as the
perturbations in the data. A problem is ill conditioned if
the changes in the solutions are much greater than the
changes in the data. How well or ill conditioned a prob-
lem is depends on how the size of the perturbations in
the solution compares with the size of the perturbations
in the data. For linear systems, this, in turn, depends on
how close the coefficient matrix is to a matrix of lower
rank. The conditioning of a system can be measured us-
ing the condition number of the matrix, which can be
computed with the MATLAB function cond. MATLAB
computations are carried out to 16 significant digits of
accuracy. You will lose digits of accuracy depending on
how sensitive the system is. If the condition number is
expressed using exponential notation, then the greater
the exponent, the more digits of accuracy you may lose.

1. Set
A = round(10 ∗ rand(6))

s = ones(6, 1)

b = A ∗ s

The solution of the linear system Ax = b is clearly
s. Solve the system using the MATLAB \ operation.
Compute the error x − s. (Since s consists entirely
of 1’s, this is the same as x − 1.) Now perturb the
system slightly. Set

t = 1.0e−12,

E = rand(6) − 0.5,

r = rand(6, 1) − 0.5

and set

M = A + t ∗ E, c = b + t ∗ r

Solve the perturbed system Mz = c for z. Compare
the solution z to the solution of the original system
by computing z − 1. How does the size of the per-
turbation in the solution compare with the size of
the perturbations in A and b? Repeat the perturba-
tion analysis with t = 1.0e−04 and t = 1.0e−02. Is
the system Ax = b well conditioned? Explain. Use
MATLAB to compute the condition number of A.

2. If a vector y ∈ R
n is used to construct an n × n

Vandermonde matrix V , then V will be nonsingular,
provided that y1, y2, . . . , yn are all distinct.
(a) Construct a Vandermonde system by setting

y = rand(6, 1) and V = vander(y)

Generate vectors b and s in R
6 by setting

b = sum(V ′)′ and s = ones(6, 1)

If V and b had been computed in exact arith-
metic, then the exact solution of Vx = b
would be s. Why? Explain. Solve Vx = b
using the \ operation. Compare the computed
solution x with the exact solution s using the
MATLAB format long. How many signi-
ficant digits were lost? Determine the condition
number of V .

(b) The Vandermonde matrices become increas-
ingly ill conditioned as the dimension n in-
creases. Even for small values of n we can make
the matrix ill conditioned by taking two of the
points close together. Set

x(2) = x(1) + 1.0e−12

and use the new value of x(2) to recompute V .
For the new matrix V , set b = sum(V ′)′ and
solve the system Vz = b. How many digits
of accuracy were lost? Compute the condition
number of V .

3. Construct a matrix C as follows: Set

A = round(100 ∗ rand(4))

L = tril(A, −1) + eye(4)

C = L ∗ L′

(a) The matrix C is a nice matrix in that it is a
symmetric matrix with integer entries and its de-
terminant is equal to 1. Use MATLAB to verify
these claims. Why do we know ahead of time
that the determinant will equal 1? In theory,
the entries of the exact inverse should all be
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integers. Why? Explain. Does this happen com-
putationally? Compute D = inv(C) and check
its entries using format long. Compute C ∗
D and compare it with eye(4).

(b) Set

r = ones(4, 1) and b = sum(C′)′

In exact arithmetic the solution to the system
Cx = b should be r. Compute the solu-
tion by using \ and display the answer in
format long. How many digits of accuracy
were lost? We can perturb the system slightly by
taking e to be a small scalar, such as 1.0e−12,
and then replacing the right-hand side of the
system by

b1 = b + e ∗ [1, −1, 1, −1]′

Solve the perturbed system first for the case
e = 1.0e−12 and then for the case e = 10e−06.
In each case, compare your solution x with the
original solution by displaying x − 1. Compute
cond(C). Is C ill conditioned? Explain.

4. The n × n Hilbert matrix H is defined by

h(i, j) = 1/(i + j − 1) i, j = 1, 2, . . . , n

It can be generated with the MATLAB function
hilb. The Hilbert matrix is notoriously ill con-
ditioned. It is often used in examples to illustrate
the dangers of matrix computations. The MATLAB
function invhilb gives the exact inverse of the
Hilbert matrix. For the cases n = 6, 8, 10, 12, con-
struct H and b so that Hx = b is a Hilbert
system whose solution in exact arithmetic should be
ones(n, 1). In each case, determine the solution x of
the system by using invhilb and examine x with
format long. How many digits of accuracy were
lost in each case? Compute the condition number of
each Hilbert matrix. How does the condition number
change as n increases?

Sensitivity of Eigenvalues
If A is an n × n matrix and X is a matrix that diag-
onalizes A, then the sensitivity of the eigenvalues of A
depends on the condition number of X. If A is defective,
the condition number for the eigenvalue problem will
be infinite. For more on the sensitivity of eigenvalues,
see Wilkinson [36], Chapter 2.

5. Use MATLAB to compute the eigenvalues and ei-
genvectors of a random 6×6 matrix B. Compute the
condition number of the matrix of eigenvectors. Is

the eigenvalue problem well conditioned? Perturb B
slightly by setting

B1 = B + 1.0e − 04 ∗ rand(6)

Compute the eigenvalues and compare them with the
eigenvalues of B.

6. Set

A = round(10 ∗ rand(5)); A = A + A′

[X, D] = eig(A)

Compute cond(X) and XT X. What type of matrix
is X? Is the eigenvalue problem well conditioned?
Explain. Perturb A by setting

A1 = A + 1.0e−06 ∗ rand(5)

Calculate the eigenvalues of A1 and compare them
with the eigenvalues of A.

7. Set A = magic(4) and t = trace(A). The scalar
t should be an eigenvalue of A and the remaining ei-
genvalues should add up to zero. Why? Explain. Use
MATLAB to verify that A − tI is singular. Compute
the eigenvalues of A and a matrix X of eigenvectors.
Determine the condition numbers of A and X. Is
the eigenvalue problem well conditioned? Explain.
Perturb A by setting

A1 = A + 1.0e−04 ∗ rand(4)

How do the eigenvalues of A1 compare to those
of A?

8. Set

A = diag(10 : −1 : 1) + 10 ∗ diag(ones(1, 9), 1)

[X, D] = eig(A)

Compute the condition number of X. Is the eigen-
value problem well conditioned? Ill conditioned?
Explain. Perturb A by setting

A1 = A; A1(10, 1) = 0.1

Compute the eigenvalues of A1 and compare them to
the eigenvalues of A.

9. Construct a matrix A as follows:

A = diag(11 : −1 : 1, −1);
for j = 0 : 11

A = A + diag(12 − j : −1 : 1, j);
end

(a) Compute the eigenvalues of A and the value
of the determinant of A. Use the MATLAB
function prod to compute the product of the
eigenvalues. How does the value of the product
compare with the determinant?
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(b) Compute the eigenvectors of A and the con-
dition number for the eigenvalue problem. Is
the problem well-conditioned? Ill-conditioned?
Explain.

(c) Set

A1 = A + 1.0e−04 ∗ rand(size(A))

Compute the eigenvalues of A1. Compare them
to the eigenvalues of A by computing

sort(eig(A1)) − sort(eig(A))

and displaying the result in format long.

Householder Transformations
A Householder matrix is an n × n orthogonal matrix of
the form I− 1

b vvT . For any given nonzero vector x ∈ R
n,

it is possible to choose b and v so that Hx will be a
multiple of e1.

10. (a) In MATLAB the simplest way to compute a
Householder matrix that zeroes out entries of a
given vector x, is to compute the QR factoriza-
tion of x. Thus, if we are given a vector x ∈ R

n,
then the MATLAB command

[H, R] = qr(x)

will compute the desired Householder matrix
H. Compute a Householder matrix H that zer-
oes out the last three entries of e = ones(4, 1).
Set

C = [e,rand(4, 3)]

Compute H ∗ e and H ∗ C.

(b) We can also compute the vector v and the
scalar b that determine the Householder trans-
formation that zeroes out entries of a given
vector. To do this for a given vector x, we
would set

a = ((x(1) <= 0) − (x(1) > 0)) ∗ norm(x);

v = x; v(1) = v(1) − a

b = a ∗ (a − x(1))

Construct v and b in this way for the vector e
from part (a). If K = I − 1

b vvT , then

Ke = e −
(

vT e
b

)
v

Compute both of these quantities with MAT-
LAB and verify that they are equal. How does
Ke compare to He from part (a)? Compute also
K ∗ C and C − v ∗ ((v′ ∗ C)/b) and verify that
the two are equal.

11. Set

x1 = (1 : 5)′; x2 = [1, 3, 4, 5, 9]′; x = [x1; x2]

Construct a Householder matrix of the form

H =
⎧⎪⎩ I O

O K

⎫⎪⎭
where K is a 5 × 5 Householder matrix that zeroes
out the last four entries of x2. Compute the product
Hx.

Rotations and Reflections
12. To plot y = sin(x), we must define vectors of x and

y values and then use the plot command. This can
be done as follows:

x = 0 : 0.1 : 6.3; y = sin(x);
plot(x, y)

(a) Let us define a rotation matrix and use it to
rotate the graph of y = sin(x). Set

t = pi /4; c = cos(t); s = sin(t);

R = [c, −s; s, c]

To find the rotated coordinates, set

Z = R ∗ [x; y]; x1 = Z(1, :); y1 = Z(2, :);

The vectors x1 and y1 contain the coordinates
for the rotated curve. Set

w = [0, 5]; axissquare

and plot x1 and y1, using the MATLAB com-
mand

plot(x1, y1, w, w)

By what angles has the graph been rotated and
in what direction?

(b) Keep all your variables from part (a) and set

G = [c, s; s, −c]

The matrix G represents a Givens reflection. To
determine the reflected coordinates, set

Z = G ∗ [x; y];
x2 = Z(1, :); y2 = Z(2, :);

Plot the reflected curve, using the MATLAB
command

plot(x2, y2, w, w)

The curve y = sin(x) has been reflected about a
line through the origin making an angle of π/8
with the x-axis. To see this, set

w1 = [
0, 6.3 ∗ cos(t/2)

]
;

z1 = [
0, 6.3 ∗ sin(t/2)

]
;
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and plot the new axis and both curves with the
MATLAB command

plot(x, y, x2, y2, w1, z1)

(c) Use the rotation matrix R from part (a) to ro-
tate the curve y = − sin(x). Plot the rotated
curve. How does the graph compare to that of
the curve from part (b)? Explain.

Singular Value Decomposition

13. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
4 5 2
4 5 2
0 3 6
0 3 6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Enter the matrix A in MATLAB and compute its
singular values by setting s = svd(A).
(a) How can the entries of s be used to determ-

ine the values ‖A‖2 and ‖A‖F? Compute these
norms by setting

p = norm(A) and q = norm(A, ‘fro’)

and compare your results with s(1) and
norm(s).

(b) To obtain the full singular value decomposition
of A, set

[ U, D, V ] = svd(A)

Compute the closest matrix of rank 1 to A by
setting

B = s(1) ∗ U(:, 1) ∗ V(:, 1)′

How are the row vectors of B related to the two
distinct row vectors of A?

(c) The matrices A and B should have the same
2-norm. Why? Explain. Use MATLAB to com-
pute ‖B‖2 and ‖B‖F . In general, for a rank
1 matrix the 2-norm and the Frobenius norm
should be equal. Why? Explain.

14. Set

A = round(10 ∗ rand(10, 5)) and s = svd(A)

(a) Use MATLAB to compute ‖A‖2, ‖A‖F , and
cond2(A) and compare your results with s(1),
norm(s), s(1)/s(5), respectively.

(b) Set

[ U, D, V ] = svd(A);

D(5, 5) = 0;

B = U ∗ D ∗ V ′

The matrix B should be the closest matrix
of rank 4 to A (where distance is measured
in terms of the Frobenius norm). Compute
‖A‖2 and ‖B‖2. How do these values compare?
Compute and compare the Frobenius norms
of the two matrices. Compute also ‖A − B‖F

and compare the result with s(5). Set r =
norm(s(1 : 4)) and compare the result to ‖B‖F .

(c) Use MATLAB to construct a matrix C that is
the closest matrix of rank 3 to A with respect to
the Frobenius norm. Compute ‖C‖2 and ‖C‖F .
How do these values compare with the com-
puted values for ‖A‖2 and ‖A‖F , respectively?
Set

p = norm(s(1 : 3))

and

q = norm(s(4 : 5))

Compute ‖C‖F and ‖A − C‖F and compare
your results with p and q, respectively.

15. Set

A = rand(8, 4) ∗ rand(4, 6),

[ U, D, V ] = svd(A)

(a) What is the rank of A? Use the column vec-
tors of V to generate two matrices V1 and
V2 whose columns form orthonormal bases for
R(AT ) and N(A), respectively. Set

P = V2 ∗ V2′,
r = P ∗ rand(6, 1),

w = A′ ∗ rand(8, 1)

If r and w had been computed in exact arith-
metic, they would be orthogonal. Why? Ex-
plain. Use MATLAB to compute rT w.

(b) Use the column vectors of U to generate two
matrices U1 and U2 whose column vectors
form orthonormal bases for R(A) and N(AT ),
respectively. Set

Q = U2 ∗ U2′,
y = Q ∗ rand(8, 1),

z = A ∗ rand(6, 1)

Explain why y and z would be orthogonal if
all computations were done in exact arithmetic.
Use MATLAB to compute yT z.

(c) Set X = pinv(A). Use MATLAB to verify the
four Penrose conditions:
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(i) AXA = A (ii) XAX = X

(iii) (AX)T = AX (iv) (XA)T = XA

(d) Compute and compare AX and U1(U1)T . Had
all computations been done in exact arith-
metic, the two matrices would be equal. Why?
Explain.

Gerschgorin Circles

16. With each A ∈ R
n×n we can associate n closed cir-

cular disks in the complex plane. The ith disk is
centered at aii and has radius

ri =
n∑

j=1
j �=i

|aij|

Each eigenvalue of A is contained in at least one of
the disks (see Exercise 7 of Section 7.6).
(a) Set

A = round(10 ∗ rand(5))

Compute the radii of the Gerschgorin disks of
A and store them in a vector r. To plot the
disks, we must parameterize the circles. This
can be done by setting

t = [0 : 0.1 : 6.3]′;
We can then generate two matrices X and Y
whose columns contain the x and y coordinates
of the circles. First we initialize X and Y to zero
by setting

X = zeros(length(t), 5); Y = X;

The matrices can then be generated with the
following commands:

for i = 1 : 5
X(:, i) = r(i) ∗ cos(t) + real(A(i, i));
Y(:, i) = r(i) ∗ sin(t) + imag(A(i, i));

end

Set e = eig(A) and plot the eigenvalues
and the disks with the command

plot(X, Y ,real(e),imag(e), ‘x’)

If everything is done correctly, all the eigen-
values of A should lie within the union of the
circular disks.

(b) If k of the Gerschgorin disks form a connected
domain in the complex plane that is isolated
from the other disks, then exactly k of the ei-
genvalues of the matrix will lie in that domain.
Set

B = [3 0.1 2; 0.1 7 2; 2 2 50];

(i) Use the method described in part (a) to
compute and plot the Gerschgorin disks
of B.

(ii) Since B is symmetric, its eigenvalues are
all real and so must all lie on the real
axis. Without computing the eigenvalues,
explain why B must have exactly one ei-
genvalue in the interval [46, 54]. Multiply
the first two rows of B by 0.1 and then
multiply the first two columns by 10. We
can do this in MATLAB by setting

D = diag([0.1, 0.1, 1])

and
C = D ∗ B/D

The new matrix C should have the same
eigenvalues as B. Why? Explain. Use
C to find intervals containing the other
two eigenvalues. Compute and plot the
Gerschgorin disks for C.

(iii) How are the eigenvalues of CT related to
the eigenvalues of B and C? Compute and
plot the Gerschgorin disks for CT . Use
one of the rows of CT to find an interval
containing the largest eigenvalue of CT .

Distribution of Condition Numbers and
Eigenvalues of Random Matrices
17. We can generate a random symmetric 10 × 10

matrix by setting

A = rand(10); A = (A + A′)/2

Since A is symmetric, its eigenvalues are all real.
The number of positive eigenvalues can be calcu-
lated by setting

y = sum(eig(A) > 0)

(a) For j = 1, 2, . . . , 100, generate a random sym-
metric 10 × 10 matrix and determine the num-
ber of positive eigenvalues. Denote the number
of positive eigenvalues of the jth matrix by y(j).
Set x = 0 : 10, and determine the distribution
of the y data by setting n = hist(y, x). De-
termine the mean of the y(j) values, using the
MATLAB command mean(y). Use the MAT-
LAB command hist(y, x) to generate a plot
of the histogram.
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(b) We can generate a random symmetric 10 × 10
matrix whose entries are in the interval [−1, 1]
by setting

A = 2 ∗ rand(10) − 1; A = (A + A′)/2

Repeat part (a), using random matrices gener-
ated in this manner. How does the distribution
of the y data compare to the one obtained in
part (a)?

18. A nonsymmetric matrix A may have complex ei-
genvalues. We can determine the number of eigen-
values of A that are both real and positive with the
MATLAB commands

e = eig(A)

y = sum(e > 0 & imag (e) == 0)

Generate 100 random nonsymmetric 10 × 10
matrices. For each matrix, determine the number
of positive real eigenvalues and store that num-
ber as an entry of a vector z. Determine the mean
of the z(j) values, and compare it with the mean
computed in part (a) of Exercise 17. Determine the
distribution and plot the histogram.

19. (a) Generate 100 random 5 × 5 matrices and com-
pute the condition number of each matrix.
Determine the mean of the condition numbers
and plot the histogram of the distribution.

(b) Repeat part (a), using 10 × 10 matrices.
Compare your results with those obtained in
part (a).

CHAPTER TEST A True or False

In each of the statements that follow, answer true
if the statement is always true and false otherwise.
In the case of a true statement, explain or prove
your answer. In the case of a false statement, give
an example to show that the statement is not always
true.

1. If a, b, and c are floating-point numbers, then

f l(f l(a + b) + c) = f l(a + f l(b + c))

2. The computation of A(BC) requires the same num-
ber of floating-point operations as the computation
of (AB)C.

3. If A is a nonsingular matrix and a numerically
stable algorithm is used to compute the solution
of a system Ax = b, then the relative error in the
computed solution will always be small.

4. If A is a symmetric matrix and a numerically stable
algorithm is used to compute the eigenvalues of A,
then the relative error in the computed eigenvalues
should always be small.

5. If A is a nonsymmetric matrix and a numerically
stable algorithm is used to compute the eigenval-
ues of A, then the relative error in the computed
eigenvalues should always be small.

6. If both A−1 and the LU factorization of an n×n mat-
rix A have already been computed, then it is more
efficient to solve a system Ax = b by multiplying
A−1b, rather than solving LUx = b by forward and
back substitution.

7. If A is a symmetric matrix, then ‖A‖1 = ‖A‖∞.
8. If A is an m × n matrix, then ‖A‖2 = ‖A‖F .
9. If the coefficient matrix A in a least squares prob-

lem has dimensions m × n and rank n, then
the methods of solution discussed in Section 7.7,
namely, the normal equations, the Gram-Schmidt
and Householder QR factorizations, and the singu-
lar value decomposition, will all compute highly
accurate solutions.

10. If two m×n matrices A and B are close in the sense
that ‖A − B‖2 < e for some small positive num-
ber e, then their pseudoinverses will also be close;
that is, ‖A+ − B+‖2 < δ, for some small positive
number δ.

CHAPTER TEST B

1. Let A and B be n × n matrices and let x be a vector in
R

n. How many scalar additions and multiplications
are required to compute (AB)x and how many are
necessary to compute A(Bx)? Which computation is
more efficient?

2. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 3 6
4 4 8
1 3 4

⎫⎪⎪⎪⎪⎪⎭ b =
⎧⎪⎪⎪⎪⎪⎩

3
0
4

⎫⎪⎪⎪⎪⎪⎭ c =
⎧⎪⎪⎪⎪⎪⎩

1
8
2

⎫⎪⎪⎪⎪⎪⎭
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(a) Use Gaussian elimination with partial pivoting
to solve Ax = b.

(b) Write the permutation matrix P that corresponds
to the pivoting strategy in part (a) and determine
the LU factorization of PA.

(c) Use P, L, and U to solve the system Ax = c.
3. Show that if Q is any 4 × 4 orthogonal matrix then

‖Q‖2 = 1 and ‖Q‖F = 2.

4. Let

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

H−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16 −120 240 −140

−120 1200 −2700 1680

240 −2700 6480 −4200

−140 1680 −4200 2800

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and b = (10, −10, 20, 10)T .
(a) Determine the values of ‖H‖1 and ‖H−1‖1.

(b) When the system Hx = b is solved using MAT-
LAB and the computed solution x′ is used to
compute a residual vector r = b − Hx′, it turns
out that ‖r‖1 = 0.36 × 10−11. Use this in-

formation to determine a bound on the relative
error

‖x − x′‖1

‖x‖1

where x is the exact solution of the system.
5. Let A be a 10 × 10 matrix with cond∞(A) = 5×106.

Suppose that the solution of a system Ax = b is com-
puted in 15-digit decimal arithmetic and the relative
residual, ‖r‖∞/‖b‖∞, turns out to be approximately
twice the machine epsilon. How many digits of ac-
curacy would you expect to have in your computed
solution? Explain.

6. Let x = (1, 2, −2)T .
(a) Find a Householder matrix H such that Hx is a

vector of the form (r, 0, 0)T .
(b) Find a Givens transformation G such that Gx is

a vector of the form (1, s, 0)T .
7. Let Q be an n × n orthogonal matrix and let R be

an n × n upper triangular matrix. If A = QR and
B = RQ, how are the eigenvalues and eigenvectors
of A and B related? Explain.

8. Let

A =
⎧⎪⎩ 1 2

4 3

⎫⎪⎭
Estimate the largest eigenvalue of A and a corres-
ponding eigenvector by doing five iterations of the
power method. You may start with any nonzero
vector u0.

9. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
5 2 4
5 2 4
3 6 0
3 6 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ and b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
5
1

−1
9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
The singular value decomposition of A is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
12 0 0
0 6 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3

2
3

1
3

1
3 − 2

3
2
3

− 2
3 − 1

3
2
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Use the singular value decomposition to find the least squares solution of the system Ax = b that has the smallest
2-norm.
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10. Let

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 5
1 5
1 6
1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭, b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2
4
5
3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭

(a) Use Householder matrices to transform A into
a 4 × 2 upper triangular matrix R.

(b) Apply the same Householder transformations
to b, and then compute the least squares solu-
tion of the system Ax = b.
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MATLAB

MATLAB is an interactive program for matrix computations. The original version
of MATLAB, short for matrix laboratory, was developed by Cleve Moler from the
Linpack and Eispack software libraries. Over the years MATLAB has undergone a
series of expansions and revisions. Today it is the leading software for scientific com-
putations. The MATLAB software is distributed by the MathWorks, Inc. of Natick,
Massachusetts.

In addition to widespread use in industrial and engineering settings, MATLAB
has become a standard instructional tool for undergraduate linear algebra courses. A
Student Edition of MATLAB is available at a price affordable to undergraduates.

Another highly recommended resource for teaching linear algebra with MATLAB
is ATLAST Computer Exercises for Linear Algebra, 2nd ed. (see [12]). This manual
contains MATLAB-based exercises and projects for linear algebra and a collection of
MATLAB utilities (M-files) that help students to visualize linear algebra concepts. The
M-files are available for download from the ATLAST Web page:

www.umassd.edu/SpecialPrograms/ATLAST

The MATLAB Desktop Display

At start-up, MATLAB will display a desktop with three windows. The window on
the right is the command window, in which MATLAB commands are entered and ex-
ecuted. The window on the top left displays either the Current Directory Browser or
the Workspace Browser, depending on which button has been toggled.

The Workspace Browser allows you to view and make changes to the contents of
the workspace. It is also possible to plot a data set using the Workspace window. Just
highlight the data set to be plotted and then select the type of plot desired. MATLAB
will display the graph in a new figure window. The Current Directory Browser allows
you to view MATLAB and other files and to perform file operations such as opening
and editing or searching for files.

The lower window on the left displays the Command History. It allows you view
a log of all the commands that have been entered in the command window. To repeat a
previous command, just click on the command to highlight it and then double-click to
execute it. You can also recall and edit commands directly from the command window
by using the arrow keys. From the command window, you can use the up arrow to
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recall previous commands. The commands can then be edited using the left and right
arrow keys. Press the Enter key of your computer to execute the edited command.

Any of the MATLAB windows can be closed by clicking on the × in the upper-
right corner of the window. To detach a window from the MATLAB desktop, click on
the arrow that is next to the × in the upper right corner of the window.

Basic Data Elements

The basic elements that MATLAB uses are matrices. Once the matrices have been
entered or generated, the user can quickly perform sophisticated computations with a
minimal amount of programming.

Entering matrices in MATLAB is easy. To enter the matrix⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
type

A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

or the matrix could be entered one row at a time:

A = [ 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16 ]

Once a matrix has been entered, you can edit it in two ways. From the command
window, you can redefine any entry with a MATLAB command. For example, the
command A(1, 3) = 5 will change the third entry in the first row of A to 5. You can
also edit the entries of a matrix from the Workspace Browser. To change the (1, 3)
entry of A with the Workspace Browser, we first locate A in the Name column of the
browser and then click on the array icon to the left of A to open an array display of the
matrix. To change the (1, 3) entry to a 5, click on the corresponding cell of the array
and enter 5.

Row vectors of equally spaced points can be generated using MATLAB’s : opera-
tion. The command x = 2 : 6 generates a row vector with integer entries going from 2
to 6.

x =
2 3 4 5 6

It is not necessary to use integers or to have a step size of 1. For example, the command
x = 1.2 : 0.2 : 2 will produce

x =
1.2000 1.4000 1.6000 1.8000 2.0000
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Submatrices

To refer to a submatrix of the matrix A entered earlier, use the : to specify the rows and
columns. For example, the submatrix consisting of the entries in the second two rows
of columns 2 through 4 is given by A(2 : 3, 2 : 4). Thus, the statement

C = A(2 : 3, 2 : 4)

generates

C =
6 7 8

10 11 12

If the colon is used by itself for one of the arguments, either all the rows or all the
columns of the matrix will be included. For example, A(:, 2 : 3) represents the submat-
rix of A consisting of all the elements in the second and third columns, and A(4, :)
denotes the fourth row vector of A. We can generate a submatrix using nonadjacent
rows or columns by using vector arguments to specify which rows and columns are to
be included. For example, to generate a matrix whose entries are those which appear
only in the first and third rows and second and fourth columns of A, set

E = A([1, 3], [2, 4])

The result will be
E =

2 4

10 12

Generating Matrices

We can also generate by matrices using built-in MATLAB functions. For example, the
command

B = rand(4)

will generate a 4 × 4 matrix whose entries are random numbers between 0 and 1.
Other functions that can be used to generate matrices are eye, zeros, ones, magic,
hilb, pascal, toeplitz, compan, and vander. To build triangular or diagonal
matrices, we can use the MATLAB functions triu, tril, and diag.

The matrix building commands can be used to generate blocks of partitioned
matrices. For example, the MATLAB command

E = [ eye(2), ones(2, 3); zeros(2), [1 : 3; 3 : −1 : 1] ]

will generate the matrix

E =
1 0 1 1 1

0 1 1 1 1

0 0 1 2 3

0 0 3 2 1
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Matrix Arithmetic

Addition and Multiplication of Matrices

Matrix arithmetic in MATLAB is straightforward. We can multiply our original matrix
A times B simply by typing A ∗ B. The sum and difference of A and B are given by
A + B and A − B, respectively. The transpose of the real matrix A is given by A′. For
a matrix C with complex entries, the ′ operation corresponds to conjugate transpose.
Thus, CH is given as C′ in MATLAB.

Backslash or Matrix Left Division

If W is an n × n matrix and b represents a vector in Rn, the solution of the system
Wx = b can be computed using MATLAB’s backslash operator by setting

x = W\b

For example, if we set

W = [1 1 1 1; 1 2 3 4; 3 4 6 2; 2 7 10 5]

and b = [3; 5; 5; 8], then the command

x = W\b

will yield

x =
1.0000

3.0000

−2.0000

1.0000

In the case that the n × n coefficient matrix is singular or has numerical rank less
than n, the backslash operator will still compute a solution, but MATLAB will issue a
warning. For example our original 4 × 4 matrix A is singular and the command

x = A\b

yields

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.387779e-018.

x =
1.0e + 015∗

2.2518

−3.0024

−0.7506

1.5012
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The 1.0e + 015 indicates the exponent for each of the entries of x. Thus each of the
four entries listed is multiplied by 1015. The value of RCOND is an estimate of the
reciprocal of the condition number of the coefficient matrix. Even if the matrix were
nonsingular, with a condition number on the order of 1018, one could expect to lose as
much as 18 digits of accuracy in the decimal representation of the computed solution.
Since the computer keeps track of only 16 decimal digits, this means that the computed
solution may not have any digits of accuracy.

If the coefficient matrix for a linear system has more rows than columns, then
MATLAB assumes that a least squares solution of the system is desired. If we set

C = A(:, 1 : 2)

then C is a 4 × 2 matrix and the command

x = C\b

will compute the least squares solution

x =
−2.2500

2.6250

If we now set

C = A(:, 1 : 3)

then C will be a 4 × 3 matrix with rank equal to 2. Although the least squares problem
will not have a unique solution, MATLAB will still compute a solution and return a
warning that the matrix is rank deficient. In this case, the command

x = C\b

yields

Warning: Rank deficient, rank = 2, tol = 1.7852e-014.

x =
−0.9375

0

1.3125

Exponentiation

Powers of matrices are easily generated. The matrix A5 is computed in MATLAB by
typing Aˆ5. We can also perform operations elementwise by preceding the operand by
a period. For example, if V = [1 2; 3 4], then Vˆ2 results in

ans =
7 10

15 22

while V .ˆ2 will give

ans =
1 4

9 16
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MATLAB Functions

To compute the eigenvalues of a square matrix A, we need only type eig(A). The
eigenvectors and eigenvalues can be computed by setting

[X D] = eig(A)

Similarly, we can compute the determinant, inverse, condition number, norm, and rank
of a matrix with simple one-word commands. Matrix factorizations such as the LU, QR,
Cholesky, Schur decomposition, and singular value decomposition can be computed
with a single command. For example, the command

[Q R] = qr(A)

will produce an orthogonal (or unitary) matrix Q and an upper triangular matrix R, with
the same dimensions as A, such that A = QR.

Programming Features

MATLAB has all the flow control structures that you would expect in a high-level
language, including for loops, while loops, and if statements. This allows the
user to write his or her own MATLAB programs and to create additional MATLAB
functions. Note that MATLAB prints out automatically the result of each command,
unless the command line ends in a semicolon. When using loops, we recommend end-
ing each command with a semicolon to avoid printing all the results of the intermediate
computations.

M-files

It is possible to extend MATLAB by adding your own programs. MATLAB programs
are all given the extension .m and are referred to as M-files. There are two basic types
of M-files.

Script Files

Script files are files that contain a series of MATLAB commands. All the variables used
in these commands are global, and consequently the values of these variables in your
MATLAB session will change every time you run the script file. For example, if you
wanted to determine the nullity of a matrix, you could create a script file nullity.m
containing the following commands:

[m,n] = size(A);

nuldim = n−rank(A)

Entering the command nullity would cause the two lines of code in the script file
to be executed. The disadvantage of determining the nullity this way is that the matrix
must be named A. Additionally, if you have been using the variables m and n, the values
of these variables will be reassigned when you run the script file. An alternative would
be to create a function file.
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Function Files

Function files begin with a function declaration statement of the form

function [oargl,...,oargj] = fname(inarg1,...,inargk)

All the variables used in the function M-file are local. When you call a function file,
only the values of the output variables will change in your MATLAB session. For ex-
ample, we could create a function file nullity.m to compute the nullity of a matrix
as follows:

function k = nullity(A)
% The command nullity(A) computes the dimension
% of the nullspace of A.
[m,n] = size(A);
k = n−rank(A);

The lines beginning with % are comments that are not executed. These lines will
be displayed whenever you type help nullity in a MATLAB session. Once the
function is saved, it can be used in a MATLAB session in the same way that we use
built-in MATLAB functions. For example, if we set

B = [1 2 3; 4 5 6; 7 8 9];

and then enter the command

n = nullity(B)

MATLAB will return the answer: n = 1.

The MATLAB Path

The M-files that you develop should be kept in a directory that can be added to the
MATLAB path—the list of directories that MATLAB searches for M-files. To have your
directories automatically appended to the MATLAB path at the start of a MATLAB
session, create an M-file startup.m that includes commands to be executed at start-
up. To append a directory to the MATLAB path, include a line in the startup file of
the form

addpath dirlocation

For example, if you are working on a PC and the linear algebra files that you created
are in drive c in a subdirectory linalg of the MATLAB directory, then, if you add
the line

addpath c: \MATLAB \linalg
to the MATLAB start-up file, MATLAB will automatically preappend the linalg
directory to its search path at start-up. On Windows platforms, the startup.m file
should be placed in the tools \local subdirectory of your root MATLAB directory.

It is also possible to use files that are not in a directory on the MATLAB path.
Simply use the Current Directory Browser to navigate to the directory containing the
M-files. Double-click on the directory to set it as the current directory for the MATLAB
session. MATLAB automatically looks in the current directory when it searches for
M-files.
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Relational and Logical Operators

MATLAB has six relational operators that are used for comparisons of scalars or
elementwise comparisons of arrays. These operators are:

Relational Operators
< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
∼= not equal

Given two m × n matrices A and B, the command

C = A < B

will generate an m×n matrix consisting of zeros and ones. The (i, j) entry will be equal
to 1 if and only if aij < bij. For example, suppose that

A =
⎧⎪⎪⎪⎪⎪⎩

−2 0 3
4 2 −5

−1 −3 2

⎫⎪⎪⎪⎪⎪⎭
The command A >= 0 will generate

ans =
0 1 1

1 1 0

0 0 1

There are three logical operators in MATLAB:

Logical Operators
& AND
| OR
∼ NOT

These logical operators regard any nonzero scalar as corresponding to TRUE
and 0 as corresponding to FALSE. The operator & corresponds to the logical AND.
If a and b are scalars, the expression a & b will equal 1 if a and b are both nonzero
(TRUE) and 0 otherwise. The operator | corresponds to the logical OR. The expression
a|b will have the value 0 if both a and b are 0; otherwise it will be equal to 1. The op-
erator ∼ corresponds to the logical NOT. For a scalar a, it takes on the value 1 (TRUE)
if a = 0 (FALSE) and the value 0 (FALSE) if a �= 0 (TRUE).

For matrices, these operators are applied elementwise. Thus, if A and B are both
m × n matrices, then A & B is a matrix of zeros and ones whose ij th entry is a(i, j) &
b(i, j). For example, if

A =
⎧⎪⎪⎪⎪⎪⎩

1 0 1
0 1 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭ and B =
⎧⎪⎪⎪⎪⎪⎩

−1 2 0
1 0 3
0 1 2

⎫⎪⎪⎪⎪⎪⎭
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then

A&B =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 0 1
0 0 1

⎫⎪⎪⎪⎪⎪⎭, A|B =
⎧⎪⎪⎪⎪⎪⎩

1 1 1
1 1 1
0 1 1

⎫⎪⎪⎪⎪⎪⎭, ∼A =
⎧⎪⎪⎪⎪⎪⎩

0 1 0
1 0 0
1 1 0

⎫⎪⎪⎪⎪⎪⎭
The relational and logical operators are often used in if statements.

Columnwise Array Operators

MATLAB has a number of functions that, when applied to either a row or column
vector x, return a single number. For example, the command max(x) will compute the
maximum entry of x, and the command sum(x) will return the value of the sum of the
entries of x. Other functions of this form are min, prod, mean, all, and any. When
used with a matrix argument, these functions are applied to each column vector and
the results are returned as a row vector. For example, if

A =
⎧⎪⎪⎪⎪⎪⎩

−3 2 5 4
1 3 8 0

−6 3 1 3

⎫⎪⎪⎪⎪⎪⎭
then

min(A) = (−6, 2, 1, 0)

max(A) = (1, 3, 8, 4)

sum(A) = (−8, 8, 14, 7)

prod(A) = (18, 18, 40, 0)

Graphics

If x and y are vectors of the same length, the command plot(x, y) will produce a plot
of all the (xi, yi) pairs, and each point will be connected to the next by a line segment. If
the x-coordinates are taken close enough together, the graph should resemble a smooth
curve. The command plot(x, y, ‘x’) will plot the ordered pairs with x’s, but will not
connect the points.

For example, to plot the function f (x) = sin x

x + 1
on the interval [0, 10], set

x = 0 : 0.2 : 10 and y = sin(x)./(x + 1)

The command plot(x, y) will generate the graph of the function. To compare the
graph to that of sin x, we could set z = sin(x) and use the command plot(x, y, x, z) to
plot both curves at the same time. We can include additional arguments in the command
to specify the format of each plot. For example the command

plot(x, y, ‘c’, x, z, ‘ −−’)

will plot the first function using a light blue (cyan) color and the second function using
dashed lines. See Figure A.1.

It is also possible to do more sophisticated types of plots in MATLAB, including
polar coordinates, three-dimensional surfaces, and contour plots.
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Figure A.1.

Symbolic Toolbox

In addition to doing numeric computations, it is possible to do symbolic calculations
with MATLAB’s symbolic toolbox. The symbolic toolbox allows us to manipulate
symbolic expressions. It can be used to solve equations, differentiate and integrate
functions, and perform symbolic matrix operations.

MATLAB’s sym command can be used to turn any MATLAB data structure into
a symbolic object. For example, the command sym(‘t’) will turn the string ‘t’ into a
symbolic variable t, and the command sym(hilb(3)) will produce the symbolic
version of the 3 × 3 Hilbert matrix written in the form

[
1, 1

2 , 1
3

][
1
2 , 1

3 , 1
4

][
1
3 , 1

4 , 1
5

]
We can create a number of symbolic variables at once with the syms command. For
example, the command

syms a b c

creates three symbolic variables a, b, and c. If we then set

A = [a, b, c;b, c, a;c, a, b]
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the result will be the symbolic matrix

A = [
a, b, c

][
b, c, a

][
c, a, b

]
The MATLAB command subs can be used to substitute an expression or a value for
a symbolic variable. For example, the command subs(A,c,3) will substitute 3 for
each occurrence of c in the symbolic matrix A. Multiple substitutions are also possible:
The command

subs(A,[a,b,c],[a−1,b+1,3])
will substitute a−1, b+1, and 3 for a, b, and c, respectively, in the matrix A.

The standard matrix operations ∗, ˆ, +, −, and ′ all work for symbolic matrices
and also for combinations of symbolic and numeric matrices. If an operation involves
two matrices and one of them is symbolic, the result will be a symbolic matrix. For
example, the command

sym(hilb(3))+eye(3)

will produce the symbolic matrix [
2, 1

2 , 1
3

][
1
2 , 4

3 , 1
4

][
1
3 , 1

4 , 6
5

]
Standard MATLAB matrix commands such as

det, eig, inv, null, trace, sum, prod, poly

all work for symbolic matrices; however, others such as

rref, orth, rank, norm

do not. Likewise, none of the standard matrix factorizations are possible for symbolic
matrices.

Help Facility

MATLAB includes a HELP facility that provides help on all MATLAB features. To
access MATLAB’s help browser, click on the help button in the toolbar (this is the but-
ton with the ? symbol) or type helpbrowser in the command window. You can also
access HELP by selecting it from the View menu. The help facility gives information
on getting started with MATLAB and on using and customizing the desktop. It lists
and describes all the MATLAB functions, operations, and commands.
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You can also obtain help information on any of the MATLAB commands directly
from the command window. Simply enter help followed by the name of the com-
mand. For example, the MATLAB command eig is used to compute eigenvalues. For
information on how to use this command, you could either find the command using the
help browser or simply type help eig in the command window.

From the command window, you also can obtain help on any MATLAB oper-
ator. Simply type help followed by the name of the operator. To do this, you need
to know the name that MATLAB gives to the operator. You can obtain a complete
list of all operator names by entering help followed by any operator symbol. For ex-
ample, to obtain help on the backslash operation, first type help \. MATLAB will
respond by displaying the list of all operator names. The backslash operator is listed as
mldivide (short for “matrix left divide"). To find out how the operator works, simply
type help mldivide.

Conclusions

MATLAB is a powerful tool for matrix computations that is also user friendly. The
fundamentals can be mastered easily, and consequently students are able to begin nu-
merical experiments with only a minimal amount of preparation. Indeed, the material
in this appendix, together with the MATLAB help facility, should be enough to get you
started.

The MATLAB exercises at the end of each chapter are designed to enhance un-
derstanding of linear algebra. The exercises do not assume familiarity with MATLAB.
Often specific commands are given to guide the reader through the more complicated
MATLAB constructions. Consequently, you should be able to work through all the
exercises without resorting to additional MATLAB books or manuals.

Although this appendix summarizes the features of MATLAB that are relevant to
an undergraduate course in linear algebra, many other advanced capabilities have not
been discussed. References [18] and [26] describe MATLAB in greater detail.
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Answers to Selected Exercises

Chapter 1
1.1 1. (a) (11, 3); (b) (4, 1, 3); (c) (−2, 0, 3, 1);

(d) (−2, 3, 0, 3, 1)

2. (a)
⎧⎪⎩ 1 −3

0 2

⎫⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
0 2 1
0 0 3

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 2 1
0 3 1 −2
0 0 −1 2
0 0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. (a) One solution. The two lines intersect at

the point (3, 1).

(b) No solution. The lines are parallel.

(c) Infinitely many solutions. Both equations
represent the same line.

(d) No solution. Each pair of lines intersect
in a point; however, there is no point that
is on all three lines.

4. (a)
⎧⎪⎩ 1 1 4

1 −1 2

⎫⎪⎭; (c)
⎧⎪⎩ 2 −1 3

−4 2 −6

⎫⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 −1 1

−1 3 3

⎫⎪⎪⎪⎪⎪⎭
6. (a) (1, −2); (b) (3, 2); (c) ( 1

2 , 2
3 );

(d) (1, 1, 2); (e) (−3, 1, 2);

(f) (−1, 1, 1); (g) (1, 1, −1);

(h) (4, −3, 1, 2)

7. (a) (2, −1); (b) (−2, 3)

8. (a) (−1, 2, 1); (b) (3, 1, −2)

1.2 1. Row echelon form: (a), (c), (d), (g), and (h);
reduced row echelon form: (c), (d), and (g)

2. (a) Inconsistent;

(c) consistent, infinitely many solutions;

(d) consistent (4, 5, 2); (e) inconsistent;

(f) consistent, (5, 3, 2)

3. (b) ∅;

(c) {(2 + 3α, α, −2) | α real};
(d) {(5 − 2α − β, α, 4 − 3β, β) | α, β real};
(e) {(3 − 5α + 2β, α, β, 6) | α, β real};
(f) {(α, 2, −1) | α real}

4. (a) x1, x2, x3 are lead variables.

(c) x1, x3 are lead variables and x2 is a free
variable.

(e) x1, x4 are lead variables and x2, x3 are free
variables.

5. (a) (5, 1); (b) inconsistent; (c) (0, 0);

(d)

{(
5 − α

4
,

1 + 7α

8
, α

)∣∣∣∣ α real

}
;

(e) {(8 − 2α, α − 5, α)};
(f) inconsistent;

(g) inconsistent; (h) inconsistent;

(i) (0, 3
2 , 1);

(j) {(2 − 6α, 4 + α, 3 − α, α)};
(k) {( 15

4 − 5
8 α − β, − 1

4 − 1
8 α, α, β)};

6. (a) (0, −1);

(b) {( 3
4 − 5

8 α, − 1
4 − 1

8 α, α, 3) | α is real};
(d) {α(− 4

3 , 0, 1
3 , 1)}

8. a �= −2

9. β = 2

10. (a) a = 5, b = 4; (b) a = 5, b �= 4

11. (a) (−2, 2); (b) (−7, 4)

12. (a) (−3, 2, 1); (b) (2, −2, 1)

15. x1 = 280, x2 = 230, x3 = 350, x4 = 590

19. x1 = 2, x2 = 3, x3 = 12, x4 = 6

20. 6 moles N2, 18 moles H2, 21 moles O2

21. All three should be equal, i.e., x1 = x2 = x3.

22. (a) (5, 3, −2); (b) (2, 4, 2);

(c) (2, 0, −2, −2, 0, 2)

1.3 1. (a)

⎧⎪⎪⎪⎪⎪⎩
6 2 8

−4 0 2
2 4 4

⎫⎪⎪⎪⎪⎪⎭;
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(b)

⎧⎪⎪⎪⎪⎪⎩
4 1 6

−5 1 2
3 −2 3

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
3 2 2
5 −3 −1

−4 16 1

⎫⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎩
3 5 −4
2 −3 16
2 −1 1

⎫⎪⎪⎪⎪⎪⎭;

(f)

⎧⎪⎪⎪⎪⎪⎩
5 5 8

−10 −1 −9
15 4 6

⎫⎪⎪⎪⎪⎪⎭;

(h)

⎧⎪⎪⎪⎪⎪⎩
5 −10 15
5 −1 4
8 −9 6

⎫⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎩ 15 19
4 0

⎫⎪⎭; (c)

⎧⎪⎪⎪⎪⎪⎩
19 21
17 21

8 10

⎫⎪⎪⎪⎪⎪⎭;

(f)

⎧⎪⎪⎪⎪⎪⎩
6 4 8 10

−3 −2 −4 −5
9 6 12 15

⎫⎪⎪⎪⎪⎪⎭
(b) and (e) are not possible.

3. (a) 3 × 3; (b) 1 × 2

4. (a)
⎧⎪⎩ 3 2

2 −3

⎫⎪⎭ ⎧⎪⎩ x1

x2

⎫⎪⎭ =
⎧⎪⎩ 1

5

⎫⎪⎭;

(b)

⎧⎪⎪⎪⎪⎪⎩
1 1 0
2 1 −1
3 −2 2

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

5
6
7

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
1 −1 2
3 −2 −1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

x1

x2

x3

⎫⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎩

4
2
0

⎫⎪⎪⎪⎪⎪⎭
9. (a) b = 2a1 + a2

10. (a) inconsistent; (b) consistent;

(c) inconsistent

13. b = (8, −7, −1, 7)T

14. w = ( 1
2 , 1

3 , 1
6 )T , r = ( 43

120 , 45
120 , 32

120 )T

18. b = a22 − a12a21

a11

1.4 7. A = A2 = A3 = An

8. A2n = I, A2n+1 = A

13. (a)
⎧⎪⎩ 1 −2

−3 7

⎫⎪⎭, (c)

⎧⎪⎪⎪⎩ 1 − 3
2

−1 2

⎫⎪⎪⎪⎭
31. 4500 married, 5500 single

32. (b) 0 walks of length 2 from V2 to V3 and 3
walks of length 2 from V2 to V5;

(c) 6 walks of length 3 from V2 to V3 and 2
walks of length 3 from V2 to V5

33. (a) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 1 0
1 0 1 1 0
0 1 0 0 0
1 1 0 0 1
0 0 0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(c) 5 walks of length 3 from V2 to V4 and 7
walks of length 3 or less

1.5 1. (a) type I;

(b) not an elementary matrix;

(c) type III; (d) type II

3. (a)
⎧⎪⎩ −2 0

0 1

⎫⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 0 1
0 1 0

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
0 2 1

⎫⎪⎪⎪⎪⎪⎭
4. (a)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭; (b)
⎧⎪⎩ 1 −3

0 1

⎫⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1
2 0 0

0 1 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
5. (a) E =

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭;

(b) F =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
6. (a) E1 =

⎧⎪⎪⎪⎪⎪⎩
1 0 0

−3 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭;

(b) E2 =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0

−2 0 1

⎫⎪⎪⎪⎪⎪⎭;

(c) E3 =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
0 1 0
0 1 1

⎫⎪⎪⎪⎪⎪⎭
8. (a)

⎧⎪⎩ 1 0
3 1

⎫⎪⎭ ⎧⎪⎩ 3 1
0 2

⎫⎪⎭,

(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
3 1 0

−2 2 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 2 3
0 0 3

⎫⎪⎪⎪⎪⎪⎭
9. (b) (i) (0, −1, 1)T , (ii) (−4, −2, 5)T ,

(iii) (0, 3, −2)T
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10. (a)
⎧⎪⎩ 0 1

1 1

⎫⎪⎭; (b)
⎧⎪⎩ 3 −5

−1 2

⎫⎪⎭;

(c)

⎧⎪⎪⎪⎪⎩ −4 3
3
2 −1

⎫⎪⎪⎪⎪⎭; (d)

⎧⎪⎪⎪⎪⎩ 1
3 0

−1 1
3

⎫⎪⎪⎪⎪⎭;

(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 0 −5

0 1
3 0

−1 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(g)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 −3 3

− 3
5

6
5 −1

− 2
5 − 1

5 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(h)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 −1 − 1
2

−2 −1 −1
3
2 1 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
11. (a)

⎧⎪⎩ −1 0
4 2

⎫⎪⎭; (b)
⎧⎪⎩ −8 5

−14 9

⎫⎪⎭
12. (a)

⎧⎪⎩ 20 −5
−34 7

⎫⎪⎭; (c)
⎧⎪⎩ 0 −2

−2 2

⎫⎪⎭
1.6 1. (b)

⎧⎪⎩ I
A−1

⎫⎪⎭; (c)
⎧⎪⎩ ATA AT

A I

⎫⎪⎭;

(d) AAT + I; (e)
⎧⎪⎩ I A−1

A I

⎫⎪⎭
3. (a) Ab1 =

⎧⎪⎩ 3
3

⎫⎪⎭, Ab2 =
⎧⎪⎩ 4

−1

⎫⎪⎭;

(b)
⎧⎩ 1 1

⎫⎭ B =
⎧⎩ 3 4

⎫⎭,⎧⎩ 2 −1
⎫⎭ B =

⎧⎩ 3 −1
⎫⎭;

(c) AB =
⎧⎪⎩ 3 4

3 −1

⎫⎪⎭
4. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 1 1 1
3 2 1 2
1 1 1 1
1 2 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 2 2 2
2 4 2 2
3 1 1 1
3 2 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 2 1 1
1 1 1 1
3 2 1 2
3 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
5. (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 2 0 −2
8 5 8 −5
3 2 3 −2
5 3 5 −3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3 −3
2 −2
1 −1
5 −5
4 −4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
13. A2 =

⎧⎪⎩ B O
O B

⎫⎪⎭, A4 =
⎧⎪⎩ B2 O

O B2

⎫⎪⎭
14. (a)

⎧⎪⎩ O I
I O

⎫⎪⎭; (b)
⎧⎪⎩ I O

−B I

⎫⎪⎭
CHAPTER TEST A
1. False 2. True 3. True 4. True 5. False
6. False 7. False 8. False 9. False 10. True
11. True 12. True 13. True 14. False
15. True

Chapter 2
2.1 1. (a) det(M21) = −8, det(M22) = −2,

det(M23) = 5;

(b) A21 = 8, A22 = −2, A23 = −5

2. (a) and (c) are nonsingular.

3. (a) 1; (b) 4; (c) 0; (d) 58;

(e) −39; (f) 0; (g) 8; (h) 20

4. (a) 2; (b) −4; (c) 0; (d) 0

5. −x3 + ax2 + bx + c

6. λ = 6 or −1

2.2 1. (a) −24; (b) 30; (c) −1

2. (a) 10; (b) 20

3. (a), (e), and (f) are singular while (b), (c),
and (d) are nonsingular.

4. c = 5 or −3

7. (a) 20; (b) 108; (c) 160; (d) 5
4

9. (a) −6; (c) 6; (e) 1

13. det(A) = u11u22u33

2.3 1. (a) det(A) = −7, adj A =
⎧⎪⎩ −1 −2

−3 1

⎫⎪⎭,

A−1 =
⎧⎪⎪⎪⎪⎩ 1

7
2
7

3
7 − 1

7

⎫⎪⎪⎪⎪⎭;

(c) det(A) = 3, adj A =
⎧⎪⎪⎪⎪⎪⎩

−3 5 2
0 1 1
6 −8 −5

⎫⎪⎪⎪⎪⎪⎭,

A−1 = 1
3 adj A

2. (a) ( 5
7 , 8

7 ); (b) ( 11
5 , − 4

5 );

(c) (4, −2, 2); (d) (2, −1, 2);

(e) (− 2
3 , 2

3 , 1
3 , 0)

3. − 3
4
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4. ( 1
2 , − 3

4 , 1)T

5. (a) det(A) = 0, so A is singular.

(b) adj A =
⎧⎪⎪⎪⎪⎪⎩

−1 2 −1
2 −4 2

−1 2 −1

⎫⎪⎪⎪⎪⎪⎭ and

A adj A =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
9. (a) det(adj(A)) = 8 and det(A) = 2;

(b) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 4 −1 1
0 −6 2 −2
0 1 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
14. DO YOUR HOMEWORK.

CHAPTER TEST A
1. True 2. False 3. False 4. True 5. False
6. True 7. True 8. True 9. False 10. True

Chapter 3
3.1 1. (a) ‖x1‖ = 10, ‖x2‖ = √

17;

(b) ‖x3‖ = 13 < ‖x1‖ + ‖x2‖
2. (a) ‖x1‖ = √

5, ‖x2‖ = 3
√

5;

(b) ‖x3‖ = 4
√

5 = ‖x1‖ + ‖x2‖
7. If x + y = x for all x in the vector space, then

0 = 0 + y = y.

8. If x + y = x + z, then −x + (x + y) =
−x+ (x+z) and the conclusion follows using
axioms 1, 2, 3, and 4.

11. V is not a vector space. Axiom 6 does not
hold.

3.2 1. (a) and (c) are subspaces; (b), (d), and (e) are
not.

2. (b) and (c) are subspaces; (a) and (d) are not.

3. (a), (c), (e), and (f) are subspaces; (b), (d),
and (g) are not.

4. (a) {(0, 0)T};
(b) Span((−2, 1, 0, 0)T , (3, 0, 1, 0)T );

(c) Span((1, 1, 1)T );

(d) Span((−5, 0, −3, 1)T , (−1, 1, 0, 0)T )

5. Only the set in part (c) is a subspace of P4.

6. (a), (b), and (d) are subspaces.

11. (a), (c), and (e) are spanning sets.

12. (a) and (b) are spanning sets.

19. (b) and (c)

3.3 1. (a) and (e) are linearly independent; (b), (c),
and (d) are linearly dependent.

2. (a) and (e) are linearly independent; (b), (c),
and (d) are not.

3. (a) and (b) are all of 3-space;

(c) a plane through (0, 0, 0);

(d) a line through (0, 0, 0);

(e) a plane through (0, 0, 0)

4. (a) linearly independent;

(b) linearly independent;

(c) linearly dependent

8. (a) and (b) are linearly dependent while (c)
and (d) are linearly independent.

11. When α is an odd multiple of π/2. If the graph
of y = cos x is shifted to the left or right by an
odd multiple of π/2, we obtain the graph of
either sin x or − sin x.

3.4 1. Only in parts (a) and (e) do they form a basis.

2. Only in part (a) do they form a basis.

3. (c) 2

4. 1

5. (c) 2;

(d) a plane through (0, 0, 0) in 3-space

6. (b) {(1, 1, 1)T}, dimension 1;

(c) {(1, 0, 1)T , (0, 1, 1)T}, dimension 2

7. basis {(1, 1, 0, 0)T , (1, −1, 1, 0)T , (0, 2, 0, 1)T}
11. {x2 + 2, x + 3}
12. (a) {E11, E22}; (c) {E11, E21, E22};

(e) {E12, E21, E22};
(f) {E11, E22, E21 + E12}

13. 2

14. (a) 3; (b) 3; (c) 2; (d) 2

15. (a) {x, x2}; (b) {x − 1, (x − 1)2};
(c) {x(x − 1)}

3.5 1. (a)
⎧⎪⎩ 1 −1

1 1

⎫⎪⎭; (b)
⎧⎪⎩ 1 2

2 5

⎫⎪⎭;

(c)
⎧⎪⎩ 0 1

1 0

⎫⎪⎭
2. (a)

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭; (b)
⎧⎪⎩ 5 −2

−2 1

⎫⎪⎭;

(c)
⎧⎪⎩ 0 1

1 0

⎫⎪⎭
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3. (a)

⎧⎪⎪⎪⎪⎪⎩
5
2

7
2

− 1
2 − 1

2

⎫⎪⎪⎪⎪⎪⎭; (b)
⎧⎪⎩ 11 14

−4 −5

⎫⎪⎭;

(c)
⎧⎪⎩ 2 3

3 4

⎫⎪⎭
4. [x]E = (−1, 2)T, [y]E = (5, −8)T,

[z]E = (−1, 5)T

5. (a)

⎧⎪⎪⎪⎪⎪⎩
2 0 −1

−1 2 −1
0 −1 1

⎫⎪⎪⎪⎪⎪⎭; (b) (1, −4, 3)T;

(c) (0, −1, 1)T; (d) (2, 2, −1)T

6. (a)

⎧⎪⎪⎪⎪⎪⎩
1 −1 −2
1 1 0
1 0 1

⎫⎪⎪⎪⎪⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎩
7
5

−2

⎫⎪⎪⎪⎪⎪⎭
7. w1 = (5, 9)T and w2 = (1, 4)T

8. u1 = (0, −1)T and u2 = (1, 5)T

9. (a)
⎧⎪⎩ 2 2

−1 1

⎫⎪⎭; (b)

⎧⎪⎪⎪⎪⎩ 1
4 − 1

2
1
4

1
2

⎫⎪⎪⎪⎪⎭
10.

⎧⎪⎪⎪⎪⎪⎩
1 −1 0
0 1 −1
0 0 1

⎫⎪⎪⎪⎪⎪⎭
3.6 2. (a) 3; (b) 3; (c) 2

3. (a) u2, u4, u5 are the column vectors of U
corresponding to the free variables.
u2 =2u1, u4 =5u1 − u3, u5 =−3u1 + 2u3

4. (a) consistent; (b) inconsistent;

(e) consistent

5. (a) infinitely many solutions;

(c) unique solution

8. rank of A = 3; dim N(B) = 1;

18. (b) n − 1

32. If xj is a solution to Ax = ej for j = 1, . . . , m
and X = (x1, x2, . . . , xm), then AX = Im.

CHAPTER TEST A
1. True 2. False 3. False 4. False 5. True
6. True 7. False 8. True 9. True 10. False
11. True 12. False 13. True 14. False
15. False

Chapter 4
4.1 1. (a) reflection about x2 axis;

(b) reflection about the origin;

(c) reflection about the line x2 = x1;

(d) the length of the vector is halved;

(e) projection onto x2 axis

4. (7, 18)T

5. All except (c) are linear transformations from
R3 into R2.

6. (b) and (c) are linear transformations from R2

into R3.

7. (a), (b), and (d) are linear transformations.

9. (a) and (c) are linear transformations from P2

into P3.

10. L(ex) = ex − 1 and L(x2) = x3/3.

11. (a) and (c) are linear transformations from
C[0, 1] into R1.

17. (a) ker(L) = {0}, L(R3) = R3;

(c) ker(L) = Span(e2, e3),
L(R3) = Span((1, 1, 1)T )

18. (a) L(S) = Span(e2, e3);

(b) L(S) = Span(e1, e2)

19. (a) ker(L) = P1, L(P3) = Span(x2, x);

(c) ker(L) = Span(x2 − x), L(P3) = P2

23. The operator in part (a) is one-to-one and
onto.

4.2 1. (a)
⎧⎪⎩ −1 0

0 1

⎫⎪⎭; (c)
⎧⎪⎩ 0 1

1 0

⎫⎪⎭;

(d)

⎧⎪⎪⎪⎪⎩ 1
2 0

0 1
2

⎫⎪⎪⎪⎪⎭; (e)
⎧⎪⎩ 0 0

0 1

⎫⎪⎭
2. (a)

⎧⎪⎩ 1 1 0
0 0 0

⎫⎪⎭; (b)
⎧⎪⎩ 1 0 0

0 1 0

⎫⎪⎭;

(c)
⎧⎪⎩ −1 1 0

0 −1 1

⎫⎪⎭
3. (a)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
1 1 0
1 1 1

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
0 0 2
3 1 0
2 0 −1

⎫⎪⎪⎪⎪⎪⎭
4. (a) (0, 0, 0)T; (b) (2, −1, −1)T;

(c) (−15, 9, 6)T

5. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭; (b)
⎧⎪⎩ 0 1

1 0

⎫⎪⎭;

(c)

⎧⎪⎪⎩ √
3 −1
1

√
3

⎫⎪⎪⎭; (d)
⎧⎪⎩ 0 1

0 0

⎫⎪⎭
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6.

⎧⎪⎪⎪⎪⎪⎩
1 0
0 1
1 1

⎫⎪⎪⎪⎪⎪⎭;

7. (b)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 −1
1 −1 0

⎫⎪⎪⎪⎪⎪⎭
8. (a)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
2 0 1
0 −2 −1

⎫⎪⎪⎪⎪⎪⎭;

(b) (i) 7y1 +6y2 −8y3, (ii) 3y1 +3y2 −3y3,
(iii) y1 + 5y2 + 3y3

9. (a) square; (b) (i) contraction by a factor 1
2 ,

(ii) clockwise rotation by 45◦, (iii) translation
2 units to the right and 3 units down

10. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
− 1

2 −
√

3
2 0

√
3

2 − 1
2 0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(b)

⎧⎪⎪⎪⎪⎪⎩
1 0 −3
0 1 5
0 0 1

⎫⎪⎪⎪⎪⎪⎭; (d)

⎧⎪⎪⎪⎪⎪⎩
−1 0 0

0 1 2
0 0 1

⎫⎪⎪⎪⎪⎪⎭
13.

⎧⎪⎪⎪⎪⎪⎩ 1 1
2

1 0

⎫⎪⎪⎪⎪⎪⎭;

14.

⎧⎪⎪⎪⎪⎪⎩ 1 1
2

1
2

−2 0 0

⎫⎪⎪⎪⎪⎪⎭; (a)

⎧⎪⎪⎪⎪⎪⎩
1
2

−2

⎫⎪⎪⎪⎪⎪⎭ (d)
⎧⎪⎩ 5

−8

⎫⎪⎭
15.

⎧⎪⎪⎪⎪⎪⎩
1 1 0
0 1 2
0 0 1

⎫⎪⎪⎪⎪⎪⎭;

18. (a)
⎧⎪⎩ −1 −3 1

0 2 0

⎫⎪⎭; (c)
⎧⎪⎩ 2 −2 −4

−1 3 3

⎫⎪⎭
4.3 1. For the matrix A, see the answers to Exercise 1

of Section 4.2.

(a) B =
⎧⎪⎩ 0 1

1 0

⎫⎪⎭; (b) B =
⎧⎪⎩ −1 0

0 −1

⎫⎪⎭;

(c) B =
⎧⎪⎩ 1 0

0 −1

⎫⎪⎭; (d) B =
⎧⎪⎪⎪⎪⎪⎩

1
2 0

0 1
2

⎫⎪⎪⎪⎪⎪⎭;

(e) B =
⎧⎪⎪⎪⎪⎪⎩

1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎩ 1 1
−1 −3

⎫⎪⎭; (b)
⎧⎪⎩ 1 0

−4 −1

⎫⎪⎭
3. B = A =

⎧⎪⎪⎪⎪⎪⎩
2 −1 −1

−1 2 −1
−1 −1 2

⎫⎪⎪⎪⎪⎪⎭

(Note: in this case the matrices A and U
commute; so B = U−1AU = U−1UA = A.)

4. V =
⎧⎪⎪⎪⎪⎪⎩

1 1 0
1 2 −2
1 0 1

⎫⎪⎪⎪⎪⎪⎭, B =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭
5. (a)

⎧⎪⎪⎪⎪⎪⎩
0 0 2
0 1 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 1 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
1 0 1
0 1 0
0 0 1

⎫⎪⎪⎪⎪⎪⎭; (d) a1x + a22n(1 + x2)

6. (a)

⎧⎪⎪⎪⎪⎪⎩
1 0 0
0 1 1
0 1 −1

⎫⎪⎪⎪⎪⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 0 1
0 1 0

⎫⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
0 0 0
0 1 0
0 0 −1

⎫⎪⎪⎪⎪⎪⎭
CHAPTER TEST A
1. False 2. True 3. True 4. False 5. False
6. True 7. True 8. True 9. True 10. False

Chapter 5
5.1 1. (a) 0◦; (b) 90◦

2. (a)
√

14 (scalar projection), (2, 1, 3)T (vec-
tor projection);

(b) 0, 0; (c) 14
√

13
13

T
, ( 42

13 , 28
13 )T ;

(d) 8
√

21
21

T
, ( 8

21 , 16
21 , 32

21 )T

3. (a) p = (3, 0)T, x − p = (0, 4)T,
pT (x − p) = 3 · 0 + 0 · 4 = 0;

(c) p = (3, 3, 3)T, x − p = (−1, 1, 0)T,
pT (x − p) = −1 · 3 + 1 · 3 + 0 · 3 = 0

5. (1.8, 3.6)

6. (1.4, 3.8)

7. 0.4

8. (a) 2x + 4y + 3z = 0; (c) z − 4 = 0

9. 5
3

10. 8
7

20. The correlation matrix with entries rounded to
two decimal places is⎧⎪⎪⎪⎪⎪⎩

1.00 −0.04 0.41
−0.04 1.00 0.87

0.41 0.87 1.00

⎫⎪⎪⎪⎪⎪⎭
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5.2 1. (a) {(3, 4)T} basis for R(AT ),
{(−4, 3)T} basis for N(A),
{(1, 2)T} basis for R(A),
{(−2, 1)T} basis for N(AT );

(d) basis for R(AT ):
{(1, 0, 0, 0)T , (0, 1, 0, 0)T (0, 0, 1, 1)T},
basis for N(A): {(0, 0, −1, 1)T},
basis for R(A):
{(1, 0, 0, 1)T , (0, 1, 0, 1)T (0, 0, 1, 1)T},
basis for N(AT ): {(1, 1, 1, −1)T}

2. (a) {(1, 1, 0)T , (−1, 0, 1)T}
3. (b) The orthogonal complement is spanned by

(−5, 1, 3)T .

4. {(−1, 2, 0, 1)T , (2, −3, 1, 0)T} is one basis for S⊥.

6. (a) N = (8, −2, 1)T ; (b) 8x − 2y + z = 7

10. dim N(A) = n − r, dim N(AT ) = m − r

5.3 1. (a) (2, 1)T ; (c) (1.6, 0.6, 1.2)T

2. (1a) p = (3, 1, 0)T, r = (0, 0, 2)T

(1c) p = (3.4, 0.2, 0.6, 2.8)T,
r = (0.6, −0.2, 0.4, −0.8)T

3. (a) {(1 − 2α, α)T | α real};
(b) {(2 − 2α, 1 − α, α)T | α real}

4. (a) p = (1, 2, −1)T, b − p = (2, 0, 2)T ;

(b) p = (3, 1, 4)T, p − b = (−5, −1, 4)T

5. (a) y = 1.8 + 2.9x

6. 0.55 + 1.65x + 1.25x2

14. The least squares circle will have center
(0.58, −0.64) and radius 2.73 (answers roun-
ded to two decimal places).

15. (a) w = (0.1995, 0.2599, 0.3412, 0.1995)T

(b) r = (0.2605, 0.2337, 0.2850, 0.2208)T

5.4 1. ‖x‖2 = 2, ‖y‖2 = 6, ‖x + y‖2 = 2
√

10

2. (a) θ = π

4 ; p = ( 4
3 , 1

3 , 1
3 , 0)T

3. (b) ‖x‖ = 1, ‖y‖ = 3

4. (a) 0; (b) 5; (c) 7; (d)
√

74

7. (a) 1; (b) 1
π

8. (a) π

6 ; (b) p = 3
2 x

11. (a)
√

10
2 ; (b)

√
34
4

15. (a) ‖x‖1 = 7, ‖x‖2 = 5, ‖x‖∞ = 4;

(b) ‖x‖1 = 4, ‖x‖2 = √
6, ‖x‖∞ = 2;

(c) ‖x‖1 = 3, ‖x‖2 = √
3, ‖x‖∞ = 1

16. ‖x − y‖1 = 5, ‖x − y‖2 = 3, ‖x − y‖∞ = 2

28. (a) not a norm; (b) norm; (c) norm

5.5 1. (a) and (d)

2. (b) x = −
√

2
3 u1 + 5

3 u2,

‖x‖ =
[(

−
√

2
3

)2 + (
5
3

)2
]1/2

= √
3

3. p = ( 23
18 , 41

18 , 8
9 )T, p − x = ( 5

18 , 5
18 , − 10

9 )T

4. (b) c1 = y1 cos θ + y2 sin θ,
c2 = −y1 sin θ + y2 cos θ

6. (a) 15; (b) ‖u‖ = 3, ‖v‖ = 5
√

2; (c) π

4

9. (b) (i) 0, (ii) − π

2, (iii) 0, (iv) π

8

21. (b) (i) (2, −2)T , (ii) (5, 2)T, (iii) (3, 1)T

22. (a) P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
;

23. (b) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

2 0 0

− 1
2

1
2 0 0

0 0 1
2 − 1

2

0 0 − 1
2

1
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
29. (b) ‖1‖ = √

2, ‖x‖ =
√

6
3 ; (c) l(x) = 9

7 x

5.6 1. (a)

{(
− 1√

2
, 1√

2

)T
,

(
1√
2
, 1√

2

)T
}

;

(b)

{(
2√
5
, 1√

5

)T
,

(
− 1√

5
, 2√

5

)T
}

2. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
− 1√

2
1√
2

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎩ √

2
√

2
0 4

√
2

⎫⎪⎪⎭;

(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
2√
5

− 1√
5

1√
5

2√
5

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎩ √

5 4
√

5
0 3

√
5

⎫⎪⎪⎭
3.

{
( 1

3 , 2
3 , − 2

3 )T , ( 2
3 , 1

3 , 2
3 )T , (− 2

3 , 2
3 , 1

3 )T
}

4. u1(x) = 1√
2
, u2(x) =

√
6

2 x,

u3(x) = 3
√

10
4

(
x2 − 1

3

)
5. (a)

{
1
3 (2, 1, 2)T ,

√
2

6 (−1, 4, −1)T
}

;
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(b) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3

−√
2

6

1
3

2
√

2
3

2
3

−√
2

6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
; R =

⎧⎪⎪⎪⎪⎪⎩
3 5

3

0
√

2
3

⎫⎪⎪⎪⎪⎪⎭;

(c) x =
⎧⎪⎩ 9

−3

⎫⎪⎭

6. (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
5 − 4

5
√

2

4
5

3
5
√

2

0 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎩ 5 1

0 2
√

2

⎫⎪⎪⎭;

(c) (2.1, 5.5)T

7.

{(
− 1√

2
, 1√

2
, 0, 0

)T
,

(√
2

3 ,
√

2
3 , −

√
2

2 ,
√

2
6

)T
}

8.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
5

2
5

2
5

1
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5

− 2
5

− 2
5

4
5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

1√
2

− 1√
2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

5.7 1. (a) T4 = 8x4−8x2+1, T5 = 16x5−20x3+5x;

(b) H4 = 16x4 − 48x2 + 12,
H5 = 32x5 − 160x3 + 120x

2. p1(x) = x, p2(x) = x2 − 4
π

+ 1

4. p(x) = (sinh 1)P0(x) + 3
e P1(x) +

5
(
sinh 1 − 3

e

)
P2(x)

p(x) ≈ 0.9963 + 1.1036x + 0.5367x2

6. (a) U0 = 1, U1 = 2xU2 = 4x2 − 1

11. p(x) = (x − 2)(x − 3) + (x − 1)(x − 3) +
2(x − 1)(x − 2)

13. 1 · f
(
− 1√

3

)
+ 1 · f

(
1√
3

)
14. (a) degree 3 or less; (b) the formula gives the

exact answer for the first integral. The ap-
proximate value for the second integral is 1.5,

while the exact answer is
π

2
.

CHAPTER TEST A
1. False 2. False 3. False 4. False 5. True
6. False 7. True 8. True 9. True 10. False

Chapter 6
6.1 1. (a) λ1 = 5, the eigenspace is spanned by

(1, 1)T , λ2 = −1, the eigenspace is
spanned by (1, −2)T ;

(b) λ1 = 3, the eigenspace is spanned by
(4, 3)T , λ2 = 2, the eigenspace is spanned
by (1, 1)T ;

(c) λ1 = λ2 = 2, the eigenspace is spanned
by (1, 1)T ,

(d) λ1 = 3 + 4i, the eigenspace is spanned
by (2i, 1)T , λ2 = 3 − 4i, the eigenspace is
spanned by (−2i, 1)T ;

(e) λ1 = 2 + i, the eigenspace is spanned by
(1, 1 + i)T , λ2 = 2 − i, the eigenspace is
spanned by (1, 1 − i)T ;

(f) λ1 = λ2 = λ3 = 0, the eigenspace is
spanned by (1, 0, 0)T ;

(g) λ1 = 2, the eigenspace is spanned by
(1, 1, 0)T , λ2 = 1, the eigenspace is
spanned by (1, 0, 0)T , (0, 1, −1)T ;

(h) λ1 = 1, the eigenspace is spanned by
(1, 0, 0)T , λ2 = 4, the eigenspace is
spanned by (1, 1, 1)T ,
λ3 = −2, the eigenspace is spanned by
(−1, −1, 5)T ;

(i) λ1 = 2, the eigenspace is spanned by
(7, 3, 1)T , λ2 = 1, the eigenspace is
spanned by (3, 2, 1)T , λ3 = 0, the eigen-
space is spanned by (1, 1, 1)T ;

(j) λ1 = λ2 = λ3 = −1, the eigenspace is
spanned by (1, 0, 1)T ;

(k) λ1 = λ2 = 2, the eigenspace is spanned
by e1 and e2, λ3 = 3, the eigenspace is
spanned by e3, λ4 = 4, the eigenspace is
spanned by e4;

(l) λ1 = 3, the eigenspace is spanned by
(1, 2, 0, 0)T , λ2 = 1, the eigenspace is
spanned by (0, 1, 0, 0)T ,
λ3 = λ4 = 2, the eigenspace is spanned
by (0, 0, 1, 0)T

10. β is an eigenvalue of B if and only if
β = λ − α for some eigenvalue λ of A.

14. λ1 = 6, λ2 = 2;

24. λ1xT y = (Ax)T y = xT AT y = λ2xT y

6.2 1. (a)

⎧⎪⎪⎪⎩ c1e2t + c2e3t

c1e2t + 2c2e3t

⎫⎪⎪⎪⎭;

(b)

⎧⎪⎪⎪⎩ −c1e−2t − 4c2et

c1e−2t + c2et

⎫⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎩ 2c1 + c2e5t

c1 − 2c2e5t

⎫⎪⎪⎪⎭;
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(d)

⎧⎪⎪⎪⎩ −c1et sin t + c2et cos t

c1et cos t + c2et sin t

⎫⎪⎪⎪⎭;

(e)

⎧⎪⎪⎪⎩ −c1e3t sin 2t + c2e3t cos 2t

c1e3t cos 2t + c2e3t sin 2t

⎫⎪⎪⎪⎭;

(f)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−c1 + c2e5t + c3et

−3c1 + 8c2e5t

c1 + 4c2e5t

⎫⎪⎪⎪⎪⎪⎪⎪⎭
2. (a)

⎧⎪⎪⎩ e−3t + 2et

−e−3t + 2et

⎫⎪⎪⎭;

(b)

⎧⎪⎪⎩ et cos 2t + 2et sin 2t

et sin 2t − 2et cos 2t

⎫⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−6et + 2e−t + 6

−3et + e−t + 4

−et + e−t + 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
−2 − 3et + 6e2t

1 + 3et − 3e2t

1 + 3e2t

⎫⎪⎪⎪⎪⎪⎪⎪⎭
4. y1(t) = 15e−0.24t + 25e−0.08t,

y2(t) = −30e−0.24t + 50e−0.08t

5. (a)

⎧⎪⎪⎪⎪⎪⎩ −2c1et − 2c2e−t + c3e
√

2t + c4e−√
2t

c1et + c2e−t − c3e
√

2t − c4e−√
2t

⎫⎪⎪⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎩ c1e2t + c2e−2t − c3et − c4e−t

c1e2t − c2e−2t + c3et − c4e−t

⎫⎪⎪⎪⎭
6. y1(t) = −e2t + e−2t + et;

y2(t) = −e2t − e−2t + 2et

8. x1(t) = cos t + 3 sin t + 1√
3

sin
√

3t,

x2(t) = cos t + 3 sin t − 1√
3

sin
√

3t

10. (a) m1x′′
1(t) = −kx1 + k(x2 − x1)

m2x′′
2(t) = −k(x2 − x1) + k(x3 − x2)

m3x′′
3(t) = −k(x3 − x2) − kx3

(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0.1 cos 2

√
3t + 0.9 cos

√
2t

−0.2 cos 2
√

3t + 1.2 cos
√

2t

0.1 cos 2
√

3t + 0.9 cos
√

2t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
11. p(λ) = (−1)n(λn −an−1λ

n−1 −· · ·−a1λ−a0)

6.3 8. (b) α = 2; (c) α = 3 or α = −1;

(d) α = 1; (e) α = 0; (g) all values of α

21. The transition matrix and steady-state vector
for the Markov chain are⎧⎪⎩ 0.80 0.30

0.20 0.70

⎫⎪⎭ x =
⎧⎪⎩ 0.60

0.40

⎫⎪⎭

In the long run we would expect 60 percent of
the employees to be enrolled.

22. (a) A =
⎧⎪⎪⎪⎪⎪⎩

0.70 0.20 0.10
0.20 0.70 0.10
0.10 0.10 0.80

⎫⎪⎪⎪⎪⎪⎭
(c) The membership of all three groups will

approach 100,000 as n gets large.

26. The transition matrix is

A = 0.85

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1

2 0 1
4

1
3 0 0 1

4
1
3

1
2 0 1

4
1
3 0 1 1

4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ 0.15

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
30. (b)

⎧⎪⎩ e e
0 e

⎫⎪⎭
31. (a)

⎧⎪⎪⎪⎩ 3− 2e

−6+ 6e

1− e

−2+ 3e

⎫⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
e

1− e

−1+ e

−1+ e

2− e

−1+ e

−1+ e

1− e

e

⎫⎪⎪⎪⎪⎪⎪⎪⎭
32. (a)

⎧⎪⎩ e−t

e−t

⎫⎪⎭; (b)
⎧⎪⎩ −3et − e−t

et + e−t

⎫⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎩
3et − 2
2 − e−t

e−t

⎫⎪⎪⎪⎪⎪⎭
6.4 1. (a) ‖z‖ = 6, ‖w‖ = 3, 〈z, w〉 = −4 + 4i,

〈w, z〉 = −4 − 4i;

(b) ‖z‖ = 4, ‖w‖ = 7, 〈z, w〉 = −4 + 10i,
〈w, z〉 = −4 − 10i

2. (b) z = 4z1 + 2
√

2z2

3. (a) uH
1 z = 4 + 2i, zHu1 = 4 − 2i,

uH
2 z = 6 − 5i, zHu2 = 6 + 5i;

(b) ‖z‖ = 9

4. (b) and (f) are Hermitian while (b), (c), (e),
and (f) are normal.

14. (b) ‖Ux‖2 = (Ux)HUx = xHUHUx =
xHx = ‖x‖2

15. U is unitary, since UHU = (I − 2uuH)2 =
I − 4uuH + 4u(uHu)uH = I.
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24. λ1 = 1, λ2 = −1,

u1 =
(

1√
2
, 1√

2

)T
, u2 =

(
− 1√

2
, 1√

2

)T
,

A = 1

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

1
2

1
2

⎫⎪⎪⎪⎪⎪⎭ + (−1)

⎧⎪⎪⎪⎪⎪⎩
1
2 − 1

2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭
6.5 2. (a) σ1 = √

10, σ2 = 0;

(b) σ1 = 3, σ2 = 2;

(c) σ1 = 4, σ2 = 2;

(d) σ1 = 3, σ2 = 2, σ3 = 1. The matrices
U and V are not unique. The reader may
check his or her answers by multiplying
out U�VT .

3. (b) rank of A = 2, A′ =
⎧⎪⎩ 1.2 −2.4

−0.6 1.2

⎫⎪⎭
4. The closest matrix of rank 2 is⎧⎪⎪⎪⎪⎪⎩

−2 8 20
14 19 10

0 0 0

⎫⎪⎪⎪⎪⎪⎭,

The closest matrix of rank 1 is⎧⎪⎪⎪⎪⎪⎩
6 12 12
8 16 16
0 0 0

⎫⎪⎪⎪⎪⎪⎭
5. (a) basis for R(AT ):

{v1 = ( 2
3 , 2

3 , 1
3 )T , v2 = (− 2

3 , 1
3 , 2

3 )T};
basis for N(A): {v3 = ( 1

3 , − 2
3 , 2

3 )T}

6.6 1. (a)

⎧⎪⎪⎪⎪⎩ 3 − 5
2

− 5
2 1

⎫⎪⎪⎪⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 1

2 −1
1
2 3 3

2

−1 3
2 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. (a) Q = 1√

2

⎧⎪⎩ 1 1
1 −1

⎫⎪⎭, (x′)2
4 + (y′)2

12 = 1,

ellipse;

(d) Q = 1√
2

⎧⎪⎩ 1 1
−1 1

⎫⎪⎭,(
y′ +

√
2

2

)2 = −
√

2
2 (x′ − √

2) or

(y′′)2 = −
√

2

2
x′′, parabola

6. (a) positive definite; (b) indefinite;

(d) negative definite; (e) indefinite

7. (a) minimum; (b) saddle point;

(c) saddle point; (f) local maximum

6.7 1. (a) det(A1) = 2, det(A2) = 3, positive
definite;

(b) det(A1) = 3, det(A2) = −10, not positive
definite;

(c) det(A1) = 6, det(A2) = 14,
det(A3) = −38, not positive definite;

(d) det(A1) = 4, det(A2) = 8, det(A3) = 13,
positive definite

2. a11 = 3, a(1)
22 = 2, a(2)

33 = 4
3

4. (a)

⎧⎪⎪⎪⎩ 1 0
1
2 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎩ 4 0

0 9

⎫⎪⎪⎭
⎧⎪⎪⎪⎩ 1 1

2

0 1

⎫⎪⎪⎪⎭;

(b)

⎧⎪⎪⎪⎩ 1 0

− 1
3 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎩ 9 0

0 1

⎫⎪⎪⎭
⎧⎪⎪⎪⎩ 1 − 1

3

0 1

⎫⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2

1 0

1
4

−1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

16 0 0

0 2 0

0 0 4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1
2

1
4

0 1 −1

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
3

1 0

− 2
3

1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

9 0 0

0 3 0

0 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 1
3

− 2
3

0 1 1

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
5. (a)

⎧⎪⎩ 2 0
1 3

⎫⎪⎭ ⎧⎪⎩ 2 1
0 3

⎫⎪⎭;

(b)
⎧⎪⎩ 3 0

−1 1

⎫⎪⎭ ⎧⎪⎩ 3 −1
0 1

⎫⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎩
4 0 0
2

√
2 0

1 −√
2 2

⎫⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

4 2 1
0

√
2 −√

2
0 0 2

⎫⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎪⎩
3 0 0
1

√
3 0

−2
√

3
√

2

⎫⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎩

3 1 −2
0

√
3

√
3

0 0
√

2

⎫⎪⎪⎪⎪⎪⎪⎭
6.8 1. (a) λ1 = 4, λ2 = −1, x1 = (3, 2)T ;

(b) λ1 = 8, λ2 = 3, x1 = (1, 2)T ;

(c) λ1 = 7, λ2 = 2, λ3 = 0, x1 = (1, 1, 1)T

2. (a) λ1 = 3, λ2 = −1, x1 = (3, 1)T ;

(b) λ1 = 2 = 2 exp(0),
λ2 = −2 = 2 exp(π i), x1 = (1, 1)T ;

(c) λ1 = 2 = 2 exp(0),
λ2 = −1 + √

3i = 2 exp
(

2π i
3

)
,

λ3 = −1 − √
3i = 2 exp

(
4π i
3

)
,

x1 = (4, 2, 1)T

3. x1 = 70,000, x2 = 56,000, x3 = 44,000

4. x1 = x2 = x3

5. (I − A)−1 = I + A + · · · + Am−1

6. (a) (I − A)−1 =
⎧⎪⎪⎪⎪⎪⎩

1 −1 3
0 0 1
0 −1 2

⎫⎪⎪⎪⎪⎪⎭;
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(b) A2 =
⎧⎪⎪⎪⎪⎪⎩

0 −2 2
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭,

A3 =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
7. (b) and (c) are reducible.

15. (d) w = ( 12
29 , 12

29 , 3
29 , 2

29 )T

≈ (0.4138, 0.4138, 0.1034, 0.0690)T

CHAPTER TEST A
1. True 2. False 3. True 4. False 5. False
6. False 7. False 8. False 9. True 10. False
11. True 12. True 13. True 14. False
15. True

Chapter 7
7.1 1. (a) 0.231 × 104; (b) 0.326 × 102;

(c) 0.128 × 10−1; (d) 0.824 × 105

2. (a) ε = −2; δ ≈ −8.7 × 10−4;

(b) ε = 0.04; δ ≈ 1.2 × 10−3;

(c) ε = 3.0 × 10−5; δ ≈ 2.3 × 10−3;

(d) ε = −31; δ ≈ −3.8 × 10−4

3. (a) (1.0101)2 × 24; (b) (1.1000)2 × 2−2;

(c) (1.0100)2 × 23; (d) −(1.1010)2 × 2−4

4. (a) 10,420, ε = −0.0018, δ ≈ −1.7 × 10−7;

(b) 0, ε = −8, δ = −1;

(c) 1 × 10−4, ε = 5 × 10−5, δ = 1;

(d) 82,190, ε = 25.7504, δ ≈ 3.1 × 10−4

5. (a) 0.1043 × 106; (b) 0.1045 × 106;

(c) 0.1045 × 106

8. 23

9. (a) (1.00111000000000000000000)2 × 23 or
9.75

7.2 1. A =
⎧⎪⎪⎪⎪⎪⎩

1 0 0
2 1 0

−3 2 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 1 1
0 2 −1
0 0 3

⎫⎪⎪⎪⎪⎪⎭
2. (a) (2, −1, 3)T ; (b) (1, −1, 3)T ;

(c) (1, 5, 1)T

3. (a) n2 multiplications and n(n − 1) additions;

(b) n3 multiplications and n2(n−1) additions;

(c) (AB)x requires n3 + n2 multiplications
and n3 − n additions; A(Bx) requires 2n2

multiplications and 2n(n − 1) additions.

4. (b) (i) 156 multiplications and 105 additions,
(ii) 47 multiplications and 24 additions,
(iii) 100 multiplications and 60 additions

8. 5n − 4 multiplications/divisions, 3n − 3
additions/subtractions

9. (a) [(n − j)(n − j + 1)]/2 multiplications;
[(n − j − 1)(n − j)]/2 additions;

(c) It requires on the order of 2
3 n3 additional

multiplications/divisions to compute A−1

given the LU factorization.

7.3 1. (a) (1, 1, −2);

(b)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 0 0
2 1 0
0 3 1

⎫⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

1 2 −2
0 1 8
0 0 −23

⎫⎪⎪⎪⎪⎪⎭
2. (a) (1, 2, 2); (b) (4, −3, 0);

(c) (1, 1, 1)

3. P =
⎧⎪⎪⎪⎪⎪⎩

0 0 1
1 0 0
0 1 0

⎫⎪⎪⎪⎪⎪⎭, L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0
1
2 1 0

− 1
2 − 1

3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭,

U =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

2 4 −6

0 6 9

0 0 5

⎫⎪⎪⎪⎪⎪⎪⎪⎭, x =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

6

− 1
2

1

⎫⎪⎪⎪⎪⎪⎪⎪⎭
4. P = Q =

⎧⎪⎪⎩ 0 1

1 0

⎫⎪⎪⎭,

PAQ = LU =
⎧⎪⎪⎪⎩ 1 0

1
2 1

⎫⎪⎪⎪⎭
⎧⎪⎪⎩ 4 2

0 2

⎫⎪⎪⎭,

x =
⎧⎪⎩ 3

−2

⎫⎪⎭
5. (a) ĉ = Pc = (−4, 6)T,

y = L−1ĉ = (−4, 8)T,
z = U−1y = (−3, 4)T

(b) x = Qz = (4, −3)T

6. (b) P =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1

0 1 0

1 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭, Q =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

0 0 1

1 0 0

0 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭,

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

− 1
2 1 0

1
2

2
3 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭, U =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

8 6 2

0 6 3

0 0 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭

7. Error
−2000e

0.6
≈ −3333e. If e = 0.001, then

δ = − 2
3 .

8. (1.667, 1.001)
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9. (5.002, 1.000)

10. (5.001, 1.001)

7.4 1. (a) ‖A‖F = √
2, ‖A‖∞ = 1, ‖A‖1 = 1;

(b) ‖A‖F = 5, ‖A‖∞ = 5, ‖A‖1 = 6;

(c) ‖A‖F = ‖A‖∞ = ‖A‖1 = 1;

(d) ‖A‖F = 7, ‖A‖∞ = 6, ‖A‖1 = 10;

(e) ‖A‖F = 9, ‖A‖∞ = 10, ‖A‖1 = 12

2. 2

4. ‖I‖1 = ‖I‖∞ = 1, ‖I‖F = √
n;

6. (a) 10; (b) (−1, 1, −1)T

27. (a) Since for any vector y in R
n we have

‖y‖∞ ≤ ‖y‖2 ≤ √
n ‖y‖∞

it follows that

‖Ax‖∞ ≤ ‖Ax‖2

≤ ‖A‖2‖x‖2 ≤ √
n ‖A‖2‖x‖∞

29. cond∞ A = 400

30. The solutions are
⎧⎪⎩ −0.48

0.8

⎫⎪⎭ and
⎧⎪⎩ −2.902

2.0

⎫⎪⎭
31. cond∞(A) = 28

33. (a) A−1
n =

⎧⎪⎩ 1 − n n
n −n

⎫⎪⎭;

(b) cond∞ An = 4n;

(c) limn→∞ cond∞ An = ∞;

34. σ1 = 8, σ2 = 8, σ3 = 4

35. (a) r = (−0.06, 0.02)T and the relative
residual is 0.012;

(b) 20;

(d) x = (1, 1)T , ‖x − x′‖∞ = 0.12 ;

36. cond1(A) = 6

37. 0.3

38. (a) ‖r‖∞ = 0.10, cond∞(A) = 32;

(b) 0.64;

(c) x = (12.50, 4.26, 2.14, 1.10)T, δ = 0.04

7.5 1. (a)

⎧⎪⎪⎪⎪⎪⎪⎩
1√
2

1√
2

− 1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎭; (b)

⎧⎪⎪⎪⎪⎪⎪⎪⎩
√

3
2 − 1

2

1
2

√
3

2

⎫⎪⎪⎪⎪⎪⎪⎪⎭;

(c)

⎧⎪⎪⎪⎪⎪⎪⎩
− 4

5
3
5

− 3
5 − 4

5

⎫⎪⎪⎪⎪⎪⎪⎭

2. (a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3
5 0 4

5

0 1 0
4
5 0 − 3

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

− 1√
2

0

− 1√
2

− 1√
2

0

0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
;

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

0 1
2

√
3

2

0
√

3
2 − 1

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭;

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0

0 −
√

3
2

1
2

0 1
2

√
3

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
3. H = I − 1

β
vvT for the given β and v.

(a) β = 90, v = (−10, 8, −4)T ;

(b) β = 70, v = (10, 6, 2)T ;

(c) β = 15, v = (−5, −3, 4)T

4. (a) β = 90, v = (0, 10, 4, 8)T ;

(b) β = 15, v = (0, 0, −5, −1, 2)T

6. (a) H2H1A = R, where Hi = I − 1

βi
vivT

i ,

i = 1, 2, and β1 = 12, β2 = 45.

v1 =
⎧⎪⎪⎪⎪⎪⎩

−4
2

−2

⎫⎪⎪⎪⎪⎪⎭, v2 =
⎧⎪⎪⎪⎪⎪⎩

0
9

−3

⎫⎪⎪⎪⎪⎪⎭,

R =
⎧⎪⎪⎪⎪⎪⎪⎩

3 19
2

9
2

0 −5 −3
0 0 6

⎫⎪⎪⎪⎪⎪⎪⎭,

c = H2H1b =
⎧⎪⎪⎪⎪⎪⎪⎩

− 5
2

−5
0

⎫⎪⎪⎪⎪⎪⎪⎭ ;

(b) x = (−4, 1, 0)T

7. (a) G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
3

5

4

5
4

5
−3

5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭, x =
⎧⎪⎩ −1

1

⎫⎪⎭
8. It takes three multiplications, two additions,

and one square root to determine H. It takes
four multiplications/divisions, one addition,
and one square root to determine G. The cal-
culation of GA requires 4n multiplications
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and 2n additions, while the calculation of HA
requires 3n multiplications/divisions and 3n
additions.

9. (a) n − k + 1 multiplications/divisions,
2n − 2k + 1 additions;

(b) n(n − k + 1) multiplications/divisions,
n(2n − 2k + 1) additions

10. (a) 4(n − k) multiplications/divisions,
2(n − k) additions;

(b) 4n(n − k) multiplications,
2n(n − k) additions

11. (a) rotation; (b) rotation;

(c) Givens transformation;

(d) Givens transformation

7.6 1. (a) u1 =
⎧⎪⎩ 1

1

⎫⎪⎭; (b) A2 =
⎧⎪⎩ 2 0

0 0

⎫⎪⎭;

(c) λ1 = 2, λ2 = 0; the eigenspace corres-
ponding to λ1 is spanned by u1.

2. (a) v1 =
⎧⎪⎪⎪⎪⎪⎩

3
5
3

⎫⎪⎪⎪⎪⎪⎭, u1 =
⎧⎪⎪⎪⎪⎪⎩

0.6
1.0
0.6

⎫⎪⎪⎪⎪⎪⎭,

v2 =
⎧⎪⎪⎪⎪⎪⎩

2.2
4.2
2.2

⎫⎪⎪⎪⎪⎪⎭, u2 =
⎧⎪⎪⎪⎪⎪⎩

0.52
1.00
0.52

⎫⎪⎪⎪⎪⎪⎭,

v3 =
⎧⎪⎪⎪⎪⎪⎩

2.05
4.05
2.05

⎫⎪⎪⎪⎪⎪⎭;

(b) λ′
1 = 4.05; (c) λ1 = 4, δ = 0.0125

3. (b) A has no dominant eigenvalue.

4. A2 =
⎧⎪⎩ 3 −1

−1 1

⎫⎪⎭, A3 =
⎧⎪⎩ 3.4 0.2

0.2 0.6

⎫⎪⎭,

λ1 = 2 + √
2 ≈ 3.414, λ2 = 2 − √

2 ≈ 0.586

5. (b) H = I − 1

β
vvT , where β = 1

3 and v =
(− 1

3 , − 2
3 , 1

3 )T ;

(c) λ2 = 3, λ3 = 1, HAH =
⎧⎪⎪⎪⎪⎪⎩

4 0 3
0 5 −4
0 2 −1

⎫⎪⎪⎪⎪⎪⎭
7.7 1. (a) (

√
2, 0)T ; (b) (1 − 3

√
2, 3

√
2, −√

2)T ;

(c) (1, 0)T ; (d) (1 − √
2,

√
2, −√

2)T

2. xi = dibi + eibn+i

d2
i + e2

i

, i = 1, . . . , n

4. (a) Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 − 1

6

1
2 − 1

2

1
2

5
6

1
2 − 1

6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, R =

⎧⎪⎩ 2 12
0 6

⎫⎪⎭

(b) x =
⎧⎩ 0 1

3

⎫⎭T

5. (a) σ1 = √
2 + ρ2, σ2 = ρ;

(b) λ′
1 = 2, λ′

2 = 0, σ ′
1 = √

2, σ ′
2 = 0

12. A+ =
⎧⎪⎪⎪⎪⎪⎩

1
4

1
4 0

1
4

1
4 0

⎫⎪⎪⎪⎪⎪⎭
13. (a) A+ =

⎧⎪⎪⎪⎪⎪⎩
1
10 − 1

10

2
10 − 2

10

⎫⎪⎪⎪⎪⎪⎭;

(b) A+b =
⎧⎪⎩ 1

2

⎫⎪⎭;

(c)

{
y

∣∣∣∣ y =
⎧⎪⎩ 1

2

⎫⎪⎭ + α

⎧⎪⎩ −2
1

⎫⎪⎭}
15. ‖A1−A2‖F = ρ, ‖A+

1 −A+
2 ‖F = 1/ρ. As ρ →

0, ‖A1 − A2‖F → 0 and ‖A+
1 − A+

2 ‖F → ∞.

CHAPTER TEST A
1. False 2. False 3. False 4. True 5. False
6. False 7. True 8. False 9. False 10. False



INDEX
A
Absolute error, 397
Addition

of matrices, 29
in R

n, 114
of vectors, 115

Adjacency matrix, 57
Adjoint of a matrix, 101
Aerospace, 188, 294
Analytic hierarchy process, 38,

234, 382, 443
Angle

between vectors in 2-space,
202

Angle between vectors, 44,
106, 208

Approximation of functions,
256–259

Astronomy
Ceres orbit of Gauss, 226

ATLAST, xiv, 471
Augmented matrix, 7
Automobile leasing, 316
Aviation, 188

B
Backslash operator, 474
Back substitution, 5, 407, 408
Basis, 141

change of, 147–157
orthonormal, 249

Bidiagonalization, 458
Binormal vector, 108
Block multiplication, 72–76

C
C[a, b], 116
Catastrophic cancellation, 401
Cauchy–Schwarz inequality,

204, 243
Characteristic equation, 291
Characteristic polynomial, 291
Characteristic value(s), 290
Characteristic vector, 290

Chebyshev polynomials, 279
of the second kind, 282

Chemical equations, 20
Cholesky decomposition, 374
Closure properties, 115
C

n, 330
Coded messages, 104–105
Coefficient matrix, 7
Cofactor, 90
Cofactor expansion, 90
Column space, 157, 219
Column vector notation, 28
Column vector(s), 27, 157
Communication networks, 56
Companion matrix, 300
Comparison matrix, 383
Compatible matrix norms, 416
Complete pivoting, 413
Complex

eigenvalues, 296, 305–306
matrix, 331

Computer graphics, 185
Condition number, 421–426

formula for, 423
Conic sections, 357–363
Consistency Theorem, 34, 158
Consistent comparison matrix,

384
Consistent linear system, 2
Contraction, 185
Cooley, James W., 262
Coordinate metrology, 232
Coordinate vector, 147, 153
Coordinates, 153
Correlation matrix, 213
Correlations, 211
Covariance, 213
Covariance matrix, 214
Cramer’s rule, 103
Cross product, 105
Cryptography, 104–105

D
Dangling Web page, 320
Data fitting, least squares,

229–232
Defective matrix, 315
Definite quadratic form, 364
Deflation, 445
Determinant(s), 87–111

cofactor expansion, 90
definition, 92
and eigenvalues, 291
of elementary matrices, 97
and linear independence, 135
of a product, 99
of a singular matrix, 97
of the transpose, 92
of a triangular matrix, 93

DFT, 261
Diagonal matrix, 66
Diagonalizable matrix, 312
Diagonalizing matrix, 312
Digital imaging, 352
Dilation, 185
Dimension, 143

of row space and column
space, 160

Dimension Theorem, 275
Direct sum, 221
Discrete Fourier transform,

259–261
Distance

in 2-space, 202
in n-space, 208, 246
in a normed linear space, 245

Dominant eigenvalue, 319

E
Economic models, 21–23
Edges of a graph, 56
Eigenspace, 291
Eigenvalue(s), 290

complex, 296
definition, 290
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and determinants, 291
numerical computation,

440–451
product of, 297
sensitivity of, 464
of similar matrices, 298
and structures, 293, 388
sum of, 297
of a symmetric positive

definite matrix, 365
Eigenvector, 290
Electrical networks, 19
Elementary matrix, 61

determinant of, 97
inverse of, 63

Equivalent systems, 3–5, 61
Euclidean length, 202
Euclidean n-space, 27

F
Factor analysis, 214
Fast Fourier Transform,

262–263
Filter bases, 440
Finite dimensional, 143
Floating point number, 396
FLT axis system, 189
Forward substitution, 407, 408
Fourier coefficients, 258

complex, 259
Fourier matrix, 261
Francis, John G. F., 447
Free variables, 13
Frobenius norm, 241, 415
Frobenius theorem, 381
Full rank, 165
Fundamental subspaces,

218–219
Fundamental Subspaces

Theorem, 219

G
Gauss, Carl Friedrich, 225
Gauss–Jordan reduction, 17
Gaussian elimination, 13

algorithm, 405
algorithm with interchanges,

411

complete pivoting, 413
with interchanges, 409–414
without interchanges,

404–409
partial pivoting, 413

Gaussian quadrature, 281
Gerschgorin disks, 467
Gerschgorin’s theorem, 450
Givens transformation, 465
Golub, Gene H., 458
Golub-Reinsch Algorithm, 459
Google PageRank algorithm,

320
Gram–Schmidt process,

266–275
modified version, 273

Graph(s), 56

H
Harmonic motion, 308
Hermite polynomials, 279
Hermitian matrix, 332

eigenvalues of, 332
Hessian, 368
Hilbert matrix, 464
Homogeneous coordinates,

187
Homogeneous system, 20

nontrivial solution, 20
Hotelling, H., 354
Householder QR factorization,

453
Householder transformation,

430–435, 465

I
Idempotent, 59, 299
Identity matrix, 52
IEEE floating point standard,

400
Ill conditioned, 421
Image space, 175
Inconsistent, 2
Indefinite

quadratic form, 364
Infinite dimensional, 143
Information retrieval, 41, 209,

320, 353

Initial value problems, 302,
307

Inner product, 77, 238
complex inner product, 330
for C

n, 331
of functions, 239
of matrices, 239
of polynomials, 239
of vectors in R

n, 238
Inner product space, 238

complex, 330
norm for, 244

Interpolating polynomial, 229
Lagrange, 280

Invariant subspace, 300, 336
Inverse

computation of, 65
of an elementary matrix, 63
of a product, 54

Inverse matrix, 53
Inverse power method, 450
Invertible matrix, 53
Involution, 59
Irreducible matrix, 380
Isomorphism

between row space and
column space, 223

between vector spaces, 119

J
Jacobi polynomials, 279
Jordan canonical form, 319

K
Kahan, William, 458
Kernel, 175
Kirchhoff’s laws, 19

L
Lagrange’s interpolating

formula, 280
Laguerre polynomials, 279
Latent semantic indexing, 211
LDLT factorization, 374
LDU factorization, 373
Lead variables, 13
Leading principal submatrix,

370
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Least squares problem(s),
225–238, 253, 451–462

Ceres orbit of Gauss, 226
fitting circles to data, 232

Least squares problem(s),
solution of, 226

by Householder
transformations, 453–454

from Gram–Schmidt QR,
271, 452–453

from normal equations, 228,
451

from singular value
decomposition, 454–457

Left inverse, 164
Left singular vectors, 345
Legendre polynomials, 278
Legendre, Adrien-Marie, 225
Length

of a complex scalar, 330
in inner product spaces, 240
of a vector in C

n, 330
of a vector in R

2, 106, 113,
202

of a vector in R
n, 208

Length of a walk, 57
Leontief input-output models

closed model, 23, 381–382
open model, 378–380

Leslie matrix, 51
Leslie population model, 51
Linear combination, 34, 123
Linear differential equations

first order systems, 301–306
higher order systems,

306–310
Linear equation, 1
Linear operator, 170
Linear system(s), 1

equivalent, 61
homogeneous, 20
inconsistent, 2
matrix representation, 32
overdetermined, 14
underdetermined, 15

Linear transformation(s),
169–198

contraction, 185

definition, 169
dilation, 185
image space, 175
inverse image, 178
kernel, 175
one-to-one, 178
onto, 178
on R

2, 170
range, 175
reflection, 185
from R

n to R
m, 173

standard matrix
representation, 179

Linearly dependent, 132
Linearly independent, 132

in C(n−1)[a, b], 138–140
in Pn, 137–138

Loggerhead sea turtle, 50, 83
Lower triangular, 66
LU factorization, 67, 406

M
Machine epsilon, 351, 399,

401
Management Science, 38
Markov chain(s), 45, 149,

316–319, 382
Markov process, 45, 149, 316
MATLAB, 471–482

array operators, 479
built in functions, 476
entering matrices, 472
function files, 477
graphics, 479
help facility, 81, 481
M-files, 476
programming features, 476
relational and logical

operators, 478
script files, 476
submatrices, 473
symbolic toolbox, 480

MATLAB path, 477
Matrices

addition of, 29
equality of, 29
multiplication of, 35
row equivalent, 64

scalar multiplication, 29
similar, 195

Matrix
coefficient matrix, 7
column space of, 157
condition number of, 423
correlation, 213
defective, 315
definition of, 7
determinant of, 92
diagonal, 66
diagonalizable, 312
diagonalizing, 312
elementary, 61
Fourier, 261
Hermitian, 332
identity, 52
inverse of, 53
invertible, 53
irreducible, 380
lower triangular, 66
negative definite, 364
negative semidefinite, 364
nonnegative, 377
nonsingular, 53
normal, 339
null space of, 122
orthogonal, 251
positive, 377
positive definite, 364
positive semidefinite, 364
powers of, 49
projection, 228, 255
rank of, 158
reducible, 380
row space of, 157
singular, 54
sudoku matrix, 427
symmetric, 41
transpose of, 41
triangular, 66
unitary, 333
upper Hessenberg, 446
upper triangular, 66

Matrix algebra, 46–58
algebraic rules, 47
notational rules, 40

Matrix arithmetic, 27–45
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Matrix exponential, 323
Matrix factorizations

Cholesky decomposition, 374
Gram–Schmidt QR, 269
LDLT , 374
LDU, 373
LU factorization, 67, 406
QR factorization, 434, 437,

453
Schur decomposition, 334
singular value decomposition,

342
Matrix generating functions,

473
Matrix multiplication, 35

definition, 35
Matrix norms, 415–421

1-norm, 379, 418
2-norm, 420
compatible, 416
Frobenius, 241, 415
infinity norm, 418
subordinate, 416

Matrix notation, 27
Matrix representation theorem,

182
Matrix, adjoint of, 101
Maximum

local, 368
of a quadratic form, 365

Minimum
local, 368
of a quadratic form, 365

Minor, 90
Mixtures, 303
Modified Gram–Schmidt

process, 273, 452
Moore–Penrose pseudoinverse,

456
Multipliers, 406

N
Negative correlation, 213
Negative definite

matrix, 364
quadratic form, 364

Negative semidefinite
matrix, 364

quadratic form, 364
Networks

communication, 56
electrical, 19

Newtonian mechanics, 106
Nilpotent, 299
Nonnegative matrices,

377–387
Nonnegative matrix, 377
Nonnegative vector, 377
Nonsingular matrix, 53, 64
Norm

1-norm, 244
in C

n, 331
infinity, 244
from an inner product, 240,

244
of a matrix, 416
of a vector, 244

Normal equations, 228, 451
Normal matrices, 338–339
Normal vector, 206
Normed linear space, 244
Nth root of unity, 265
Null space, 122

dimension of, 159
Nullity, 159
Numerical integration, 280
Numerical rank, 350–351

O
Ohm’s law, 19
Operation count

evaluation of determinant,
98–99, 101

forward and back
substitution, 408

Gaussian elimination, 405
QR factorization, 435, 438

Ordered basis, 147
Origin shifts, 449
Orthogonal complement, 218
Orthogonal matrices, 251–253

definition, 251
elementary, 430
Givens reflection, 435, 437
Householder transformation,

430–435

permutation matrices, 252
plane rotation, 435, 437
properties of, 252

Orthogonal polynomials,
275–282

Chebyshev polynomials, 279
definition, 276
Hermite, 279
Jacobi polynomials, 279
Laguerre polynomials, 279
Legendre polynomials, 278
recursion relation, 277
roots of, 281

Orthogonal set(s), 247
Orthogonal subspaces, 217
Orthogonality

in n-space, 208
in an inner product space, 240
in R

2 or R
3, 204

Orthonormal basis, 249
Orthonormal set(s), 247–266
Outer product, 77
Outer product expansion, 77

from singular value
decomposition, 349,
353

Overdetermined, 14

P
PageRank algorithm, 320
Parseval’s formula, 250
Partial pivoting, 413
Partitioned matrices, 70–76
Pascal matrix, 392
Pearson, Karl, 354
Penrose conditions, 455
Permutation matrix, 252
Perron’s theorem, 380
Perturbations, 395
Pitch, 188
Pivot, 8
Plane

equation of, 206
Plane rotation, 435, 437
Pn, 117
Population migration, 148
Positive correlation, 213
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Positive definite matrix,
370–377

Cholesky decomposition, 374
definition, 364
determinant of, 370
eigenvalues of, 365
LDLT factorization, 374
leading principal submatrices

of, 370
Positive definite quadratic

form, 364
Positive matrix, 377
Positive semidefinite

matrix, 364
quadratic form, 364

Positive vector, 377
Power method, 442
Principal Axes Theorem, 363
Principal component analysis,

214, 215, 354
Probability vector, 317
Projection

onto column space, 227
onto a subspace, 255

Projection matrix, 228, 255
Pseudoinverse, 455
Psychology, 214
Pythagorean law, 208, 240

Q
QR algorithm, 448–449
QR factorization, 269, 434,

437, 453
Quadratic equation

in n variables, 362
in two variables, 357

Quadratic form
in n variables, 362
negative definite, 364
negative semidefinite, 364
positive definite, 364
positive semidefinite, 364
in two variables, 357

R
R

m×n, 115
R

n, 27
Range, 175

of a matrix, 219
Rank deficient, 165
Rank of a matrix, 158
Rank-Nullity Theorem, 159
Rayleigh quotient, 341
Real Schur decomposition, 336
Real Schur form, 336
Reciprocal matrix, 383
Reduced row echelon form, 16
Reducible matrix, 380
Reflection, 185
Reflection matrix, 435, 437
Regular Markov process, 319,

382
Relative error, 397
Relative residual, 422
Residual vector, 226
Right inverse, 164
Right singular vectors, 345
Roll, 188
Rotation matrix, 180, 435, 437,

465
Round off error, 397
Row echelon form, 13
Row equivalent, 64
Row operations, 5, 7
Row space, 157
Row vector notation, 28
Row vector(s), 27, 157

S
Saddle point, 365, 368
Scalar multiplication

for matrices, 29
in R

n, 114
in a vector space, 115

Scalar product, 31, 77, 202
in R

2 or R
3, 202–205

Scalar projection, 205, 242
Scalars, 27
Schur decomposition, 334
Schur’s theorem, 334
Sex-linked genes, 321, 390
Signal processing , 259–262
Similarity, 192–198, 298

definition, 195
eigenvalues of similar

matrices, 298

Singular matrix, 54
Singular value decomposition,

44, 211, 215, 342, 466
compact form, 345
and fundamental subspaces,

345
and least squares, 454
and rank, 345

Singular values, 342
and 2-norm, 420
and condition number, 421
and the Frobenius norm, 347

Skew Hermitian, 338, 341
Skew symmetric, 101, 338
Solution set of linear system, 2
Space shuttle, 294
Span, 123
Spanning set, 125
Spearman, Charles, 214
Spectral Theorem, 335
Square matrix, 7
Stable algorithm, 395
Standard basis, 145–146

for Pn, 146
for R

2×2, 145
for R

3, 141
for R

n, 145
State vectors, 317
Stationary point, 363
Steady-state vector, 289
Stochastic matrix, 149, 317
Stochastic process, 316
Strict triangular form, 5
Subordinate matrix norms, 416
Subspace(s), 119–130

definition, 120
Sudoku, 427
Sudoku matrix, 427
Svd, 342
Sylvester’s equation, 341
Symmetric matrix, 41

T
Trace, 198, 247, 297
Traffic flow, 17
Transition matrix, 150, 154

for a Markov process, 317
Translations, 186
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Transpose
of a matrix, 41
of a product, 55

Triangle inequality, 244
Triangular factorization,

67–68, 406
Triangular matrix, 66
Trigonometric polynomial, 258
Trivial solution, 20
Tukey, John W., 262

U
Uncorrelated, 213
Underdetermined, 15
Uniform norm, 244
Unit lower triangular, 373
Unit round off, 351
Unit triangular, 373
Unit upper triangular, 373

Unit vector, 106
Unitary matrix, 333
Upper Hessenberg matrix, 446
Upper triangular, 66

V
Vandermonde matrix, 70, 100

in MATLAB, 100, 463
Vector projection, 205, 242
Vector space

axioms of , 115
closure properties, 115
of continuous functions, 116
definition, 115
of m × n matrices, 115
of polynomials, 117
subspace of, 120

Vector(s), 27
Vectors in R

n, 27

Vertices of a graph, 56
Vibrations of a structure, 310

W
Walk in a graph, 57
Wavelets, 440
Web searches, 44, 320
Weight function, 239
Weights, 238
Well conditioned, 421
Wronskian, 139

Y
Yaw, 188

Z
Zero

matrix, 30
subspace, 120
vector, 115
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